首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3-Nitrobenzanthrone (3-NBA), a suspected human carcinogen occurring in diesel exhaust and air pollution, and its human metabolite 3-aminobenzanthrone (3-ABA) were investigated for their ability to induce biotransformation enzymes in rat liver and the influence of such induction on DNA adduct formation by the compounds. Rats were treated (i.p.) with 0.4, 4, or 40 mg/kg body weight 3-NBA or 3-ABA. When hepatic cytosolic fractions from rats treated with 40 mg/kg body weight 3-NBA or 3-ABA were incubated with 3-NBA, DNA adduct formation, measured by 32P-postlabeling analysis, was 10-fold higher in incubations with cytosols from pretreated rats than with controls. The increase in 3-NBA-derived DNA adduct formation corresponded to a dose-dependent increase in protein levels and enzymatic activity of NAD(P)H:quinone oxidoreductase (NQO1). NQO1 is the major enzyme reducing 3-NBA in human and rat livers. Incubations of 3-ABA with hepatic microsomes of rats treated with 3-NBA or 3-ABA (40 mg/kg body weight) led to as much as a 12-fold increase in 3-ABA-derived DNA adduct formation compared with controls. The observed stimulation of DNA adduct formation by both compounds was attributed to their potential to induce protein expression and enzymatic activity of cytochromes P450 1A1 and/or -1A2 (CYP1A1/2), the major enzymes responsible for 3-ABA activation in human and rat livers. Collectively, these results demonstrate for the first time, to our knowledge, that by inducing hepatic NQO1 and CYP1A1/2, both 3-NBA and 3-ABA increase the enzymatic activation of these two compounds to reactive DNA adduct-forming species, thereby enhancing their own genotoxic potential.  相似文献   

2.
3-Nitrobenzanthrone (3-NBA) is a carcinogen occurring in diesel exhaust and air pollution. Using the (32)P-postlabelling method, we found that 3-NBA and its human metabolite, 3-aminobenzanthrone (3-ABA), are activated to species forming DNA adducts by cytosols and/or microsomes isolated from rat lung, the target organ for 3-NBA carcinogenicity, and kidney. Each compound generated identical five DNA adducts. We have demonstrated the importance of pulmonary and renal NAD(P)H:quinone oxidoreductase (NQO1) to reduce 3-NBA to species that are further activated by N,O-acetyltransferases and sulfotransferases. Cytochrome P450 (CYP) 1A1 is the essential enzyme for oxidative activation of 3-ABA in microsomes of both organs, while cyclooxygenase plays a minor role. 3-NBA was also investigated for its ability to induce NQO1 and CYP1A1 in lungs and kidneys, and for the influence of such induction on DNA adduct formation by 3-NBA and 3-ABA. When cytosols from rats treated i.p. with 40mg/kg bw of 3-NBA were incubated with 3-NBA, DNA adduct formation was up to 2.1-fold higher than in incubations with cytosols from control animals. This increase corresponded to an increase in protein level and enzymatic activity of NQO1. Incubations of 3-ABA with microsomes of 3-NBA-treated rats led to up to a fivefold increase in DNA adduct formation relative to controls. The stimulation of DNA adduct formation correlated with the potential of 3-NBA to induce protein expression and activity of CYP1A1. These results demonstrate that 3-NBA is capable to induce NQO1 and CYP1A1 in lungs and kidney of rats thereby enhancing its own genotoxic and carcinogenic potential.  相似文献   

