首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uracil can arise in DNA by misincorporation of dUTP into nascent DNA and/or by cytosine deamination in established DNA. Based on recent findings, both pathways appear to be promoted in the methyl-deficient model of hepatocarcinogenesis. A chronic increase in the ratio dUTP:dTTP with folate/methyl deficiency can result in a futile cycle of excision and reiterative uracil misincorporation leading to premutagenic apyrimidinic (AP) sites, DNA strand breaks, DNA fragmentation and apoptotic cell death. The progressive accumulation of unmethylated cytosines with chronic methyl deficiency will increase the potential for cytosine deamination to uracil and further stress uracil mismatch repair mechanisms. Uracil is removed by a highly specific uracil-DNA glycosylase (UDG) leaving an AP site that is subsequently repaired by sequential action of AP endonuclease, 5'-phosphodiesterase, a DNA polymerase and DNA ligase. Since the DNA polymerases cannot distinguish between dUTP and dTTP, an increase in dUTP:dTTP ratio will promote uracil misincorporation during both DNA replication and repair synthesis. The misincorporation of uracil for thymine (5-methyluracil) may constitute a genetically significant form of DNA hypomethylation distinct from cytosine hypomethylation. In the present study a significant increase in the level of uracil in liver DNA as early as 3 weeks after initiation of folate/methyl deficiency was accompanied by parallel increases in DNA strand breaks, AP sites and increased levels of AP endonuclease mRNA. In addition, uracil was also detected within the p53 gene sequence using UDG PCR techniques. Increased levels of uracil in DNA implies that the capacity for uracil base excision repair is exceeded with chronic folate/methyl deficiency. It is possible that enzyme-induced extrahelical bases, AP sites and DNA strand breaks interact to negatively affect the stability of the DNA helix and stress the structural limits of permissible uracil base excision repair activity. Thus substitution of uracil for thymine induces repair- related premutagenic lesions and a novel form of DNA hypomethylation that may relate to tumor promotion in the methyl-deficient model of hepatocarcinogenesis.   相似文献   

2.
OBJECTIVE: Homozygosity for variants of the methylenetetrahydrofolate reductase (MTHFR) gene is associated with decreased risk for colorectal cancer. We have investigated the relationships between two variants of the MTHFR gene (C677T and A1298C) and blood folate, homocysteine, and genomic stability (strand breakage, misincorporated uracil, and global cytosine methylation in lymphocytes) in a study of 199 subjects. RESULTS: The frequencies of homozygosity for the C677T and A1298C variants of the MTHFR gene were 12.6% and 14.6%, respectively. Plasma homocysteine, folate, vitamin B12, 5-methyltetrahydrofolate, and RBC folate were determined in the C677T genotypes. Plasma folate was significantly lower (P < 0.001) in the homozygous variants (6.7 +/- 0.6 ng/mL) compared with wild-types (8.8 +/- 0.4 ng/mL) and heterozygotes (9.1 +/- 0.5 ng/mL). Homocysteine was significantly higher (P < 0.05) in homozygous variants (13.2 +/- 1.1 micromol/L) compared with homozygous subjects (10.9 +/- 0.4 micromol/L). Homozygous variants had significantly lower (P < 0.05) RBC folate (84.7 +/- 6.3 ng/mL) compared with wild-types (112.2 +/- 5.2 ng/mL) and heterozygous individuals (125.1 +/- 6.6 ng/mL). No significant difference in RBC folate was observed between wild-types and heterozygotes. The A1298C variant did not influence plasma homocysteine, folate, 5-methyltetrahydrofolate, vitamin B12, or RBC folate. Lymphocyte DNA stability biomarkers (strand breaks, misincorporated uracil, and global DNA methylation) were similar for all MTHFR C677T or A1298C variants. CONCLUSION: Data from this study do not support the hypothesis that polymorphisms in the MTHFR gene increase DNA stability by sequestering 5,10-methylenetetrahydrofolate for thymidine synthesis and reducing uracil misincorporation into DNA.  相似文献   

