首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The immune system protects us against foreign pathogens. However, if fine discrimination between self and non-self is not carried out properly, immunological attacks against self may be launched leading to autoimmune diseases, estimated to afflict up to 5% of the population. During the last decade it has become increasingly clear that regulatory CD4+CD25+ T cells (Treg cells) play an important role in the maintenance of immunological self-tolerance, and that this cell subset exerts its function by suppressing the proliferation or function of autoreactive T cells. Based on human and murine observations, this review presents a characterization of the phenotype and functions of the Treg cells in vitro and in vivo . An overview of the surface molecules associated with and the cytokines produced by the Treg cells is given and the origin, activation requirements and mode of action of the Treg cells are discussed. Finally, we address the possibility that Treg cells may play a central role in immune homeostasis, regulating not only autoimmune responses, but also immune responses toward foreign antigens.  相似文献   

2.
Summary: Numerous studies over the past 10 years have demonstrated the importance of naturally occurring CD4+CD25+Foxp3+ regulatory T cells (nTregs) in immune regulation. We analyzed the mechanism of action of nTregs in a well‐characterized model of autoimmune gastritis and demonstrated that nTregs act at an early stage of disease progression to inhibit the differentiation of naïve T cells to pathogenic T‐helper 1 effectors. The effects of nTregs in this model are not antigen‐specific but are mediated by activation of the nTregs by ubiquitous self‐peptide major histocompatibility complex class II complexes together with cytokines released by activated effector cells. Studies in vitro confirmed that some nTregs exist in an activated state in vivo and can be activated to exert non‐specific suppressor effector function by stimulation with interleukin‐2 in the absence of engagement of their T‐cell receptor. Natural Tregs can differentiate in vitro to exhibit potent granzyme B‐dependent, partially perforin‐independent cytotoxic cells that are capable of specifically killing antigen‐presenting B cells. Natural Treg‐mediated killing of antigen‐presenting cells may represent one pathway by which they can induce long‐lasting suppression of autoimmune disease.  相似文献   

3.
4.
Summary: Thymic derived naturally occurring CD25+CD4+ T regulatory cells (Tregs) suppress immune responses, including transplantation. Here we discuss the capacity of dendritic cells (DCs) to expand antigen‐specific Tregs, particularly polyclonal Tregs directed to alloantigens. Initial studies have shown that mature DCs are specialized antigen‐presenting cells (APCs) for expanding antigen‐specific CD25+ CD4+ Tregs from TCR transgenic mice. When triggered by specific antigen, these Tregs act back on immature DCs to block the upregulation of CD80 and CD86 costimulatory molecules. More recently, DCs have been used to expand alloantigen‐specific CD25+CD4+ Tregs from the polyclonal repertoire in the presence of interleukin‐2 (IL‐2). Allogeneic DCs are much more effective than allogeneic spleen cells for expanding CD25+CD4+ Tregs. The DC‐expanded Tregs continue to express high levels of Foxp3, even without supplemental IL‐2, whereas spleen cells poorly sustain Foxp3 expression. When suppressive activity is tested, relatively small numbers of DC‐expanded CD25+CD4+ Tregs exert antigen‐specific suppression in the mixed leukocyte reaction (MLR), blocking immune responses to the original stimulating strain 10 times more effectively than to third party stimulating cells. DC‐expanded Tregs also retard graft versus host disease (GVHD) across full major histocompatibility complex (MHC) barriers. In vitro and in vivo, the alloantigen‐specific CD25+CD4+ Tregs are much more effective suppressors of transplantation reactions than polyclonal populations. We suggest that the expansion of Tregs from a polyclonal repertoire via antigen‐presenting DCs will provide a means for antigen‐specific control of unwanted immune reactions.  相似文献   

