首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infectious in vitro transcripts from a plum pox potyvirus cDNA clone   总被引:3,自引:0,他引:3  
J L Riechmann  S Laín  J A García 《Virology》1990,177(2):710-716
  相似文献   

2.
3.
4.
5.
6.
Turnip crinkle virus infection from RNA synthesized in vitro   总被引:7,自引:0,他引:7  
  相似文献   

7.
8.
Shen R  Miller WA 《Virology》2007,358(2):448-458
Tobacco necrosis necrovirus (TNV) RNA lacks both a 5' cap and a poly(A) tail but is translated efficiently, owing in part to a Barley yellow dwarf virus (BYDV)-like cap-independent translation element (BTE) in its 3' untranslated region (UTR). Here, we identify sequence downstream of the BTE that is necessary for poly(A) tail-independent translation in vivo by using RNA encoding a luciferase reporter gene flanked by viral UTRs. Deletions and point mutations caused loss of translation that was restored by adding a poly(A) tail, and not by adding a 5' cap. The two 3'-proximal stem-loops in the viral genome contribute to poly(A) tail-independent translation, as well as RNA replication. For all necroviruses, we predict a conserved 3' UTR secondary structure that includes the BTE at one end of a long helical axis and the stem-loops required for poly(A) tail-independent translation and RNA replication at the other end. This work shows that a viral genome can harbor distinct cap- and poly(A) tail-mimic sequences in the 3' UTR.  相似文献   

9.
Z G Xiong  S A Lommel 《Virology》1991,182(1):388-392
  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
We developed approaches using antisense RNA to inhibit hepatitis C virus (HCV) RNA translation and HCV core protein expression. An HCV genotype 1b cDNA comprising nt 1-1321 or a fusion construct consisting of HCV (nt 1-584) and luciferase cDNAs were inserted downstream of T7 and CMV promoter sequences and used to generate HCV RNA target molecules. Such constructs will produce HCV core or HCV coreluciferase fusion proteins in vitro or within transfected cells. Seven different antisense RNA constructs were designed to target the highly conserved 5' region of HCV RNA at nt positions 1-402. For in vitro experiments, synthesized HCV RNA target sequences and antisense RNAs were mixed at various molar ratios and subsequently translated in a rabbit reticulocyte lysate system. In cell culture studies, the HCV core-luciferase fusion cDNA was co-transfected with antisense RNA-producing constructs into human hepatocellular carcinoma (HCC) cells. Luciferase activity in cell lysates was measured to determine quantitatively antiviral effects within the cell. It was found that translation of HCV RNAs was efficiently inhibited by antisense RNA in vitro. The specificity of this inhibition was confirmed using control target RNA sequences or nonrelevant antisense RNA constructs. Co-transfection studies demonstrated that antisense RNA inhibited HCV core-luciferase fusion protein expression by 41-57% in HuH-7 HCC cells. These studies indicate that antisense RNA will find viral target RNA sequences in HuH-7 cells and inhibit HCV RNA translation. More important, these studies have defined critical viral RNA target sequences susceptible to antisense inhibitory effects within the cell.  相似文献   

19.
20.
Translation initiation of coxsackievirus B3 (CVB3) RNA is directed by an internal ribosome entry site (IRES) within the 5' untranslated region. However, the details of ribosome-template recognition and subsequent translation initiation are still poorly understood. In this study, we have provided evidence to support the hypothesis that 40S ribosomal subunits bind to CVB3 RNA via basepairing with 18S rRNA in a manner analogous to that of the Shine-Dalgarno (S-D) sequence in prokaryotic systems. We also identified a new site within both the 18S rRNA and the polpyrimidine-tract sequence of the IRES that allows them to form stronger sequence complementation. All these data were obtained from in vitro translation experiments using mutant RNAs containing either an antisense IRES core sequence at the original position or site-directed mutations or deletions in the polypyrimidine tract of the IRES. The mutations significantly reduced translation efficiency but did not abolish protein synthesis, suggesting that the S-D-like sequence is essential, but not sufficient for ribosome binding. To determine how ribosomes reach the initiation codon after internal entry, we created additional mutants: when the authentic initiation codon at nucleotide (nt) 742 was mutated, a 180-nt downstream in-frame AUG codon at nt 922 is able to produce a truncated smaller protein. When this mutation was introduced into the full-length cDNA of CVB3, the derived viruses were still infectious. However, their infectivity was much weaker than that of the wild-type CVB3. In addition, when a stable stem-loop was inserted upstream of the initiation codon in the bicistronic RNA, translation was strongly inhibited. These data suggest that ribosomes reach the initiation codon from the IRES likely by scanning along the viral RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号