3.
The development of certain human cancers has been linked with inadequate intake of folates. The effects of folate deficiency in vivo on DNA stability (strand breakage, misincorporated uracil and oxidative base damage) in lymphocytes isolated from rats fed a diet deficient in folic acid was determined. Because the metabolic pathways of folate and other methyl donors are closely coupled, the effects of methionine and choline deficiency alone or in combination with folate deficiency were determined. Feeding male Hooded Lister rats a folate-free diet for 10 weeks created a moderate folate deficiency (25-50% (approx.) decrease in plasma, red blood cell and hepatic folate concentrations (P < 0.05) and a 20% rise in plasma homocysteine (P < 0.05)). Lymphocyte DNA strand breakage was increased successively in all groups after 4 weeks and 8 weeks on the diet (50-100% (approx.) after 8 weeks). Only low folate specifically and progressively induced uracil misincorporation throughout the study (100% (approx.) after 8 weeks). Neither folate deficiency nor choline/methionine deficiency altered oxidative DNA base damage. In summary, moderate folate deficiency in vivo is associated with a decrease in DNA stability, measured as increased DNA strand breakage and misincorporated uracil.  相似文献   

4.
Folate status has been inversely associated with breast cancer risk. Because folate deficiency can cause DNA damage, such as uracil misincorporation, single strand breaks, and double strand breaks, genetic polymorphisms in base excision repair and double strand break repair genes may lead to variation in DNA repair proficiency and modify the effect of folate on breast cancer risk. We prospectively investigated the a priori hypothesized interaction between plasma folate levels and five nonsynonymous polymorphisms in the XRCC1, XRCC2, and XRCC3 genes on breast cancer risk in a nested case-control study within the Nurses' Health Study (712 case-control pairs). Suggestive evidence of interaction was seen for two of these polymorphisms. Compared with the reference group of non-carriers in the lowest quartile of plasma folate, the reduction in risk (66%) was statistically significant among XRCC1 194Trp carriers in the highest quartile (multivariate odds ratio, 0.34; 95% confidence interval, 0.16-0.72). The inverse association between XRCC1 194Trp and breast cancer risk was attenuated by lower plasma folate status. The inverse association between plasma folate level and breast cancer risk was stronger among 194Trp carriers (P, trend = 0.01) than non-carriers (P, trend = 0.09). We also observed that the positive association between the XRCC2 188His allele and breast cancer risk was only significant in women in the lowest plasma folate quartile (carriers versus non-carriers; multivariate odds ratio, 2.04; 95% confidence interval, 1.05-3.97), and this excess risk was abolished among those with higher plasma folate levels. Moreover, the inverse association between plasma folate level and breast cancer risk was stronger among XRCC2 188His carriers (P, trend = 0.004) than non-carriers (P, trend = 0.09). Although none of the statistical tests for interaction was significant, these data give some support for the hypothesis that genetic variations in DNA repair genes may modify the relation between plasma folate level and breast cancer risk.  相似文献   

5.
Folate deficiency is a major concern for public health throughout the world. Poverty and limited access to food resources particularly accentuate this concern in the countries of the south. Folate is involved in the synthesis of nucleic acids (DNA, RNA) and in methylation processes. Consequently, folate abnormal metabolism interferes with the carcinogenesis modulating the genomic DNA methylation, histones methylation or inducing DNA stability by reducing thymidine synthesis and uracil misincorporation into DNA. Dietary deficiency of folate as well as some other determinants can be predictive elements that must be in the heart of the concerns of fighting against hypo folatemia and cancer. Conversely, non-controlled folate supplementation can exacerbate cancerogenesis. In the state of our knowledge, the recommendation of folate supplementation requires some precautions.  相似文献   

