首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genotoxicity assays were conducted on rats treated with benzo[a]pyrene (BaP) as part of Stage III of a validation study on the Pig-a gene mutation assay. Assays were performed at the U.S. FDA-NCTR and Bayer-Germany. Starting on Day 1, groups of five 6- to 7-week-old male Fischer 344 (F344, used at FDA-NCTR) and Han Wistar rats (Bayer) were given 28 daily doses of 0, 37.5, 75, or 150 mg/kg BaP; blood was sampled on Days -1, 4, 15, 29, and 56. Pig-a mutant frequencies were determined on Days -1, 15, 29, and 56 in total red blood cells (RBCs) and reticulocytes (RETs) as RBC(CD59-) and RET(CD59-) frequencies; percent micronucleated-RETs (%MN-RET) were measured on Days 4 and 29. RBC(CD59-) and RET(CD59-) frequencies increased in a dose- and time-dependent manner, producing significant increases by Day 29 in both rat models. The responses for RETs were stronger than those for RBCs, and the responses in F344 rats were stronger than in Han Wistar rats. BaP also produced significant increases in %MN-RET frequency at Days 4 and 29, with the responses being greater in F344 than Han Wistar rats. The overall findings were consistent with those of the reference laboratory using Han Wistar rats. Finally, mutation assays performed on splenocytes from Day 56 F344 rats indicated that BaP mutant frequencies were three to fivefold higher for the Hprt gene than the Pig-a gene. The results indicate that the Pig-a RET and RBC assays are reproducible, transferable, and show promise for integrating gene mutation into 28-day repeat-dose studies.  相似文献   

2.
N-methyl-N-nitrosourea (MNU) was evaluated in the in vivo Pig-a mutation assay as part of an International Collaborative Trial to investigate laboratory reproducibility, 28-day study integration, and comparative analysis with micronucleus (MN), comet, and clinical pathology endpoints. Male Sprague Dawley rats were treated for 28 days with doses of 0, 2.5, 5, and 10 mg MNU/kg/day in two independent laboratories, GlaxoSmithKline (GSK) and Bristol Myers Squibb (BMS). Additional studies investigated the low-dose region (<2.5 mg/kg/day). Reticulocytes were evaluated for Pig-a phenotypic mutation, CD59-negative reticulocytes/erythrocytes (RETs(CD592-)/ RBCs(CD592-)) on Days 1, 4, 15, 29, 43, and 57, and for micronucleated reticulocytes (MN-RETs) on Days 4 and 29. Comet analysis was conducted for liver and whole blood, and hematology and clinical chemistry was investigated. Dose-dependent increases in the frequency of RETs(CD592-) and RBCs(CD592-) were observed by Day 15 or 29, respectively. Dose-dependent increases were observed in %MN-RET on Days 4 and 29, and in mean %tail intensity in liver and in blood. Hematology/clinical chemistry data demonstrated bone marrow toxicity. Data comparison between GSK and BMS indicated a high degree of concordance with the Pig-a mutation assay results, consistent with previous observations with MNU and N-ethyl-N-nitrosourea. These data confirm that complementary genotoxicity endpoints can be effectively incorporated into routine toxicology studies, a strategy that can provide information on gene mutation, chromosome damage, and DNA strand breaks in a single repeat dose rodent study. Collectively, this would reduce animal usage while providing valuable genetic toxicity information within the context of other toxicological endpoints.  相似文献   

3.
Treating rats with single doses of N-ethyl-N-nitrosourea (ENU) results in a time-dependent accumulation of Pig-a-mutant phenotype peripheral red blood cells (RBCs), reaching a plateau at about 6-weeks posttreatment, with the response persisting for at least 26 weeks. In the present study, groups of 5 C57BL/6 male mice were administered single i.p. doses of up to 140 mg/kg ENU, and blood samples were collected up to 26 weeks posttreatment. The samples were analyzed by flow cytometry for the frequency of CD24-deficient (presumed Pig-a mutant) reticulocytes (RETs) and total RBCs; micronucleated RET frequencies were evaluated at 1 day posttreatment. Mean Pig-a mutant frequencies and micronucleated RET frequencies increased in a dose-responsive manner, with maximum Pig-a frequencies in RETs and RBCs observed at Week 2 and Week 4 posttreatment, respectively. Mutant frequencies in RETs and RBCs generally decreased slowly with time after reaching their maxima. In a second experiment, groups of five male C57BL/6 mice were given single i.p. injections of 8, 32, or 160 mg/kg ENU, or four weekly doses of 8 or 40 mg/kg ENU (split doses totaling 32 and 160 mg/kg, respectively). In each case the maximum RET and RBC mutant frequencies produced by the split doses were similar to but not as great as the mutant frequencies produced by the equivalent single doses. The data indicate that ENU-induced Pig-a mutant RBC frequencies accumulate in mice as they do in rats; however, mice and rats differ in the manifestation kinetics and the persistence of the responses.  相似文献   