5.
Background Venom immunotherapy (VIT) induces long‐lasting immune tolerance to hymenoptera venom antigens, but the underlying mechanisms are not yet clarified. Regulatory T cells are thought to play an important role in allergic diseases and tolerance induction during specific immunotherapy. Aim Characterize longitudinally the impact of VIT on the pool of circulating regulatory T cells. Methods Fourteen hymenoptera venom‐allergic patients with severe reactions (grades III–IV) were studied before, 6 and 12 months after starting ultra‐rush VIT. Freshly isolated peripheral blood mononuclear cells were surface stained with a panel of markers of T cell differentiation and intracellularly for CTLA‐4 and Foxp3 and analysed by flow cytometry. foxp3 mRNA was quantified by real‐time PCR. VIT responses were assessed by measuring specific IgG4 and IgE levels. Eleven individuals with no history of insect venom allergy were studied as controls. Results VIT induces a significant progressive increase in both the proportion and the absolute numbers of regulatory T cells defined as CD25bright and/or Foxp3+ CD4+ T cells. These changes are not related to alterations in the expression of activation markers or imbalances in the naïve/memory T cell compartments. foxp3 mRNA levels also increased significantly during VIT. Of note, the increase in circulating regulatory T cell counts significantly correlates with the venom‐specific IgG4/IgE ratio shift. Conclusion VIT is associated with a progressive expansion of circulating regulatory T cells, supporting a role for these cells in tolerance induction.  相似文献   

6.
Autoimmune diseases afflict approximately 5% of the population and reflect a failure in the immune system to discriminate between self and non-self resulting in the breakdown of self-tolerance. Regulatory CD4+CD25+ T cells (Treg cells) have been shown to play an important role in the maintenance of immune homeostasis and self-tolerance by counteracting the development and effector functions of potentially autoreactive T cells. We have in the previous APMIS review described the phenotype and physiology of Treg cells. The present overview deals with the thymic origin of Treg cells and their role in disease models such as autoimmune gastritis and inflammatory bowel disease. Finally, we will consider some aspects of the therapeutic potential of Treg cells.  相似文献   

7.
Summary: Tolerance to self-antigens is an ongoing process that begins centrally during T-cell maturation in the thymus and continues throughout the cell's life in the periphery by a network of regulated restraints. Remaining self-reactive T-cells that escape intrathymic deletion may be silenced within the peripheral immune system by specialized regulatory CD4+ cells. By analogy, regulatory CD4+ cells that control immunity to "acquired self" should arise in circumstances where the immune system acquires tolerance to foreign MHC, such as the tolerance that develops following the exposure to foreign MHC antigens during the neonatal period. We have used this classic model of neonatal tolerance to examine the role of regulatory CD4+ cells in acquired tolerance to disparate class I and class II MHC. Adoptive transfer of unfractionated but not CD4+-depleted spleen cells from neonatal tolerant mice into SCID recipients inhibited skin graft rejection by immunocompetent CD8+ T cells. Using 5-bromo-2'-deoxyuridine incorporation, standard cytotoxic T-lymphocyte assays, short-term interferon-γ ELISPOT, and intracellular FACS analysis to study CD8+ T-cell effector function, we demonstrated that neonatal tolerant mice contain CD4+CD25+ cells that suppress the development of anti-donor CD8+ T-cell responses in vitro . We conclude that regulatory CD4+CD25+ cells initiate and/or maintain tolerance by preventing the development of CD8+ T-cell alloreactivity.  相似文献   

8.
BACKGROUND: CD4(+)CD25+ regulatory T cells suppress proliferation and cytokine production by human T cells both to self-antigens and exogenous antigens. Absence of these cells in human newborns leads to multiple autoimmune and inflammatory disorders together with elevated IgE levels. However, their role in human allergic disease is still unclear. OBJECTIVE: This study aimed to evaluate the capacity of CD4(+)CD25+ regulatory T cells to suppress proliferation and cytokine production outside and during birch-pollen season in birch-allergic patients relative to non-allergic controls. METHODS: CD4+ cells were obtained from blood of 13 birch-allergic patients and six non-allergic controls outside pollen season and from 10 birch-allergic patients and 10 non-allergic controls during birch-pollen season. CD25+ and CD25- fractions were purified with magnetic beads and cell fractions, alone or together in various ratios, were cultured with antigen-presenting cells and birch-pollen extract or anti-CD3 antibody. Proliferation and levels of IFN-gamma, IL-13, IL-5 and IL-10 were measured by thymidin incorporation and ELISA, respectively. Numbers of CD25+ cells were analysed by flow cytometry. RESULTS: CD4(+)CD25+ regulatory T cells from both allergics and non-allergics potently suppressed T cell proliferation to birch allergen both outside and during birch-pollen season. However, during season CD4(+)CD25+ regulatory T cells from allergic patients but not from non-allergic controls were defective in down-regulating birch pollen induced IL-13 and IL-5 production, while their capacity to suppress IFN-gamma production was retained. In contrast, outside pollen season the regulatory cells of both allergics and non-allergic controls were able to inhibit T-helper 2 cytokine production. CONCLUSION: This is the first study to show differential suppression of Th1 and Th2 cytokines, with CD4(+)CD25+ regulatory T cells from birch-pollen-allergic patients being unable to down-regulate Th2, but not Th1 responses during birch-pollen season.  相似文献   