6.
Duthie  SJ; McMillan  P 《Carcinogenesis》1997,18(9):1709-1714
Poor folate status may be important in the aetiology of several epithelial cell malignancies including cancer of the uterine cervix. Folic acid is essential in the synthesis of purine nucleotides and the pyrimidine nucleoside thymidine and it is probable that imbalances in these DNA precursors negatively effect DNA stability and may ultimately lead to malignant transformation. The development of a modified 'comet assay' using the bacterial DNA repair enzyme uracil DNA glycosylase, to detect misincorporated uracil in human DNA is reported here. The effect of perturbing folic acid and deoxyuridine levels on uracil misincorporation in normal human lymphocytes and cultured human tumour cells was investigated using this assay. HeLa cells and peripheral human lymphocytes incubated as agarose-embedded nucleoids, with 1 unit of uracil DNA glycosylase per microg of DNA, contained low levels of uracil in their DNA. Both HeLa cells and stimulated human lymphocytes cultured in folate-deficient medium were growth arrested. Incubating human lymphocytes in folate-deficient medium significantly increased the level of uracil detected compared with control cells. HeLa cells showed an increase in non-specific DNA damage (strand breaks). Deoxyuridine (100 microM) significantly increased the level of uracil detected in the DNA of both folate-deficient and control HeLa cells. It appears that this modified comet assay specifically detects misincorporated uracil in single human cells. It should, therefore, prove valuable in determining the role of folic acid status in DNA instability and cancer.   相似文献   

7.
Low folate status increases colorectal cancer risk. Paradoxically, overly abundant folate supplementation, which is not uncommon in the United States, may increase risk. The mechanisms of these effects are unknown. We conducted two translational studies to define molecular pathways in the human colon altered either by folate supplementation or by dietary folate depletion (followed by repletion). In the first study, 10 healthy, at-risk volunteers (with documented stable/normal folate intake) received supplemental folic acid (1 mg/d) for 8 weeks. In the second study, 10 similar subjects were admitted to a hospital as inpatients for 12 weeks to study folate depletion induced by a low folate diet. A repletion regimen of folic acid (1 mg/d) was provided for the last 4 of these weeks. Both studies included an 8-week run-in period to ensure stabilized folate levels prior to intervention. We obtained 12 rectosigmoid biopsies (from 4 quadrants of normal-appearing mucosa 10-15 cm from the anal verge) at baseline and at measured intervals in both studies for assessing the primary endpoints: genome-wide gene expression, genomic DNA methylation, promoter methylation (depletion/repletion study only), and p53 DNA strand breaks. Serum and rectosigmoid folate concentrations accurately tracked all changes in folate delivery (P < 0.05). In the first study, gene array analysis revealed that supplementation upregulated multiple inflammation- and immune-related pathways in addition to altering several 1-carbon-related enzymes (P < 0.001). In the second study, folate depletion downregulated genes involved in immune response, inflammation, the cell cycle, and mitochondrial/energy pathways; repletion reversed most of these changes. However, changes in gene expression after repletion in the second study (involving immune response and inflammation) did not reach the levels seen after supplementation in the first study. Neither genomic nor promoter-specific DNA methylation changed during the course of the depletion/repletion protocol, and genomic methylation did not change with supplementation in the first study. p53 DNA strand breaks increased with depletion after 12 weeks. In sum, depletion downregulates, whereas repletion or supplementation upregulates pathways related to inflammation and immune response. These findings provide novel support to the concept that excessive folate supplementation might promote colorectal carcinogenesis by enhancing proinflammatory and immune response pathways. These results indicate that modest changes in folate delivery create substantial changes in the molecular milieu of the human colon.  相似文献   

8.
Analysis of uracil DNA glycosylase in human colorectal cancer   总被引:3,自引:0,他引:3  
Uracil DNA glycosylase (UDG) is responsible for the removal of uracil present in DNA after cytosine deamination or misincorporation during replication. Colorectal cancer is widely treated with 5-FU, which leads to thymidylate synthase inhibition; this accounts for increased dUTP intracellular pools and subsequent uracil incorporation into DNA. Uracil misincorporation has also been implicated in the link between folate deficiency and colorectal cancer risk. As there is no information on UDG in colorectal cancer, this study characterized UDG activity and protein expression in a panel of 20 colorectal tumors and 6 colorectal cell lines. UDG activity in colorectal tissue is widely variable and it is statistically higher in tumor tissue (P=0.013) compared to normal bowel. Tumor versus normal activity ratios ranged from 0.49 to 2.2 (median 1.13). Among the six colorectal cell lines tested, UDG activity varied from 40 to 68 units and was markedly (1.7-fold) higher than in tumor tissue (P<0.0001). In both colorectal tissues and cell lines, UDG was expressed as both 29 kDa and 35 kDa forms. Total protein expression varied 3.2-fold in cell lines; variability was also found between patients and between normal and tumoral tissue for the same patient. This study demonstrates UDG protein and functional activity in human colorectal tumors and cell lines. The high tumor:normal tissue ratio supports further interest in base excision repair, through UDG, as a potential source of fluoropyrimidine resistance in colorectal cancer.  相似文献   