4.
The product of the X-chromosome's Pig-a gene acts in the first step of glycosylphosphatidylinositol (GPI) anchor biosynthesis, and is thereby essential for attaching certain proteins to the cell surface. The experiments described herein were designed to evaluate whether lack of GPI-anchored proteins could form the basis of an in vivo mutation assay. Specifically, we used a CD59-negative cell surface phenotype to denote Pig-a mutation. Besides anti-CD59-PE, two other fluorescent reagents were used: thiazole orange to differentiate mature erythrocytes, reticulocytes (RETs), and leukocytes; and anti-CD61 to resolve platelets. These experiments were performed with Sprague Dawley rats, and focused on two cell populations, total erythrocytes and RETs. The ability of the analytical method to enumerate CD59-negative erythrocytes was initially assessed with reconstruction experiments whereby mutant-mimicking cells were added to control bloods. Subsequently, female rats were treated on three occasions with the model mutagens ENU (100 mg/kg/day) or DMBA (40 mg/kg/day). Blood specimens were harvested at various intervals, as late as 6 weeks post-exposure. Considering all week 4-6 data, we found that CD59-negative cells ranged from 239 to 855 x 10(-6) and 82 to 405 x 10(-6) for ENU and DMBA, respectively. These values were consistently greater than those observed for negative control rats (18 +/- 19 x 10(-6)). The elevated frequencies observed for the genotoxicant-exposed animals were usually higher for RETs compared to total erythrocytes. These data support the hypothesis that an efficient in vivo mutation assay can be developed around flow cytometric enumeration of erythrocytes and/or RETs that exhibit aberrant GPI-anchored protein expression.  相似文献   

5.
N-Ethyl-N-nitrosourea (ENU) was evaluated as part of the Stage III trial for the rat Pig-a gene mutation assay. Groups of six- to eight-week-old male Sprague Dawley (SD) or Fischer 344 (F344) rats were given 28 daily doses of the phosphate buffered saline vehicle, or 2.5, 5, or 10 mg/kg ENU, and evaluated for a variety of genotoxicity endpoints in peripheral blood, spleen, liver, and colon. Blood was sampled predose (Day-1) and at various time points up to Day 57. Pig-a mutant frequencies were determined in total red blood cells (RBCs) and reticulocytes (RETs) as RBC(CD592-) and RET(CD592-) frequencies. Consistent with the results from a reference laboratory, RBC(CD592-) and RET(CD592-) frequencies increased in a dose and time-dependent manner, producing significant increases at all doses by Day 15, with similar frequencies seen in both rat strains. ENU also induced small but significant increases in % micronucleated RETs on Days 4 and 29. No significant increases in micronuclei were seen in the liver or colon of the ENU-treated SD rats. Hprt and Pig-a lymphocyte mutation assays conducted on splenocytes from Day 56 F344 rats detected two- to fourfold stronger responses for Hprt than Pig-a mutations. Results from the in vivo Comet assay in SD rats at Day 29 showed generally weak increases in DNA damage in all tissues evaluated. The results with ENU indicate that the Pig-a RET and RBC assays are reproducible, transferable, and complement other genotoxicity endpoints that could potentially be integrated into 28-day repeat dose rat studies.  相似文献   

