首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyclonal immune monkey serum raised against schizonts of Plasmodium knowlesi (H-strain) showed the presence of antibodies to lactate dehydrogenase (LDH) of P. knowlesi by immunodot enzyme staining method. The anti-LDH antibodies are most probably directed towards an epitope distinct from the catalytic site as shown by the specific enzyme staining of LDH after binding with antibody on nitrocellulose paper. These antibodies showed reactivity with LDH from different strains (H, P and W1 strains of P. knowlesi) and species (P. cynomolgi B, P. berghei, P. yoelii, P. falciparum and P. vivax) of malarial parasites but did not cross-react with three isoenzymic forms of mammalian LDH (A4, B4 and C4) as well as with LDH from some protozoan and helminth parasites. These findings suggest that the anti-LDH antibodies have defined specificity to Plasmodium spp.  相似文献   

2.
Plasmodial lactate dehydrogenase, terminal enzyme of the glycolytic pathway, has been shown to be biochemically, immunologically and structurally different from the mammalian enzyme. The substrate specific loop region of plasmodial lactate dehydrogenase (pLDH) has 5 amino acids insert (DKEWN) important for anti-malarial drug targeting. In the present study, we have produced six monoclonal antibodies, which are against three different epitopes of Plasmodium falciparum LDH (PfLDH). Two of these monoclonal antibodies (10C4D5 and 10D3G2) are against the substrate specific loop region of PfLDH (residues 98-109, AGFTKAPGKSDKEWNR). The 10C4D5 and 10D3G2 monoclonals bind to substrate specific loop region resulting in inhibition of PfLDH activity. A Microplate Sandwich ELISA was developed employing high affinity non-inhibitory (10A5H5, Kaff 1.272?±?0.057?nM) and inhibitory (10C4D5, Kaff 0.306?±?0.011?nM) monoclonal antibodies and evaluated using gossypol, a well known inhibitor of pLDH. The binding of gossypol to substrate specific loop region resulted in inhibition of binding of 10C4D5 monoclonal. This Microplate Sandwich ELISA can be utilized for identification of compounds inhibitory to PfLDH (binding to substrate specific loop region of parasite LDH) from combinatory chemical libraries or medicinal plants extracts. The Microplate Sandwich ELISA has also shown potential for specific diagnosis of malaria using finger prick blood samples.  相似文献   

3.
Plasmepsin 4 from Plasmodium falciparum and orthologs from Plasmodium malariae, Plasmodium ovale and Plasmodium vivax have been expressed in recombinant form, and properties of the active site of each enzyme characterized by kinetic analysis. A panel of chromogenic peptide substrates systematically substituted at the P3, P2, P2' and P3' positions was used to estimate enzyme/ligand interactions in the corresponding enzyme subsites based upon kinetic data. The kinetic parameters kcat, Km and kcat/Km were measured to identify optimal substrates for each enzyme and also sequences that were readily cleaved by the plasmepsins but poorly by host aspartic peptidases. Computer generated models were utilized to compare enzyme structures and interpret kinetic results. The orthologous plasmepsins share highly similar subsite specificities. In the S3 and S2 subsites, the plasmepsin 4 orthologs all preferred hydrophobic amino acid residues, Phe or Ile, but rejected charged residues such as Lys or Asp. In S2' and S3' subsites, these plasmepsins tolerated both hydrophobic and hydrophilic residues. Subsite specificities of the plasmepsin 4 family of orthologs are similar to those of human cathepsins D and E, except in S3' where the plasmepsins accept substrates containing Ser significantly better than either of these human aspartic proteases. Peptidomimetic methyleneamino reduced-peptide inhibitors, which have inhibition constants in the picomolar range, were prepared for each plasmepsin 4 ortholog based upon substrate preferences. A peptidomimetic inhibitor designed for plasmepsin 4 from P. falciparum having Ser in P3' had the lowest Ki of the series of inhibitors prepared, but did not significantly improve the selectivity of the inhibitor for plasmepsin 4 versus human cathepsin D.  相似文献   