3.
Aristolochic acid (AA), a naturally occurring nephrotoxin and rodent carcinogen, has recently been associated with the development of urothelial cancer in humans. Determining the capability of humans to metabolize AA and understanding, which human enzymes are involved in AA activation is important in the assessment of individual susceptibility. Using the nuclease P1-enhanced version of the (32)P-postlabeling assay, we compared the ability of human, minipig and rat hepatic microsomal samples to activate AA to metabolites forming DNA adducts. Human microsomes generated AA-DNA adduct profiles reproducing those found in renal tissues from humans exposed to AA. Identical patterns of AA-DNA adducts were also observed when AA was activated by minipig and rat microsomes. Therefore, microsomes of both animals are suitable in vitro systems mimicking the enzymatic activation of AA in humans. To define the role of specific P450 enzymes and NADPH:P450 reductase in the activation of AA by human microsomes we investigated the modulation of AA-DNA adduct formation by specific inducers or selective inhibitors of P450s and cofactors or inhibitors of NADPH:P450 reductase. The inducer of P450 1A1/2, beta-naphthoflavone, significantly stimulated the levels of AA-DNA adducts formed by rat microsomes, but inducers of P450 2B1/2 and 2E1 had no such effect. Furthermore, only inhibitors of the P450 1A subfamily (alpha-naphthoflavone, furafylline) significantly decreased the amount of adducts formed by microsomes from humans, minipigs and rats. alpha-Lipoic acid, an inhibitor of NADPH:P450 reductase, inhibited adduct formation too, but to a lower extent. On the basis of these results, we attribute most of the microsomal activation of AA to P450 1A1 and 1A2, although a role of NADPH:P450 reductase cannot be ruled out. With purified enzymes (recombinant P450 1A1/2 and NADPH:P450 reductase) and microsomes from baculovirus transfected insect cells expressing recombinant human P450 1A1/2 and NADPH:P450 reductase, the participation of these enzymes in the formation of AA-DNA adducts was confirmed. These results are the first report on the activation of AA by human enzymes and clearly demonstrate the role of P450 1A1, 1A2, and NADPH:P450 reductase in catalyzing the reductive activation of AA.  相似文献   

4.
Tamoxifen is a major drug used for adjuvant chemotherapy of breast cancer; however, its use has been associated with a small but significant increase in risk of endometrial cancer. In rats, tamoxifen is a hepatocarcinogen, and DNA adducts have been observed in both rat and human tissues. Tamoxifen has been shown previously to be metabolized to reactive products that have the potential to form protein and DNA adducts. Previous studies have suggested a role for P450 3A4 in protein adduct formation in human liver microsomes, via a catechol intermediate; however, no clear correlation was seen between P450 3A4 content of human liver microsomes and adduct formation. In the present study, we investigated the P450 forms responsible for covalent drug-protein adduct formation and the possibility that covalent adduct formation might occur via alternative pathways to catechol formation. Recombinant P450 3A4 catalyzed adduct formation, and this correlated with the level of uncoupling in the P450 incubation, consistent with a role of reactive oxygen species in potentiating adduct formation after enzymatic formation of the catechol metabolite. Whereas P450s 1A1, 2D6, and 3A5 generated catechol metabolite, no covalent adduct formation was observed with these forms. By contrast, P450 2B6, 2C19, and rat liver microsomes catalyzed drug-protein adduct formation but not catechol formation. Drug protein adducts formed specifically with P450 3A4 in incubations using membranes isolated from bacteria expressing P450 3A4 and reductase, as well as in reconstitutions of purified 3A4, suggesting that the electrophilic species reacted preferentially with the P450 enzymes concerned.  相似文献   

5.
2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), formed during the cooking of foods, induces colon cancer in rodents. PhIP is metabolically activated by cytochromes P450 (P450s). To evaluate the role of hepatic P450s in the bioactivation of PhIP, we used Reductase Conditional Null (RCN) mice, in which cytochrome P450 oxidoreductase (POR), the unique electron donor to P450s, can be specifically deleted in hepatocytes by pretreatment with 3-methylcholanthrene (3-MC), resulting in the loss of essentially all hepatic P450 function. RCN mice were treated orally with 50 mg/kg b.wt. PhIP daily for 5 days, with and without 3-MC pretreatment. PhIP-DNA adducts (i.e., N-(deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine [dG-C8-PhIP]), measured by liquid chromatography-tandem mass spectrometry, were highest in colon (1362 adducts/10(8) deoxynucleosides), whereas adduct levels in liver were ~3.5-fold lower. Whereas no differences in PhIP-DNA adduct levels were found in livers with active POR versus inactivated POR, adduct levels were on average ~2-fold lower in extrahepatic tissues of mice lacking hepatic POR. Hepatic microsomes from RCN mice with or without 3-MC pretreatment were also incubated with PhIP and DNA in vitro. PhIP-DNA adduct formation was ~8-fold lower with hepatic microsomes from POR-inactivated mice than with those with active POR. Most of the hepatic microsomal activation of PhIP in vitro was attributable to CYP1A. Our results show that PhIP-DNA adduct formation in colon involves hepatic N-oxidation, circulation of activated metabolites via the bloodstream to extrahepatic tissues, and further activation, resulting in the formation of dG-C8-PhIP. Besides hepatic P450s, PhIP may be metabolically activated mainly by a non-P450 pathway in liver.  相似文献   