9.
Glycine N‐methyltransferase (GNMT) is a folate binding protein commonly diminished in human hepatoma yet its role in tumor development remains to be established. GNMT binds to methylfolate but is also inhibited by it; how such interactions affect human carcinogenesis is unclear. We postulated that GNMT plays a role in folate‐dependent methyl group homeostasis and helps maintain genome integrity by promoting nucleotide biosynthesis and DNA repair. To test the hypothesis, GNMT was over‐expressed in GNMT‐null cell lines cultured in conditions of folate abundance or restriction. The partitioning of folate dependent 1‐carbon groups was investigated using stable isotopic tracers and GC/MS. DNA damage was assessed as uracil content in cell models, as well as in Gnmt wildtype (Gnmt +/+), heterozygote (Gnmt +/?) and knockout (Gnmt ?/?) mice under folate deplete, replete, or supplementation conditions. Our study demonstrated that GMMT 1) supports methylene‐folate dependent pyrimidine synthesis; 2) supports formylfolate dependent purine syntheses; 3) minimizes uracil incorporation into DNA when cells and animals were exposed to folate depletion; 4) translocates into nuclei during prolonged folate depletion. In conclusion, loss of GNMT impairs nucleotide biosynthesis. Over‐expression of GNMT enhances nucleotide biosynthesis and improves DNA integrity by reducing uracil misincorporation in DNA both in vitro and in vivo. To our best knowledge, the role of GNMT in folate dependent 1‐carbon transfer in nucleotide biosynthesis has never been investigated. The present study gives new insights into the underlying mechanism by which GNMT can participate in tumor prevention/suppression in humans.  相似文献   

10.
Folate deficiency may be associated with an increased risk of cancer at certain sites. There is a need to measure folate status and putative biomarkers of cancer risk in the same target tissue, or in surrogate tissues. A study was carried out to develop a method for the rapid measurement of folate in human buccal mucosa and lymphocytes and to evaluate the responsiveness of this measurement in both tissues to folic acid supplementation in healthy subjects, relative to conventional markers of folate status. Three hundred and twenty-three adults, ages between 20 and 60 years, were screened for RBC folate concentrations. Sixty-five subjects with red cell folate between 200 and 650 nmol/L participated in a randomized, double blind, placebo-controlled, folic acid (1.2 mg) intervention trial, lasting 12 weeks. As anticipated, a significant baseline correlation (r = 0.36, P < 0.01) was observed between red cell folate and plasma 5-methyltetrahydrofolate (5-MeTHF). Lymphocyte total folate was significantly associated with plasma 5-MeTHF (r = 0.28, P < 0.05) and plasma total homocysteine concentration (r = -0.34, P < 0.05). Buccal mucosa total folate showed no correlation with either red cell folate or 5-MeTHF, but was significantly associated with lymphocyte total folate (r = 0.35, P < 0.01). Supplementation elicited a significant increase in lymphocyte total folate (P < 0.01), and this was strongly associated with the increase in RBC total folate (P < 0.01) and plasma 5-MeTHF (P < 0.01). Buccal mucosa total folate was not influenced by folate supplementation. Methods have been developed for the rapid measurement of lymphocyte and buccal mucosal total folate. Lymphocyte folate is sensitive to folate intake and is reflected by plasma 5-MeTHF.  相似文献   