4.
Gossypol is a di-sesquiterpene natural-product in the form of a functionalised binaphthyl and is isolated from cotton plants. The compound has long been known to exhibit anti-malarial and other biological activities. Previous studies have indicated that compounds of this type target Plasmodium falciparum lactate dehydrogenase (pfLDH), an essential enzyme for energy generation within the parasite. In this study, we report that simple naphthalene-based compounds, the core of the gossypol structure, exhibit weak inhibition of the parasite lactate dehydrogenase. Crystal structures of the complexes formed by binding of these naphthalene-based compounds to their target enzyme have been used to delineate the molecular features likely to form the gossypol binding site. Two modes of binding are observed: one overlapping the pyruvate but not the co-factor site, the other bridging the binding sites for the co-factor nicontinamide group and pyruvate substrate. This latter site encompasses molecular features unique to Plasmodium forms of LDH and is likely to represent the mode of binding for gossypol derivatives that show selectivity for the parasite enzymes. We also report a substrate analogue that unexpectedly binds within the adenine pocket of the co-factor groove. Although these core pharmacophore-like molecules only exhibit low levels of inhibitory activity, these molecular snapshots provide a rational basis for renewed structure-based development of naphthalene-based compounds as anti-malarial agents.  相似文献   

5.
Toxoplasma gondii differentially expresses two forms of lactate dehydrogenase in tachyzoites and bradyzoites, respectively, designated LDH1 and LDH2. Previously it was demonstrated that LDH1 and LDH2 share a unique structural feature with LDH from the malarial parasite Plasmodium falciparum (pLDH), namely, the addition of a five-amino acid insert into the substrate specificity loops. pLDH exhibits a number of kinetic properties that previously were thought to be unique to pLDH. In the present study, kinetic properties of LDH1 and LDH2 were compared with those of pLDH. LDH1 and LDH2 exhibit broader substrate specificity than pLDH. For both LDH1 and LDH2, 3-phenylpyruvate is an excellent substrate. For LDH2, 3-phenylpyruvate is a better substrate even than pyruvate. By comparison, pLDH does not utilize 3-phenylpyruvate. Both LDH1 and LDH2 can utilize the NAD analog 3-acetylpyridine adenine dinucleotide (APAD) efficiently, similar to pLDH. LDH1 and LDH2 are inhibited competitively by a range of compounds that also inhibit pLDH, including gossypol and derivatives, dihydroxynaphthoic acids, and N-substituted oxamic acids. The lack of substrate inhibition observed with pLDH is also observed with LDH2. By comparison, LDH1 differs from LDH2 in exhibiting substrate inhibition in spite of an identical residue (M163) at a cofactor binding site that is thought to be critical for production of substrate inhibition. For gossypol and gossylic iminolactone, but not the other gossypol derivatives tested, the in vitro inhibition of T. gondii LDH activity correlated with specific inhibition of T. gondii tachyzoite growth in fibroblast cultures.  相似文献   

6.
Cytosoluble 100,000 X g extracts from Plasmodium berghei or Plasmodium falciparum infected red blood cells were shown to hydrolyze erythrocyte spectrin. By Fast Protein Liquid Chromatography (FPLC), these enzymes were purified and exhibited a pI of 4.5 and Mr of 37,000 using SDS-PAGE under reducing conditions. An immunochemical enzyme assay using anti-spectrin antibodies was developed. The optimal activity using spectrin as substrate was at pH 5.0, and the enzymes were strongly inhibited by HgCl2, ZnCl2, chymostatin, leupeptin and aprotinin, and moderately by pepstatin. These properties of the Pf37 and Pb37 proteases differ from the Plasmodium lophurae and P. falciparum 'cathepsin D-like' enzymes and from the serine or cysteine neutral proteases previously described in P. falciparum and P. berghei infected red blood cells. While the Pf37 and Pb37 enzymes cleaved spectrin preferentially, degradation of band 4.1 was also observed with high concentration of enzyme. The parasite origin of the Pf37 protease was clearly demonstrated, since purified radiolabeled enzyme was active on spectrin. A high-molecular-weight polymer (greater than 240 kDa) was often observed on incubating purified spectrin and Pf37 protease. The breakdown of erythrocyte cytoskeletal components could be of interest in the release of merozoites from segmented schizonts or during the process of invasion of erythrocytes by merozoites.  相似文献   

7.
We have cloned two gene (aldo-1 and aldo-2) encoding the glycolytic enzyme aldolase of the rodent malaria parasite Plasmodium berghei. The amino acid sequence of one gene product, ALDO-1, is virtually identical to P. falciparum aldolase whereas ALDO-2, the second gene product, is different and has 13% sequence diversity to ALDO-1. We expressed ALDO-2 as an active enzyme in Escherichia coli and compared the biochemical and kinetic properties to that of P. falciparum recombinant aldolase (ALDO-1 type). Based on the Km and Vmax constants for FMP and FBP, neither ALDO-1 nor ALDO-2 can be clearly assigned to any of the known mammalian isoenzyme classes. We demonstrate that expression of the two isoenzymes is developmentally regulated: specific antibody probes detect ALDO-1 in sporozoite stages of P. berghei and ALDO-2 is found in blood stage parasites.  相似文献   