6.
Ellipticine is an antineoplastic agent whose mode of action is based mainly on DNA intercalation, inhibition of topoisomerase II, and formation of covalent DNA adducts mediated by cytochromes P450 (P450s) and peroxidases. Here, this drug was found to induce CYP1A1 and/or 1A2 enzymes and their enzymatic activities in livers, lungs, and kidneys of rats treated (i.p.) with ellipticine. The induction is transient. In the absence of repeated administration of ellipticine, the levels and activities of the induced CYP1A decreased almost to the basal level 2 weeks after treatment. The ellipticine-mediated CYP1A induction increases the DNA adduct formation by the compound. When microsomal fractions from livers, kidneys, and lungs of rats treated with ellipticine were incubated with ellipticine, DNA adduct formation, measured by (32)P-postlabeling analysis, was up to 3.8-fold higher in incubations with microsomes from pretreated rats than with controls. The observed stimulation of DNA adduct formation by ellipticine was attributed to induction of CYP1A1 and/or 1A2-mediated increase in ellipticine oxidative activation to 13-hydroxy- and 12-hydroxyellipticine, the metabolites generating two major DNA adducts in human and rat livers. In addition to these metabolites, increased formation of the excretion products 9-hydroxy- and 7-hydroxyellipticine was also observed in microsomes of rats treated with ellipticine. Taken together, these results demonstrate for the first time that by inducing CYP1A1/2, ellipticine increases its own metabolism, leading both to an activation of this drug to reactive species-forming DNA adducts and to detoxication metabolites, thereby modulating to some extent its pharmacological and/or genotoxic potential.  相似文献   

7.
Cytochrome P450 2C11 in rats was recently found to metabolize diclofenac into a highly reactive product that covalently bound to this enzyme before it could diffuse away and react with other proteins. To determine whether cytochromes P450 in human liver could catalyze a similar reaction, we have studied the covalent binding of diclofenac in vitro to liver microsomes of 16 individuals. Only three of 16 samples were found by immunoblot analysis to activate diclofenac appreciably to form protein adducts in a NADPH-dependent pathway. Cytochrome P450 2C9, which catalyzes the major route of oxidative metabolism of diclofenac to produce 4'-hydroxydiclofenac, did not appear to be responsible for the formation of the protein adducts, because sulfaphenazole, an inhibitor of this enzyme, did not affect protein adduct formation. In contrast, troleandomycin, an inhibitor of P450 3A4, inhibited both protein adduct formation and 5-hydroxylation of diclofenac. These findings were confirmed with the use of baculovirus-expressed human P450 2C9 and P450 3A4. One possible reactive intermediate that would be expected to bind covalently to liver proteins was the p-benzoquinone imine derivative of 5-hydroxydiclofenac. This product was formed by an apparent metal-catalyzed oxidation of 5-hydroxydiclofenac that was inhibited by EDTA, glutathione, and NADPH. The p-benzoquinone imine decomposition product bound covalently to human liver microsomes in vitro in a reaction that was inhibited by GSH. In contrast, GSH did not prevent the covalent binding of diclofenac to human liver microsomes. These results suggest that for appreciable P450-mediated bioactivation of diclofenac to occur in vivo, an individual may have to have both high activities of P450 3A4 and perhaps low activities of other enzymes that catalyze competing pathways of metabolism of diclofenac. Moreover, the p-benzoquinone imine derivative of 5-hydroxydiclofenac probably has a role in covalent binding in the liver only under the conditions where levels of NADPH, GSH, and other reducing agents would be expected to be low.  相似文献   

8.
Ellipticine is a potent antineoplastic agent, whose mode of action is considered to be based mainly on DNA intercalation and/or inhibition of topoisomerase II. Recently, we found that ellipticine also forms covalent DNA adducts and that the formation of the major adduct is dependent on the activation of ellipticine by cytochrome P450 (P450). We examined rat, rabbit, and human hepatic microsomal samples for their ability to activate ellipticine. The extent of activation was determined by binding of 3H-labeled ellipticine to DNA and by analyzing DNA adducts by 32P-postlabeling. We demonstrate that cytochrome P450 of human hepatic microsomes activating ellipticine to species binding to DNA is analogous to that of rats, but not of rabbits. Most of the ellipticine activation in rat and human hepatic microsomes is attributed to P450 enzymes of the same subfamily, P450 3A1/2 and P450 3A4, respectively, while the orthologous enzyme in rabbit hepatic microsomes, P450 3A6, is much less efficient. With purified enzymes, the major role of P450 3A1 and 3A4 in ellipticine-DNA adduct formation was confirmed. We identified deoxyguanosine as the target for P450-mediated ellipticine binding to DNA using polydeoxyribonucleotides and deoxyguanosine 3'-monophosphate. The results strongly suggest that rats are more suitable models than rabbits mimicking the metabolic activation of ellipticine in humans.  相似文献   