11.
Folate is a B vitamin, deficiency of which appears to increase the risk of developing several malignancies including colorectal cancer. In contrast to the cancer-promoting effect of folate deficiency in normal tissues, several lines of evidence indicate that folate depletion suppresses the progression of existing neoplasms and enhance the sensitivity of cancer cells to chemotherapy. Folate mediates the transfer of one-carbon necessary for the de novo biosynthesis of purines and thymidylate, and hence is an essential factor for DNA synthesis and repair, and the maintenance of DNA integrity and stability. Folate deficiency induces DNA strand breaks, increases uracil misincorporation into DNA, impairs DNA repair and appears to induce apoptosis. Although the effects of folate depletion on DNA integrity and apoptosis and on subsequent cancer development, progression and treatment in colonic epithelial cells have been well characterized, it is largely unknown at present how folate depletion modulates specific upstream genes in apoptosis and cancer pathways that regulate these processes. We therefore investigated the effects of folate depletion on expression of genes involved in apoptosis and cancer pathways in four human colon adenocarcinoma cell lines in an in vitro model of folate deficiency. Apoptosis and cancer pathway-specific mini-microarray were used to screen for differentially expressed genes in response to folate deficiency, and the expression of seven most notably and consistently affected genes was confirmed by real time RT-PCR. Our data suggest that folate deficiency affects the expression of key genes that are related to cell cycle control, DNA repair, apoptosis and angiogenesis in a cell-specific manner. Cell-specificity in gene expression changes in response to folate deficiency is likely due to significant differences in molecular and phenotypic characteristics, growth rates and intracellular folate concentrations among the four cell lines.  相似文献   

12.
The C677T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene is associated with a decreased risk of colon cancer although it may increase the risk of breast cancer. This polymorphism is associated with changes in intracellular folate cofactors, which may affect DNA methylation and synthesis via altered one‐carbon transfer reactions. We investigated the effect of this mutation on DNA methylation and uracil misincorporation and its interaction with exogenous folate in further modulating these biomarkers of one‐carbon transfer reactions in an in vitro model of the MTHFR 677T mutation in HCT116 colon and MDA‐MB‐435 breast adenocarcinoma cells. In HCT116 cells, the MTHFR 677T mutation was associated with significantly increased genomic DNA methylation when folate supply was adequate or high; however, in the setting of folate insufficiency, this mutation was associated with significantly decreased genomic DNA methylation. In contrast, in MDA‐MB‐435 cells, the MTHFR 677T mutation was associated with significantly decreased genomic DNA methylation when folate supply was adequate or high and with no effect when folate supply was low. The MTHFR 677T mutation was associated with a nonsignificant trend toward decreased and increased uracil misincorporation in HCT116 and MDA‐MB‐435 cells, respectively. Our data demonstrate for the first time a functional consequence of changes in intracellular folate cofactors resulting from the MTHFR 677T mutation in cells derived from the target organs of interest, thus providing a plausible cellular mechanism that may partly explain the site‐specific modification of colon and breast cancer risks associated with the MTHFR C677T mutation. © 2008 Wiley‐Liss, Inc.  相似文献   

13.
Deficiency in DNA repair proteins confers susceptibility to DNA damage, making cancer cells vulnerable to various cancer chemotherapies. 5‐Fluorouracil (5‐FU) is an anticancer nucleoside analog that both inhibits thymidylate synthase (TS) and causes DNA damage via the misincorporation of FdUTP and dUTP into DNA under the conditions of dTTP depletion. However, the role of the DNA damage response to its antitumor activity is still unclear. To determine which DNA repair pathway contributes to DNA damage caused by 5‐FU and uracil misincorporation, we examined cancer cells treated with 2ʹ‐deoxy‐5‐fluorouridine (FdUrd) in the presence of TAS‐114, a highly potent inhibitor of dUTPase that restricts aberrant base misincorporation. Addition of TAS‐114 increased FdUTP and dUTP levels in HeLa cells and facilitated 5‐FU and uracil misincorporation into DNA, but did not alter TS inhibition or 5‐FU incorporation into RNA. TAS‐114 showed synergistic potentiation of FdUrd cytotoxicity and caused aberrant base misincorporation, leading to DNA damage and induced cell death even after short‐term exposure to FdUrd. Base excision repair (BER) and homologous recombination (HR) were found to be involved in the DNA repair of 5‐FU and uracil misincorporation caused by dUTPase inhibition in genetically modified chicken DT40 cell lines and siRNA‐treated HeLa cells. These results suggested that BER and HR are major pathways that protect cells from the antitumor effects of massive incorporation of 5‐FU and uracil. Further, dUTPase inhibition has the potential to maximize the antitumor activity of fluoropyrimidines in cancers that are defective in BER or HR.  相似文献   