8.
Plasmodium falciparum malaria is the most important parasitic disease worldwide, responsible for an estimated 1 million deaths annually. Two P. falciparum genes code for putative phosphoglycerate mutases (PGMases), a widespread protein group characterized by the involvement of histidine residues in their catalytic mechanism. PGMases are responsible for the interconversion between 2 and 3-phosphoglycerate, an intermediate step in the glycolysis pathway. We have determined the crystal structures of one of the P. falciparum's PGMases (PfPGM2) and a functionally distinct phosphoglycerate mutase from Cryptosporidium parvum, a related apicomplexan parasite. We performed sequence and structural comparisons between the two structures, another P. falciparum enzyme (PfPGM1) and several other PGM family members from other organisms. The comparisons revealed a distinct conformation of the catalytically active residues not seen in previously determined phosphoglycerate mutase structures. Furthermore, characterization of their enzymatic activities revealed contrasting behaviors between the PfPGM2 and the classical cofactor-dependent PGMase from C. parvum, clearly establishing PfPGM2 as a phosphatase with a residual level of mutase activity. Further support for this function attribution was provided by our structural comparison with previously characterized PGM family members. Genetic characterization of PGM2 in the rodent parasite Plasmodium berghei indicated that the protein might be essential to blood stage asexual growth, and a GFP tagged allele is expressed in both blood and zygote ookinete development and located in the cytoplasm. The P. falciparum PGM2 is either an enzyme implicated in the phosphate metabolism of the parasite or a regulator of its life cycle.  相似文献   

9.
This report describes an immunoradiometric assay for Plasmodium falciparum in infected blood, based on a cross-reacting monoclonal antibody (mAb) raised against P. berghei. In this assay, binding of the mAb to intact P. berghei parasites coated on microtiter plates is inhibited by solubilized P. falciparum infected red blood cells. The use of P. berghei parasites in conjunction with monoclonal antibodies should facilitate the development of an inexpensive and reproducible test for the immunodiagnosis of malaria.  相似文献   

10.
Polyclonal immune monkey serum raised against schizonts of Plasmodium knowlesi (H-strain) showed the presence of antibodies to lactate dehydrogenase (LDH) of P. knowlesi by immunodot enzyme staining method. The anti-LDH antibodies are most probably directed towards an epitope distinct from the catalytic site as shown by the specific enzyme staining of LDH after binding with antibody on nitrocellulose paper. These antibodies showed reactivity with LDH from different strains (H, P and W1 strains of P. knowlesi) and species (P. cynomolgi B, P. berghei, P. yoelii, P. falciparum and P. vivax) of malarial parasites but did not cross-react with three isoenzymic forms of mammalian LDH (A4, B4 and C4) as well as with LDH from some protozoan and helminth parasites. These findings suggest that the anti-LDH antibodies have defined specificity to Plasmodium spp.  相似文献   

11.
The genes encoding merozoite surface protein 4/5 (MSP4/5) from Plasmodium berghei and Plasmodium yoelii have been cloned and completely sequenced. Comparisons of the predicted protein sequences with those of Plasmodium chabaudi MSP4/5 and Plasmodium falciparum MSP4 and MSP5 show general structural similarities. All predicted proteins contain hydrophobic signal sequences, potential GPI attachment sequences and a single epidermal growth factor (EGF)-like domain at the C-terminus. The amino acid sequence of the EGF-like motif is highly conserved in rodent malaria species and also shows a considerable degree of similarity with the EGF-like domains found in the P. falciparum proteins. Both the P. yoelii and P. berghei genes show evidence of both spliced and unspliced mRNA at steady state. This phenomenon is similar to that seen for the P. chabaudi MSP4/5 gene, and is believed to be involved in regulation of protein expression. We describe here the construction of clones expressing full length recombinant protein. Antibodies directed against recombinant MSP4/5 proteins recognize a single polypeptide on parasite material and show crossreactivity between MSP4/5 from different murine malaria species, but do not crossreact with either MSP4 or MSP5 from P. falciparum. The various antisera show reactivity against reduction sensitive epitopes as well as reduction insensitive epitopes.  相似文献   