9.
Recently, it was shown that diclofenac was metabolized in rats to reactive benzoquinone imines via cytochrome P450-catalyzed oxidation. These metabolites also were detected in human hepatocyte cultures in the form of glutathione (GSH) adducts. This report describes the results of further studies aimed at characterizing the human hepatic P450-mediated bioactivation of diclofenac. The reactive metabolites formed in vitro were trapped by GSH and analyzed by LC/MS/MS. Thus, three GSH adducts, namely, 5-hydroxy-4-(glutathion-S-yl)diclofenac (M1), 4'-hydroxy-3'-(glutathion-S-yl)diclofenac (M2), and 5-hydroxy-6-(glutathion-S-yl)diclofenac (M3), were identified in incubations of diclofenac with human liver microsomes in the presence of NADPH and GSH. The formation of the adducts was taken to reflect the intermediacy of the corresponding putative benzoquinone imines. While M2 was the dominant metabolite over a substrate concentration range of 10-50 microM, M1 and M3 became equally important products at >/=100 microM diclofenac. The formation of M2 was inhibited by sulfaphenazole or an anti-P450 2C9 antibody (5-10% of control values). The formation of M1 and M3 was inhibited by troleandomycin, ketoconazole, or an anti-P450 3A4 antibody (30-50% of control values). In studies in which recombinant P450 isoforms were used, M2 was generated only by P450 2C9-catalyzed reaction, while M1 and M3 were produced by P450 3A4-catalyzed reaction. Good correlations were established between the extent of formation of M2 and P450 2C9 activities (r = 0.93, n = 10) and between the extent of formation of M1 and M3 and P450 3A4 activities (r = 0.98, n = 10) in human liver microsomal incubations. Taken together, the data suggest that the biotransformation of diclofenac to M2 is P450 2C9-dependent, whereas metabolism of the drug to M1 and M3 involves mainly P450 3A4. Although P450s 2C9 and 3A4 both catalyze the bioactivation of diclofenac, P450 2C9 is capable of producing the benzoquinone imine intermediate at lower drug concentrations which may be more clinically relevant.  相似文献   

10.
Exposure to aristolochic acid I (AAI) is associated with aristolochic acid nephropathy, Balkan endemic nephropathy, and urothelial cancer. Individual differences in xenobiotic-metabolizing enzyme activities are likely to be a reason for interindividual susceptibility to AA-induced disease. We evaluated the reductive activation and oxidative detoxication of AAI by cytochrome P450 (P450) 1A1 and 1A2 using the Cyp1a1(-/-) and Cyp1a2(-/-) single-knockout and Cyp1a1/1a2(-/-) double-knockout mouse lines. Incubations with hepatic microsomes were also carried out in vitro. P450 1A1 and 1A2 were found to (i) activate AAI to form DNA adducts and (ii) detoxicate it to 8-hydroxyaristolochic acid I (AAIa). AAI-DNA adduct formation was significantly higher in all tissues of Cyp1a1/1a2(-/-) than Cyp1a(+/+) wild-type (WT) mice. AAI-DNA adduct levels were elevated only in selected tissues from Cyp1a1(-/-) versus Cyp1a2(-/-) mice, compared with those in WT mice. In hepatic microsomes, those from WT as well as Cyp1a1(-/-) and Cyp1a2(-/-) mice were able to detoxicate AAI to AAIa, whereas Cyp1a1/1a2(-/-) microsomes were less effective in catalyzing this reaction, confirming that both mouse P450 1A1 and 1A2 are both involved in AAI detoxication. Under hypoxic conditions, mouse P450 1A1 and 1A2 were capable of reducing AAI to form DNA adducts in hepatic microsomes; the major roles of P450 1A1 and 1A2 in AAI-DNA adduct formation were further confirmed using selective inhibitors. Our results suggest that, in addition to P450 1A1 and 1A2 expression levels in liver, in vivo oxygen concentration in specific tissues might affect the balance between AAI nitroreduction and demethylation, which in turn would influence tissue-specific toxicity or carcinogenicity.  相似文献   