9.
Background Regulatory T cells (Tregs) are key players in controlling the development of airway inflammation. However, their role in the mechanisms leading to tolerance in established allergic asthma is unclear. Objective To examine the role of Tregs in tolerance induction in a murine model of asthma. Methods Ovalbumin (OVA) sensitized asthmatic mice were depleted or not of CD25+ T cells by anti‐CD25 PC61 monoclonal antibody (mAb) before intranasal treatment (INT) with OVA, then challenged with OVA aerosol. To further evaluate the respective regulatory activity of CD4+CD25+ and CD4+CD25? T cells, both T cell subsets were transferred from tolerized or non‐tolerized animals to asthmatic recipients. Bronchoalveolar lavage fluid (BALF), T cell proliferation and cytokine secretion were examined. Results Intranasal treatment with OVA led to increased levels of IL‐10, TGF‐β and IL‐17 in lung homogenates, inhibition of eosinophil recruitment into the BALF and antigen specific T cell hyporesponsiveness. CD4+CD25+Foxp3+ T cells were markedly upregulated in lungs and suppressed in vitro and in vivo OVA‐specific T cell responses. Depletion of CD25+ cells before OVA INT severely hampered tolerance induction as indicated by a strong recruitment of eosinophils into BALF and a vigorous T cell response to OVA upon challenge. However, the transfer of CD4+CD25? T cells not only suppressed antigen specific T cell responsiveness but also significantly reduced eosinophil recruitment as opposed to CD4+CD25+ T cells. As compared with control mice, a significantly higher proportion of CD4+CD25? T cells from OVA treated mice expressed mTGF‐β. Conclusion Both CD4+CD25+ and CD4+CD25? T cells appear to be essential to tolerance induction. The relationship between both subsets and the mechanisms of their regulatory activity will have to be further analyzed.  相似文献   

10.
BACKGROUND: CD4+CD25+ regulatory T (Treg) cells and the cytokines IL-10 or TGF-beta play key roles in the maintenance of T cell homeostasis and tolerance to infectious and non-infectious antigens such as allergens. OBJECTIVE: To investigate the regulation of immune responses to birch pollen allergen compared with influenza antigen by Treg cells obtained from birch pollen-allergic patients and non-allergic controls. METHODS: Peripheral blood was collected from 10 birch pollen-allergic patients and 10 non-allergic healthy controls. CD4+CD25+ and CD4+CD25- cells isolated by magnetic-activated cell sorting were co-cultured and stimulated with birch pollen extract or influenza vaccine in the absence or presence of anti-IL-10 or soluble TGF-betaRII. RESULTS: CD4+CD25+ cells from non-allergic controls were able to suppress influenza antigen and birch pollen stimulated effector cell proliferation, whereas CD4+CD25+ cells from allergic patients suppressed influenza antigen-, but not birch pollen-stimulated proliferation. The production of Th1 cytokines, but not Th2 cytokines, was suppressed by CD4+CD25+ cells from both allergic patients and controls, upon stimulation with birch pollen extract. Neutralization of IL-10 led to significantly increased production of IFN-gamma in cultures with CD4+CD25- T effector cells. In addition, six-fold higher concentrations of TNF-alpha were detected after neutralization of IL-10 in both CD4+CD25- and CD4+CD25+ cell cultures from allergic patients and controls. CONCLUSION: We demonstrate that the allergen-specific suppressive function of CD4+CD25+ cells from allergic patients is impaired compared with non-allergic controls. Moreover, neutralization of IL-10 enhances the production of TNF-alpha, suggesting counter-acting properties of IL-10 and TNF-alpha, where IL-10 promotes tolerance and suppression by Treg cells and TNF-alpha promotes inflammatory responses.  相似文献   