12.
The telomeric sequence cloned from Plasmodium berghei (see M. Ponzi et al. (1985) EMBO J. 4, 2991-2995) was tested for species specificity. A telomeric and a subtelomeric fragment of the cloned insert served as separate, labelled probes on pulsed field gradient electrophoretical patterns and on genomic digests from the rodent malarias Plasmodium yoelii, Plasmodium chabaudi and from the human malaria Plasmodium falciparum. Results indicate that the subtelomeric fragment, abundantly represented in two chromosomes of P. berghei, is not present in the other DNA tested, while the telomeric fragment is present in every chromosome-sized molecule in all the species tested. The telomeric location in the other genomes of the sequences homologous to the P. berghei telomeric probe is confirmed by experiments with Bal 31 exonuclease. In all cases, the TaqI site appears to delimit the common telomeric portion.  相似文献   

13.
S-adenosylhomocysteine hydrolase is a prospective target for developing new anti-malarial drugs. Inhibition of the hydrolase results in an anti-cellular effect due to the suppression of adenosylmethionine-dependent transmethylations. Based on the crystal structure of Plasmodium falciparum S-adenosylhomocysteine hydrolase which we have determined recently, we performed mutational analyses on P. falciparum and human enzymes. Cys59 and Ala84 of the parasite enzyme, and the equivalent residues on the human enzyme, Thr60 and Gln85, were examined. Mutations of Cys59 and Thr60 caused dramatic impact on inhibition by 2-fluoronoraristeromycin without significant effect both on its kinetic parameters and on inhibition constant against noraristeromycin. In addition, the impact was independent from the electronegativity of the side chain of the substituting residue. These results showed that steric hindrance between a functional group at the 2-position of an adenine nucleoside inhibitor and Thr60 of the human enzyme, not an electrostatic effect, contributed to inhibitor selectivity.  相似文献   

14.
Oxidant defense enzymes of Plasmodium falciparum   总被引:1,自引:0,他引:1  
We have measured and characterized three oxidant defense enzymes in early and late intraerythrocytic stages of the human malarial parasite, Plasmodium falciparum. Isolated early intraerythrocytic stages contain catalase (24.1 mumol min-1 (mg protein)-1) and superoxide dismutase (SOD; 6.3 units (mg protein)-1) but little or no glutathione peroxidase (GPX; less than 2 mumol min-1 (mg protein)-1). Isolated late intraerythrocytic stages of P. falciparum contain slightly less catalase (17.0 mumol min-1 (mg protein)-1) but significantly more GPX (7.7 mumol min-1 (mg protein)-1) and SOD (25.1 units (mg protein)-1). P. falciparum, like P. berghei, probably acquires most of its SOD from its host, since parasite-associated SOD is predominantly cyanide-sensitive, and has the same pI as host SOD. Unlike P. berghei, however, late stages of P. falciparum contain an additional SOD isozyme which is not cyanide-sensitive and may represent an endogenous enzyme. Parasites grown in red cells that have been partially depleted of SOD are more sensitive to exogenously generated superoxide, suggesting some dependence of the parasite on host SOD.  相似文献   

15.
Phosphatidylinositol (PI) is a versatile lipid that not only serves as a structural component of cellular membranes, but also plays important roles in membrane anchorage of proteins and in signal transduction through distinct phosphorylated derivatives of the inositol head group. PI is synthesised by PI synthase from CDP-diacylglycerol and myo-inositol. The enzymatic activity in Plasmodium falciparum and P. knowlesi has previously been characterised at the biochemical level. Here we characterise the PI synthase gene of P. falciparum and P. knowlesi. The cDNA sequence identified a highly spliced gene consisting of nine exons and encoding a protein of 209 and 207 amino acids, respectively. High sequence conservation enabled the prediction of the PI synthase genes of P. berghei, P. chabaudi and P. vivax. All Plasmodium PI synthase proteins appear to be highly hydrophobic, although no consensus for the number and location of distinct transmembrane domains could be detected. The P. falciparum PI synthase (PfPIS) gene successfully complemented a Saccharomyces cerevisiae PIS1 deletion mutant, demonstrating its enzymatic function. Complementation efficiency was dramatically improved when hybrid constructs between N-terminal S. cerevisiae and C-terminal P. falciparum sequences were used. Determination of in vitro PIS activities of complemented yeast strains confirmed the enzymatic function of the Plasmodium protein.  相似文献   