11.
Ellipticine is a potent antitumor agent whose mechanism of action is considered to be based mainly on DNA intercalation and/or inhibition of topoisomerase II. Using [3H]-labeled ellipticine, we observed substantial microsome (cytochrome P450)-dependent binding of ellipticine to DNA. In rat, rabbit, minipig, and human microsomes, in reconstituted systems with isolated cytochromes P450 and in Supersomes containing recombinantly expressed human cytochromes P450, we could show that ellipticine forms a covalent DNA adduct detected by [32P]-postlabeling. The most potent human enzyme is CYP3A4, followed by CYP1A1, CYP1A2, CYP1B1, and CYP2C9. Another minor adduct is formed independent of enzymatic activation. The [32P]-postlabeling analysis of DNA modified by activated ellipticine confirms the covalent binding to DNA as an important type of DNA modification. The DNA adduct formation we describe is a novel mechanism for the ellipticine action and might in part explain its tumor specificity.  相似文献   

12.
2-Nitroanisole (2-NA) is an important industrial pollutant and a potent carcinogen for rodents. Determining the capability of humans to metabolize 2-NA and understanding which human cytochrome P450 (P450) enzymes are involved in its activation and/or detoxification are important to assess an individual's susceptibility to this environmental carcinogen. We compared the ability of hepatic microsomal samples from different species including human to metabolize 2-NA. Comparison between experimental animals and human P450 enzymes is essential for the extrapolation of animal carcinogenicity data to assess human health risk. Human hepatic microsomes generated a pattern of 2-NA metabolites, reproducing that formed by hepatic microsomes of rats and rabbits. An O-demethylated metabolite of 2-NA (2-nitrophenol) and two ring-oxidized derivatives of this metabolite (2,6-dihydroxynitrobenzene and 2,X-dihydroxynitrobenzene) were produced. No nitroreductive metabolism leading to the formation of o-anisidine was evident with hepatic microsomes of any species. Likewise, no DNA binding of 2-NA metabolite(s) measured with either tritium-labeled 2-NA or the (32)P-postlabeling technique was detectable in microsomes. Therefore, hepatic microsomal P450 enzymes participate in the detoxication reactions of this environmental carcinogen. Using hepatic microsomes of rabbits pretreated with specific P450 inducers, microsomes from Baculovirus transfected insect cells expressing recombinant human P450 enzymes, purified P450 enzymes, and selective P450 inhibitors, we found that human recombinant P450 2E1, 1A1, and 2B6, as well as orthologous rodent P450 enzymes, are the most efficient enzymes metabolizing 2-NA. The role of specific P450 enzymes in the metabolism of 2-NA in human hepatic microsomes was investigated by correlating specific P450-dependent reactions with the levels of 2-NA metabolites formed by the same microsomes and by examining the effects of specific inhibitors of P450 enzymes on 2-NA metabolism. On the basis of these studies, we attribute most of the 2-NA oxidation metabolism in human microsomes to P450 2E1. These results, the first report on the metabolism of 2-NA by human P450 enzymes, clearly demonstrate that P450 2E1 is the major human enzyme oxidizing this carcinogen in human liver.  相似文献   