11.
Summary: CD4+CD25+ regulatory T cells play a crucial role in preventing autoimmune disease and can also modulate immune responses in settings such as transplantation and infection. We have developed a transgenic mouse system in which the role that T‐cell receptor (TCR) specificity for self‐peptides plays in the formation of CD4+CD25+ regulatory T cells can be examined. We have shown that interactions with a single self‐peptide can induce thymocytes bearing an autoreactive TCR to undergo selection to become CD4+CD25+ regulatory T cells and that thymocytes bearing TCRs with low affinity for the selecting peptide do not appear to undergo selection into this pathway. In addition, thymocytes with identical specificity for the selecting self‐peptide can undergo overt deletion versus abundant selection to become CD4+CD25+ regulatory T cells in response to variations in expression of the selecting peptide in different lineages of transgenic mice. Finally, we have shown that CD4+CD25+ T cells proliferate in response to their selecting self‐peptide in the periphery, but these cells do not proliferate in response to lymphopenia in the absence of the selecting self‐peptide. These studies are determining how the specificity of the TCR for self‐peptides directs the thymic selection and peripheral expansion of CD4+CD25+ regulatory T cells.  相似文献   

12.
BACKGROUND: Naturally occurring CD4+CD25+ regulatory T cells (Tregs) play a critical role in the maintenance of self-tolerance and it has been suggested that these Tregs may also be involved in preventing allergic disease. OBJECTIVE: The precise role of CD4+CD25+ T cells in the regulation of allergic responses to mucosal antigens remains to be elucidated. In the present study, it was investigated whether CD4+CD25+ T cells are involved in the induction of oral tolerance and whether they play a role in controlling hypersensitivity responses to food proteins. METHODS: CD4+CD25+ T cells were depleted with PC61 mAb before the induction of low dose oral tolerance to peanut extract (PE). In addition, CD4+CD25+ T cell depletion was performed during sensitization or before oral challenge, using a C3H/HeOuJ mouse model of allergic sensitization to peanut. RESULTS: Oral tolerance to PE could not be induced in CD4+CD25+ T cell-depleted mice. However, CD4+CD25+ T cell depletion during long-term exposure to PE alone did not result in allergic sensitization. In sensitized mice, anti-CD25 treatment during oral exposure resulted in higher levels of PE-specific IgE and increased mast cell degranulation upon an oral challenge. In contrast, anti-CD25 treatment of PE-sensitized mice before oral challenges did not affect the level of mast cell degranulation. CONCLUSION: These results indicate that CD4+CD25+ Tregs are involved in maintaining tolerance to oral antigens and regulate the intensity of an IgE-mediated food hypersensitivity response, but are not crucial in preventing sensitization. Accordingly, CD4+CD25+ Tregs may represent a potential tool for the treatment of food allergic disorders.  相似文献   

13.
BACKGROUND: Specific immunotherapy with whole allergen extracts is associated with local accumulation of IFN-gamma+ and CD25+ cells indicating recruitment of activated T-helper type 1 (Th1) and/or T regulatory cells. We have studied allergen-induced, late-phase skin biopsies before and after T cell peptide therapy for evidence of alterations in the pattern of local recruitment of Th1, T-helper type 2 (Th2) and T regulatory cells. OBJECTIVE: To evaluate the effect of T cell peptide therapy on the allergen-induced cutaneous late-phase reaction. METHODS: Increasing doses of synthetic Fel d 1-derived peptides were administered (by intradermal injection) to eight cat-allergic asthmatics at 14-day intervals. Twenty-four-hour skin biopsies were taken from whole cat allergen- and diluent-injected sites, before and after treatment and studied by immunohistochemistry and in situ hybridization. RESULTS: Fel-d 1 peptides decreased airway hyper-responsiveness (P = 0.02) and inhibited the late-phase cutaneous reaction (LPCR) to whole cat allergen (P = 0.03). This was associated with significant increases (post- vs. pre-treatment) in the number of cutaneous CD4+/IFN-gamma+ (P = 0.03) and CD4+/CD25+ cells (P = 0.04), but not in CD4+/IL-10+ or CD4+/CTLA-4+ cells. CONCLUSIONS: Treatment with allergen-derived T cell peptides results in allergen-dependent recruitment to the skin of Th1, rather than T regulatory cells, to cutaneous late-phase reaction sites.  相似文献   