14.
15.
Folate exists as functionally diverse species within cells. Although folate deficiency may contribute to DNA hypomethylation in colorectal cancer, findings on the association between total folate concentration and global DNA methylation have been inconsistent. This study determined global, LINE-1, and Alu DNA methylation in blood and colon of healthy and colorectal cancer patients and their relationship to folate distribution. Blood and normal mucosa from 112 colorectal cancer patients and 114 healthy people were analyzed for global DNA methylation and folate species distribution using liquid chromatography tandem mass spectrometry. Repeat element methylation was determined using end-specific PCR. Colorectal mucosa had lower global and repeat element DNA methylation compared with peripheral blood (P < 0.0001). After adjusting for age, sex and smoking history, global but not repeat element methylation was marginally higher in normal mucosa from colorectal cancer patients compared with healthy individuals. Colorectal mucosa from colorectal cancer subjects had lower 5-methyltetrahydrofolate and higher tetrahydrofolate and formyltetrahydrofolate levels than blood from the same individual. Blood folate levels should not be used as a surrogate for the levels in colorectal mucosa because there are marked differences in folate species distribution between the two tissues. Similarly, repeat element methylation is not a good surrogate measure of global DNA methylation in both blood and colonic mucosa. There was no evidence that mucosal global DNA methylation or folate distribution was related to the presence of cancer per se, suggesting that if abnormalities exist, they are confined to individual cells rather than the entire colon.  相似文献   

16.
Background: Methyl donor status influences DNA stability and DNA methylation although little is known about effects on DNA methyltransferases. The aim of this study was to determine whether methyldonor status influences DNA methyltransferase (Dnmt) gene expression in cervical cancer cells, and if so, whether there are associated effects on global DNA methylation. Materials and Methods: The human cervical cancer cell line, C4 II, was grown in complete medium and medium depleted of folate (FM) and folate and methionine (FM). Growth rate, intracellular folate, intracellular methionine and homocysteine in the extracellular medium were measured to validate the cancer cell model of methyl donor depletion. Dnmt expression was measured by qRT PCR using relative quantification and global DNA methylation was measured using a flow cytometric method. Results: Intracellular folate and methionine concentrations were significantly reduced after growth in depleted media. Growth rate was also reduced in response to methyl donor depletion. Extracellular homocysteine was raised compared with controls, indicating disturbance to the methyl cycle. Combined folate and methionine depletion led to a significant downregulation of Dnmt3a and Dnmt3b; this was associated with an 18% reduction in global DNA methylation compared with controls. Effects of folate and methionine depletion on Dnmt3a and 3b expression were reversed by transferring depleted cells to complete medium. Conclusions: Methyl donor status can evidently influence expression of Dnmts in cervical cancer cells, which is associated with DNA global hypomethylation. Effects on Dnmt expression are reversible, suggesting reversible modulating effects of dietary methyl donor intake on gene expression, which may be relevant for cancer progression.  相似文献   

17.
Both reduced DNA repair capacity (DRC) and folate deficiency are associated with increased cancer risk. Furthermore, folate is involved in DNA repair through de novo DNA synthesis and methylation. To determine whether low dietary folate intake is associated with low cellular DRC in humans, we assessed total dietary folate intake using a food frequency questionnaire in 559 non-Hispanic white cancer-free subjects enrolled from 1995 through 2001 as controls for ongoing molecular epidemiological studies from among enrollees in a community-based multispecialty physician practice in the Houston metropolitan area. We assessed cellular DRC using the host-cell reactivation assay that measures nucleotide-excision repair capacity in peripheral blood lymphocytes. The distribution of DRC was approximately normal in this study population. In univariate analysis, subjects in the lowest tertile of total dietary folate intake (<170 microg/1000 kcal/day) exhibited a significant reduction (-18%) in DRC compared with those in the upper tertile (>225 microg/1000 kcal/day; P < 0.001). In multivariate linear regression analysis, calorie-adjusted total folate intake remained an independent predictor of DRC (P < 0.001). Additional stratification analysis indicated that this association was more pronounced in those who did not use folate supplementation (n = 230; P < 0.001) compared with those who did (n = 329; P = 0.177). Our findings suggest that low dietary folate intake is associated with suboptimal cellular DRC. Once replicated by other investigators, this finding has public health implications by reinforcing the need for folate supplementation or dietary modification for the at-risk population.  相似文献   