13.
2-Nitrobenzanthrone (2-NBA) has recently been detected in ambient air particulate matter. Its isomer 3-nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust. The highest mutagenic activity of 2-NBA tested in Salmonella typhimurium was exhibited in strain TA1538-hSULT1A1 expressing human sulfotransferase (SULT) 1A1. 2-NBA also induced mutations in Chinese hamster lung V79 cells expressing human N-acetyltransferase 2 or SULT1A1, but no mutagenicity was observed in the parental cell line. DNA adduct formation in vitro was examined in different human cell lines by thin-layer chromatography (32)P-postlabeling. Whereas 3-NBA formed characteristic DNA adducts in lung A549, liver HepG2, colon HCT116, and breast MCF-7 cells, 2-NBA-derived DNA adducts were only observed in A549 and HepG2 cells, indicating differences in the bioactivation of each isomer. The pattern of 2-NBA-derived DNA adducts in both cell lines consisted of a cluster of up to five adducts. In HepG2 cells DNA binding by 2-NBA was up to 14-fold lower than by 3-NBA. DNA adduct formation of 2-NBA was also investigated in vivo in Wistar rats treated with a single dose of 2, 10, or 100 mg/kg body weight (bw). No DNA adduct formation was detected at doses of up to 10 mg/kg bw 2-NBA, even though 3-NBA induced DNA adducts at a dose of 2 mg/kg bw. Only after administration of one high dose of 100 mg/kg bw 2-NBA was a low level of DNA adduct formation detected, and then only in lung tissue. Density functional theory calculations for both NBAs revealed that the nitrenium ion of the 3-isomer is considerably more stable ( approximately 10 kcal/mol) than that of the 2-isomer, providing a possible explanation for the large differences in DNA adduct formation and mutagenicity between 2- and 3-NBA.  相似文献   

14.
Ellipticine is an antineoplastic agent, which forms covalent DNA adducts mediated by cytochromes P450 (CYP) and peroxidases. We evaluated the role of hepatic versus extra-hepatic metabolism of ellipticine, using the HRN (Hepatic Cytochrome P450 Reductase Null) mouse model, in which cytochrome P450 oxidoreductase (POR) is deleted in hepatocytes, resulting in the loss of essentially all hepatic CYP function. HRN and wild-type (WT) mice were treated i.p. with 1 and 10 mg/kg body weight of ellipticine. Multiple ellipticine-DNA adducts detected by (32)P-postlabelling were observed in organs from both mouse strains. Highest total DNA binding levels were found in liver, followed by lung, kidney, urinary bladder, colon and spleen. Ellipticine-DNA adduct levels in the liver of HRN mice were up to 65% lower relative to WT mice, confirming the importance of CYP enzymes for the activation of ellipticine in livers, recently shown in vitro with human and rat hepatic microsomes. When hepatic microsomes of both mouse strains were incubated with ellipticine, ellipticine-DNA adduct levels with WT microsomes were up to 2.9-fold higher than with those from HRN mice. The ratios of ellipticine-DNA adducts in extra-hepatic organs between HRN and WT mice of up to 4.7 suggest that these organs can activate ellipticine and that more ellipticine is available in the circulation. These results and the DNA adduct patterns found in vitro and in vivo demonstrate that both CYP1A or 3A and peroxidases participate in activation of ellipticine to reactive species forming DNA adducts in the mouse model used in this study.  相似文献   

15.
2,6-Dimethylaniline (2,6-DMA) is classified as a rodent nasal cavity carcinogen and a possible human carcinogen. The major metabolite of 2,6-DMA in rats and dogs is 4-amino-3,5-dimethylphenol (DMAP) but oxidization of the amino group to produce metabolites such as N-(2,6-dimethylphenyl)hydroxylamine (DMHA) is also indicated by the occurrence of hemoglobin adducts of 2,6-DMA in human and rats. Previous studies have shown a large interindividual variability in human 2,6-DMA hemoglobin adduct levels. In the present study, 2,6-DMA oxidation in vitro by human liver microsomes and recombinant human P450 enzymes was investigated to assess whether the hemoglobin adduct variability could be attributed to metabolic differences. At micromolar concentrations, the only product detectable (UV) was DMAP, while at 10 nM, DMHA was a substantial product. 2E1 and 2A6 were identified as the major P450s in human liver microsomes responsible for the production of DMAP by using P450-specific chemical inhibitors and mouse monoclonal antibodies that selectively inhibit human P450 2E1 and 2A6. 2A6 was identified as the major P450 responsible for the N-hydroxylation. Native P450 2E1 and human liver microsomes catalyzed the rearrangement of DMHA to DMAP independent of NADPH. Consistent with a mechanism involving oxygen rebound to the heme iron center, labeled oxygen was not incorporated into DMAP from either 18O2 gas or H2 18O in this rearrangement. Results presented here suggest much of the observed interindividual variability of 2,6-DMA hemoglobin adduct levels could be due to differences in the relative amounts of hepatic 2E1 and 2A6.  相似文献   