14.
BACKGROUND: Clinically effective subcutaneous allergen-specific immunotherapy (SIT) is associated with altered circulating T cell cytokine production and altered local cytokine responses with increased IL-10 following allergen challenge in target organs. OBJECTIVE: This study aimed to elucidate mechanisms for these T cell changes, by examining surface expression of markers for peripheral tissue trafficking on circulating cytokine-positive T cells following standardized house dust mite- (HDM-) SIT. METHODS: A randomized conventional HDM immunotherapy study was performed on a panel of 12 HDM-allergic subjects. Nine subjects received treatment with conventional HDM immunotherapy using a standardized extract and three subjects were treated by standard pharmacotherapy alone. Symptom and medication scores and allergen-induced cutaneous late-phase responses were assessed before and 9 months after institution of therapy. Before and at 3 and 9 months of SIT, peripheral blood mononuclear cells were cultured for 14 days with HDM extract and CD4+ and CD8+ T cell expression of CD62L, CD49d and CCR5 and production of IL-10, IFN-gamma and IL-4 were analysed by flow cytometry. Allergen-specific T cell proliferation was assessed by 3H-thymidine incorporation. RESULTS: At 9 months, all SIT-treated patients showed reduced symptom scores and late-phase cutaneous responses to HDM compared with baseline levels. The proportions of CD4+ T cells which were IL-10+ were increased (P < 0.01), and the proportions of CD4+ and CD8+ T cells which were IL-4+ decreased (P < 0.05) compared with baseline. CD4+ and CD8+ T cell IFN-gamma production, expression of surface markers for peripheral tissue trafficking and allergen-specific proliferation remained unchanged during SIT treatment. However, increased proportions of CD4+CD62L(-), CD4+CD49d(hi), CD4+CCR5+ T cells expressing IL-10 were detected at 9 months of SIT compared with baseline (P < 0.05). IL-10 staining co-localized with CD4+CD25+ T cells. CONCLUSION: Clinically effective subcutaneous immunotherapy with a standardized HDM Dermatophagoides pteronyssinus preparation results in decreased numbers of IL-4+ T cells and expansion of CD4+IL-10+ T cells expressing a peripheral tissue trafficking phenotype. The co-localization of IL-10+ staining to CD4+CD25+ T cells is consistent with the induction of a T regulatory cell population by SIT.  相似文献   

15.
During T-cell development the transition in the thymus of CD4-CD8- double negative (DN) progenitor T cells into CD4+CD8+ double positive (DP) cells is dependent on the expression of a T-cell receptor (TCR)-beta-chain protein. In this study purified peripheral CD4+ and CD8+ T lymphocytes from the C.B-17 strain of mice were adoptively transferred into syngeneic, neonatal SCID mice, where donor cells resided at constant numbers in thymus from 2 weeks until 10 weeks post cell transfer. In the recipient thymus the CD8+ donor cells outnumbered the CD4+ cells by a factor of three to five and both subsets contained a large fraction of activated cells. During the late phase of treatment, CD8+ T cells induced high numbers of DP thymocytes in the SCID mice, a process accompanied by the maturation of medullary epithelial cells. Such thymic development in the SCID mouse was inhibited by coresiding CD4+ donor T cells. These results indicate a regulatory role by mature peripheral T cells on medullary epithelial growth and thymocyte development in the treated SCID mice.  相似文献   

16.
Summary: CD4 regulatory T cells have a major role in controlling the immune response to self and foreign antigens. Natural CD4+ CD25+ T cells are a major component of the regulatory subset. Their absence is associated with the development of autoimmune and inflammatory diseases and with abnormal peripheral T-cell homeostasis. Two main characteristics discriminate natural CD4+ CD25+ T cells from their CD4+ CD25 counterparts, namely their cytokine production profile and their behavior during tolerance induction. Natural CD4+ CD25+ T cells produce interleukin (IL)-10, a cytokine that contributes to their regulatory role. They do not produce IL-2 and are dependent on exogenous IL-2 for proliferation in vitro and in vivo . Studies of their response to superantigen administration in vivo show that they are resistant to clonal deletion but can be tolerized by anergy. Their resistance to apoptosis may contribute to their continuous regulatory function, as it allows them to maintain permanent control over effector T cells.  相似文献   