18.
The primary objective of this review is to explore the hypothesis that folate insufficiency may be important in the pathogenesis of squamous cell carcinomas of the head and neck (SCCHN) and that folate repletion may be an effective component of chemoprevention. The main results are that folate insufficiency disrupts DNA global and specific gene methylation patterns such that the activity of certain tumor suppressor genes such as p16 and possibly p53 may be lost. Folate pool imbalance and impaired repair mechanisms may contribute to DNA instability and strand breaks. Sensitive methods exist for identification of individuals with folate insufficiency in contrast to the relatively insensitive conventional serum or red cell folate assays with broad "normal" ranges. The impact of folate supplementation can thus be quantified. Folate imbalance may result from alterations in folate cellular uptake by the reduced folate carrier (RFC) and/or the folate receptor (FR) and polymorphisms in enzymes important in folate retention such as folylpolyglutamate synthetase and in folate modification such as methylene tetrahydrofolate reductase (MTHFR). Known predisposing factors for SCCHN such as alcohol and tobacco carcinogens may influence folate balance. Folate supplementation may reduce primary or secondary risk of cancer. Formal studies of folate sufficiency in persons at risk for or diagnosed and treated for SCCHN are needed to define the role of folate supplementation in the prevention of these cancers.  相似文献   

19.
Methylenetetrahydrofolate reductase (MTHFR) is an essential enzyme in the folate metabolism, which affects DNA synthesis and methylation. Low enzyme activity may reduce the capacity of DNA methylation, and possibly reduce uracil misincorporation into DNA, which can result in double strand breaks. Both processes may be critical for the oncogenic transformation of human cells. Two common amino acid-changing and enzyme activity-reducing nucleotide polymorphisms (677C --> T/Ala222Val and 1298A --> C/Glu428Ala) have been described in MTHFR. We performed estimations of the relative risk associated with these two polymorphisms in samples from 287 colorectal cancer patients, compared to 346 healthy controls. Relative risk were further determined for subpopulations of cancer patients having sporadic (n = 227) or suspected/verified hereditary disease (n = 60) and tumours exhibiting high-level microsatellite instability (n = 41) or not (n = 246). No significant differences for the relative risk of colorectal cancer were observed for the MTHFR genotypes either alone or in combination in the analysed cohorts, although the frequency of the 1298AA + AC genotypes was increased among the 60 cases with hereditary disease. Whereas our results do not support an association of high enzyme activity and increased risk of colorectal cancer in general, we can not exclude an association of patients with hereditary disease and the MTHFR 1298A --> C variant.  相似文献   

20.
The major mammalian apurinic/apyrimidinic (AP) endonuclease (APE1) plays a central role in the DNA base excision repair pathway (BER) in two distinct ways. As an AP endonuclease, it initiates repair of AP sites in DNA produced either spontaneously or after removal of uracil and alkylated bases in DNA by monofunctional DNA glycosylases. Alternatively, by acting as a 3'-phosphoesterase, it initiates repair of DNA strand breaks with 3'-blocking damage, which are produced either directly by reactive oxygen species (ROS) or indirectly through the AP lyase reaction of damage-specific DNA glycosylases. The endonuclease activity of APE1, however, is much more efficient than its DNA 3'-phosphoesterase activity. Using whole extracts from human HeLa and lymphoblastoid TK6 cells, we have investigated whether these two activities differentially affect BER efficiency. The repair of ROS-induced DNA strand breaks was significantly stimulated by supplementing the reaction with purified APE1. This enhancement was linearly dependent on the amount of APE1 added, while addition of other BER enzymes, such as DNA ligase I and FEN1, had no effect. Moreover, depletion of endogenous APE1 from the extract significantly reduced the repair activity, suggesting that APE1 is essential for repairing such DNA damage and is limiting in extracts of human cells. In contrast, when uracil-containing DNA was used as the substrate, the efficiency of repair was not affected by exogenous APE1, presumably because the AP endonuclease activity was not limiting. These results indicate that the cellular level of APE1 may differentially affect repair efficiency for DNA strand breaks but not for uracil and AP sites in DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号