16.
An increased risk of developing endometrial cancer is observed in breast cancer patients treated with tamoxifen (TAM) and in healthy women undergoing TAM chemoprevention therapy. TAM-DNA adducts were detected in the endometrium of women taking TAM (Shibutani, S., et al. (2000) Carcinogenesis 21, 1461-1467) and are formed primarily through O-sulfonation of alpha-hydroxytamoxifen (alpha-OHTAM). To explore the genotoxicic mechanisms of TAM, TAM was incubated with one of multiple human cytochrome P450 enzymes, i.e., P450 1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 3A4, 3A5, 3A7, 4A11, 4F2, 4F3A, or 4F3B, in a NADPH regenerating system, and the metabolites were identified using HPLC/UV analysis with authentic standards. Among the 18 human P450 enzymes, P450 3A4 generated a significant amount of alpha-OHTAM. When some rat P450 enzymes were examined, P450 3A2 also catalyzed alpha-hydroxylation of TAM. Similarly, human P450 3A4 and rat P450 3A1 and 3A2 converted toremifene (TOR, a chlorinated TAM analogue) to alpha-hydroxytoremifene (alpha-OHTOR). The formation of alpha-OHTAM and alpha-OHTOR by these P450 enzymes was confirmed by tandem mass spectroscopy. Only the P450 3A subfamily enzymes are able to alpha-hydroxylate TAM and TOR. Although the formation of alpha-OHTOR by these enzymes was much higher than that of alpha-OHTAM, TOR is known to be much less genotoxic than TAM. The results support our proposed mechanism that the lower genotoxicity of TOR is due to limited O-sulfonation of alpha-OHTOR by hydroxysteroid sulfotransferases, resulting in the poor formation of DNA adducts (Shibutani, S., et al. (2001) Cancer Res. 61, 3925-3931).  相似文献   

17.
Ochratoxin A (OTA) is a potent renal carcinogen in male rats, although its mode of carcinogenicity is not known. The metabolism and covalent binding of OTA to DNA were investigated in vitro with cytochromes P450, glutathione S-transferases, prostaglandin H-synthase, and horseradish peroxidase. Incubation of OTA with rat or human liver microsomes fortified with NADPH resulted in formation of 4-(R)-hydroxyochratoxin A at low rates [10-25 pmol min(-1) (mg of protein)(-1)]. There was no evidence of OTA metabolism and glutathione conjugate formation with rat, mouse, or human kidney microsomes or postmitochondrial supernatants (S-9) [<5 pmol min(-1) (mg of protein)(-1)]. Recombinant human cytochromes P450 (P450) 1A1 and 3A4 formed 4-(R)-hydroxyochratoxin A at low rates [0.08 and 0.06 pmol min(-1) (pmol of P450)(-1), respectively]; no oxidation products of OTA were detected with recombinant human P450 1A2 or 2E1 or rat P450 1A2 or 2C11 [<0.02 pmol min(-1) (pmol of P450)(-1)]. Prostaglandin H-synthase produced small amounts of an apolar product [33 pmol min(-1) (mg of protein)(-1)], and OTA products were not formed with horseradish peroxidase. There was no evidence of DNA adduct formation when [(3)H]OTA was incubated with these enzyme systems in the presence of calf thymus DNA (<20 adducts/10(9) DNA bases); however, these enzymes catalyzed DNA adduct formation with the genotoxins aflatoxin B(1), 2-amino-3-methylimidazo[4,5-f]quinoline, benzo[a]pyrene, and pentachlorophenol. There was also no detectable [(3)H]OTA bound in vivo to kidney DNA of male Fischer-344 rats treated orally with [(3)H]OTA (1 mg/kg, 100 mCi/mmol, 24 h exposure, <2.7 adducts/10(9) DNA bases), based upon liquid scintillation counting. However, (32)P-postlabeling experiments did show evidence of DNA lesions with total adduct levels ranging from 31 to 71 adducts/10(9) DNA bases, while adducts in untreated rat kidney ranged from 6 to 24 adducts/10(9) DNA bases. These results do not support the premise that OTA or metabolically activated species covalently bind to DNA and suggest that the (32)P-postlabeled lesions are due to products derived from OTA-mediated cytotoxicity.  相似文献   