17.
Summary: Depletion of the minor (∼10%) subpopulation of CD4+ T cells that co-expresses CD25 (interleukin (IL)-2 receptor α-chain) by thymectomy of neonates on the third day of life or by treatment of adult CD4+ T cells with anti-CD25 and complement results in the development of organ-specific autoimmunity. Autoimmune disease can be prevented by reconstitution of the animals with CD4+ CD25+ cells. CD4+ CD25+-mediated protection of autoimmune gastritis does not require the suppressor cytokines IL-4, IL-10, or transforming growth factor (TGF)-β. Mice that express a transgenic T-cell receptor (TCR) derived from a thymectomized newborn that recognizes the gastric parietal cell antigen H/K ATPase all develop severe autoimmune gastritis very early in life. CD4+ CD25+ T cells are also powerful suppressors of the activation of both CD4+ and CD8+ T cells in vitro . Suppression is mediated by a cell contact-dependent, cytokine-independent T–T interaction. Activation of CD4+ CD25+ via their TCR generates suppressor effector cells that are capable of non-specifically suppressing the activation of any CD4+ or CD8+ T cell. Activation of suppressor effector function is independent of co-stimulation mediated by CD28/CTLA-4 interactions with CD80/CD86. We propose that CD4+ CD25+ T cells recognize organ-specific antigens, are recruited to sites of autoimmune damage where they are activated by their target antigen, and then physically interact with autoreactive CD4+ or CD8+ effector cells to suppress the development of autoimmune disease.  相似文献   

18.
19.
Summary: Our understanding of the importance of CD4+ T cells in orchestrating immune responses has grown dramatically over the past decade. This lymphocyte family consists of diverse subsets ranging from interferon-γ (IFN-γ)-producing T-helper 1 (Th1) cells to transforming growth factor-β (TGF-β)-secreting T-regulatory cells, which have opposite roles in modulating immune responses to pathogens, tumor cells, and self-antigens. This review briefly addresses the various T-cell subsets within the CD4+ T-cell family and discusses recent research efforts aimed at elucidating the nature of the 'T-cell help' that has been shown to be essential for optimal immune function. Particular attention is paid to the role of Th cells in tumor immunotherapy. We review some of our own work in the field describing how CD4+ Th cells can enhance anti-tumor cytotoxic T-lymphocyte (CTL) responses by enhancing clonal expansion at the tumor site, preventing activation-induced cell death and functioning as antigen-presenting cells for CTLs to preferentially generate immune memory cells. These unconventional roles for Th lymphocytes, which require direct cell-to-cell communication with CTLs, are clear examples of how versatile these immunoregulatory cells are.  相似文献   

20.
Linomide, a quinoline-3-carboxamide, has a pleiotropic immune modulating capacity and inhibits development as well as progression of disease in animal models of autoimmunity. Linomide treatment of mice resulted in a dramatic, dose-dependent decrease of the thymic cell number shortly after the start of administration. Flow cytometric analysis revealed that the major thymocyte subset, the early immature type CD4+CD8+ thymocytes, were reduced in number by 75%, mature CD4+CD8? or CD4?CD8+ thymocytes were less sensitive to treatment. The polyclonal T cell activator Con A (Concanavalin A) was used together with IL-2 to evaluate the potential proliferative responsiveness of ex vivo thymocytes. Thymocytes from mice treated with Linomide exhibited a more vigorous proliferation than control cultures. An effect shown to not only be due to the enrichment of mature thymocytes in the cultures from Linomide treated animals, but also when purified, mature thymocytes (CD4+CD8? and CD4?CD8+) were cultured with Con A and IL-2, these cells responded with a significantly enhanced proliferation. In vivo Linomide treatment did not result in increased plasma concentrations of corticosterone and treatment of adrenalectomized mice resulted in a reduction of thymocytes which was comparable to the effect in intact mice, indicating that glucocorticoids (GC) are not major mediators of Linomide-induced thymocyte deletion. In addition to this, and supporting a glucocorticoid independent mode of action, Linomide treatment of thymocytes in vitro resulted in a significant increase in the number of apoptotic cells, specifically in the CD4+CD8+ subset, implicating apopotosis as one component in the course of thymocyte reduction. In addition to this, in vivo treatment with Linomide resulted in an identical pattern to that seen in vitro in that there was significantly increased apoptosis only in the CD4+CD8+. These data indicate that Linomide modifies thymocyte development using a glucocorticoid independent pathway and results in the increased apoptosis of the CD4+CD8+ subset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号