16.
The energy metabolism of the blood stage form of the human malaria parasite Plasmodium falciparum is adapted to the host cell. Like erythrocytes, P. falciparum merozoites lack a functional citric acid cycle. Generation of ATP depends therefore fully on the glycolytic pathway. Aldolase is a key enzyme of this pathway and a high degree of sequence diversity between parasite and host makes it a potential drug target. We have expressed the enzyme in its tetrameric form in Escherichia coli and the catalytic constants Vmax and Km of the recombinant enzyme correspond to the constants of parasite-derived aldolase. Rabbit antibodies against the recombinant P. falciparum aldolase inhibit the natural enzyme and no cross-reaction with human aldolase is detectable. Both the recombinant and the natural protein bind to the cytosolic domain of the band 3 membrane protein in vitro. A 19-residue synthetic peptide corresponding to the sequence of the binding domain of band 3 is an inhibitor when included in the binding assay. In addition, this peptide inhibits the catalytic activity of recombinant P. falciparum aldolase when assayed in a buffer system devoid of anions such as chloride or phosphate. The band 3-derived peptides compete with the aldolase substrate fructose-1,6-diphosphate for binding, suggesting that both reagents have a high affinity for the substrate pocket. A similar sequence motif exists in P. falciparum actin II. A 19-residue peptide corresponding to this sequence is also an inhibitor which could suggest that the P. falciparum aldolase can associate with the cytoskeleton of the parasite or of the host.  相似文献   

17.
18.
To initiate invasion of the mosquito midgut, Plasmodium ookinetes secrete chitinases that are necessary to cross the chitin-containing peritrophic matrix en route to invading the epithelial cell surface. To investigate chitinases as potential immunological targets of blocking malaria parasite transmission to mosquitoes, a monoclonal antibody (MAb) was identified that neutralized the enzymatic activity of the sole chitinase of Plasmodium falciparum, PfCHT1, identified to date. This MAb, designated 1C3, previously shown to react with an apical structure of P. falciparum ookinetes, also reacts with a discrete apical structure of P. gallinaceum ookinetes. In membrane feeding assays, MAb 1C3 markedly inhibited P. gallinaceum oocyst development in mosquito midguts. MAb 1C3 affinity isolated an approximately 210-kDa antigen which, under reducing conditions, became a 35-kDa antigen. This isolated 35-kDa protein cross-reacted with an antiserum raised against a synthetic peptide derived from the P. gallinaceum chitinase active site, PgCHT1, even though MAb 1C3 did not recognize native or recombinant PgCHT1 on Western blot. Therefore, this affinity-purified 35-kDa antigen appears similar to a previously identified protein, PgCHT2, a putative second chitinase of P. gallinaceum. Epitope mapping indicated MAb 1C3 recognized a region of PfCHT1 that diverges from a homologous amino acid sequence conserved within sequenced chitinases of P. berghei, P. yoelii, and P. gallinaceum (PgCHT1). A synthetic peptide derived from the mapped 1C3 epitope may be useful as a component of a subunit transmission-blocking vaccine.  相似文献   

19.
Malaria is one of the deadliest human diseases and efforts to control it have been difficult due to the protozoan parasites' complex biology. Malaria merozoite invasion of erythrocytes is an essential part of blood-stage infections. The invasion process is mediated by numerous parasite molecules, such as EBA-175, a member of the ebl family of erythrocyte binding proteins. We have identified maebl, an ebl paralogue, in Plasmodium falciparum and found it highly conserved with its orthologues in P. yoelii and P. berghei, but distinct from other Plasmodium ebl. Importantly, the putative MAEBL ligand domains are highly conserved and are similar to AMA-1, but not the consensus DBL ligand domains present in all other ebl. In mature merozoites, MAEBL localized with rhoptry proteins (RhopH2, RAP-1), including surface localization with RhopH2, but not microneme proteins (EBA-175, BAEBL). MAEBL appears as proteolytically processed fragments in P. falciparum parasites. The amino cysteine-rich ligand domains were present primarily in culture supernatants, while the carboxyl cysteine-rich domain adjacent to the transmembrane domain was preferentially isolated from Triton X-100 extracted fractions. These data indicate that the primary structure of maebl is highly conserved among Plasmodium species, while its characteristics demonstrate a function unique among the ebl proteins.  相似文献   

20.
A cloned Plasmodium berghei (ANKA) isolate was syringe passaged repeatedly to generate a line that was non-infective to Anopheles stephensi. Ribosomal gene organisation of this non-infective line was then compared to its infective ancestor. DNA was also prepared from asexual parasites and gametocytes of P. chabaudi and the arrangement of the rRNA genes of this species was studied. Although macrogametocytes have many more ribosomes than microgametocytes, this increase does not appear to stem from an amplification of the rRNA genes, as no differences either in the quantity or the arrangement of the rDNA could be detected. Furthermore, the loss of infectivity of the P. berghei gametocytes does not seem to be due to a reduction or rearrangement of sequences coding for the rRNA genes. P. chabaudi and P. berghei DNA failed to show any homology to a repetitive DNA sequence cloned from P. falciparum. We conclude that this probe, PFH8rep20, is specific for P. falciparum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号