18.
There is substantial evidence to suggest that polycyclic aromatic hydrocarbons (PAHs) such as benzo[a]pyrene (B[a]P) induce lung cancer through metabolic activation. As part of a program to delineate the routes of PAH activation, we have examined DNA adducts that are formed in human lung cells. A stable isotope dilution liquid chromatography/multiple reaction monitoring mass spectrometry method was used to quantify eight anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydro-B[a]P (B[a]PDE)-derived DNA adducts in four H358 human bronchoalveolar cell lines with different phenotypes. In P450 1A1/P450 1B1-induced H358 cells exposed to (+/-)-B[a]P-7,8-dihydro-7,8-diol (B[a]P-7,8-dihydrodiol), (+)-anti-trans-B[a]PDE-N2-2'-deoxyguanosine [(+)-anti-trans-B[a]PDE-N2-dGuo] was the major DNA adduct, and it formed with no lag phase. In AKR1A1-transfected H358 cells, (+)-anti-trans-B[a]PDE-N2-dGuo was also the major adduct with a 3 h lag phase before significant adduct formation was detected. In AKR1A1-transfected H358 cells with induced P450 1A1/P450 1B1, (+)-anti-trans-B[a]PDE-N2-dGuo was formed with no lag phase in amounts similar to those in the H358 cells with up-regulated P450 1A1/P450 1B1. Surprisingly, the greatest amount of (+)-anti-trans-B[a]PDE-N2-dGuo was formed in the control H358 cells. Furthermore, (+)-anti-trans-B[a]PDE-N2-dGuo formation was 2-fold higher in (-)-B[a]P-7,8-dihydrodiol-exposed H358 cells when compared with (+/-)-B[a]P-7,8-dihydrodiol-exposed cells. The P450 1A1/1B1 inhibitor 2,4,3',5'-tetramethoxystilbene did not attenuate DNA adduct formation in the control H358 cells, suggesting that another P450 was responsible. These data raise the intriguing possibility that P450 1A1/P450 1B1 and AKR1A1 may be protective against (+)-B[a]PDE-mediated DNA damage.  相似文献   

19.
The anticonvulsant phenytoin (5,5-diphenylhydantoin) provokes a skin rash in 5 to 10% of patients, which heralds the start of an idiosyncratic reaction that may result from covalent modification of normal self proteins by reactive drug metabolites. Phenytoin is metabolized by cytochrome P450 (P450) enzymes primarily to 5-(p-hydroxyphenyl-),5-phenylhydantoin (HPPH), which may be further metabolized to a catechol that spontaneously oxidizes to semiquinone and quinone species that covalently modify proteins. The aim of this study was to determine which P450s catalyze HPPH metabolism to the catechol, proposed to be the final enzymatic step in phenytoin bioactivation. Recombinant human P450s were coexpressed with NADPH-cytochrome P450 reductase in Escherichia coli. Novel bicistronic expression vectors were constructed for P450 2C19 and the three major variants of P450 2C9, i.e., 2C9*1, 2C9*2, and 2C9*3. HPPH metabolism and covalent adduct formation were assessed in parallel. P450 2C19 was the most effective catalyst of HPPH oxidation to the catechol metabolite and was also associated with the highest levels of covalent adduct formation. P450 3A4, 3A5, 3A7, 2C9*1, and 2C9*2 also catalyzed bioactivation of HPPH, but to a lesser extent. Fluorographic analysis showed that the major targets of adduct formation in bacterial membranes were the catalytic P450 forms, as suggested from experiments with human liver microsomes. These results suggest that P450 2C19 and other forms from the 2C and 3A subfamilies may be targets as well as catalysts of drug-protein adduct formation from phenytoin.  相似文献   

20.
Benzo[a]pyrene (BaP) is a human carcinogen requiring metabolic activation prior to reaction with DNA. Cytochrome P450 (CYP) 1A1 is the most important hepatic and intestinal enzyme in both BaP activation and detoxification. CYP1A2 is also capable of oxidizing BaP, but to a lesser extent. The induction of CYP1A1/2 by BaP and/or β-naphthoflavone in liver and small intestine of rats was investigated. Both BaP and β-naphthoflavone induced CYP1A expression and increased enzyme activities in both organs. Moreover, the induction of CYP1A enzyme activities resulted in an increase in formation of BaP–DNA adducts detected by 32P-postlabeling in rat liver and in the distal part of small intestine in vivo. The increases in CYP1A enzyme activity were also associated with bioactivation of BaP and elevated BaP–DNA adduct levels in ex vivo incubations of microsomes of both organs with DNA and BaP. These findings indicate a stimulating effect of both compounds on BaP-induced carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号