6.
Procarbazine (PCZ) and N-propyl-N-nitrosourea (PNU) are rodent mutagens and carcinogens. Both induce GPI-anchored marker-deficient mutant-phenotype red blood cells (RBCs) in the flow cytometry-based rat RBC Pig-a assay. In the present study, we traced the origin of the RBC mutant phenotype by analyzing Pig-a mutations in the precursors of RBCs, bone marrow erythroid cells (BMEs). Rats were exposed to a total of 450 mg/kg PCZ hydrochloride or 300 mg/kg PNU, and bone marrow was collected 2, 7, and 10 weeks later. Using a flow cell sorter, we isolated CD59-deficient mutant-phenotype BMEs from PCZ- and PNU-treated rats and examined their endogenous X-linked Pig-a gene by next generation sequencing. Pig-a mutations consistent with the properties of PCZ and PNU were found in sorted mutant-phenotype BMEs. PCZ induced mainly A > T transversions with the mutated A on the nontranscribed strand of the Pig-a gene, while PNU induced mainly T > A transversions with the mutated T on the nontranscribed strand. The treatment-induced mutations were distributed across the protein coding sequence of the Pig-a gene. The causal relationship between BMEs and RBCs and the agent-specific mutational spectra in CD59-deicient BMEs indicate that the rat RBC Pig-a assay, scoring CD59-deficient mutant-phenotype RBCs in peripheral blood, detects Pig-a gene mutation.  相似文献   

7.
The endogenous X-linked PIG-A gene is involved in the synthesis of glycosyl phosphatidyl inositol (GPI) anchors that tether specific protein markers to the exterior of mammalian cell cytoplasmic membranes. Earlier studies in rodent models indicate that Pig-a mutant red blood cells (RBCs) can be induced in animals treated with genotoxic agents, and that flow cytometry can be used to identify rare RBCs deficient in the GPI-anchored protein, CD59, as a marker of Pig-a gene mutation. We investigated if a similar approach could be used for detecting gene mutation in humans. We first determined the frequency of spontaneous CD59-deficient RBCs (presumed PIG-A mutants) in 97 self-identified healthy volunteers. For most subjects, the frequency of CD59-deficient RBCs was low (average of 5.1 ± 4.9 × 10(-6) ; median of 3.8 × 10(-6) and mutant frequency less than 8 × 10(-6) for 75% of subjects), with a statistically significant difference in median mutant frequencies between males and females. PIG-A RBC mutant frequency displayed poor correlation with the age and no correlation with the smoking status of the subjects. Also, two individuals had markedly increased CD59-deficient RBC frequencies of ~300 × 10(-6) and ~100 × 10(-6) . We then monitored PIG-A mutation in 10 newly diagnosed cancer patients undergoing chemotherapy with known genotoxic drugs. The frequency of CD59-deficient RBCs in the blood of the patients was measured before the start of chemotherapy and three times over a period of ~6 months while on/after chemotherapy. Responses were generally weak, most observations being less than the median mutant frequency for both males and females; the greatest response was an approximate three-fold increase in the frequency of CD59-deficient RBCs in one patient treated with a combination of cisplatin and etoposide. These results suggest that the RBC PIG-A assay can be adopted to measuring somatic cell mutation in humans. Further research is necessary to determine the assay's sensitivity in detecting mutations induced by genotoxic agents acting via different mechanisms.  相似文献   

8.
An international collaborative trial was established to systematically investigate the merits and limitations of a rat in vivo Pig-a gene mutation assay. The product of this gene is essential for anchoring CD59 to the plasma membrane, and mutations in this gene are identified by flow cytometric quantification of circulating erythrocytes without cell surface CD59 expression. Initial interlaboratory data from rats treated with several potent mutagens have been informative, but the time required for those flow cytometric analyses (~20 min per sample) limited the number of cells that could be interrogated for the mutant phenotype. Thus, it was desirable to establish a new higher throughput scoring approach before expanding the trial to include weak mutagens or nongenotoxicants. An immunomagnetic column separation method that dramatically increases analysis rates was therefore developed (Dertinger et al. [2011]: Mutat Res 721:163-170). To evaluate this new method for use in the international collaborative trial, studies were conducted to determine the mutagenic response of male Sprague Dawley rats treated for 3 or 28 consecutive days with several doses of 1,3-propane sultone (1,3-PS). Pig-a mutant frequencies were measured over a period of several weeks and were supplemented with another indicator of genetic toxicity, peripheral blood micronucleated reticulocyte (MN-RET) counts. 1,3-PS was found to increase Pig-a mutation and MN-RET frequencies in both 3- and 28-day study designs. While the greatest induction of MN-RETs was observed in the 3-day study, the highest Pig-a responses were found with 28-days of treatment. Pig-a measurements were acquired in approximately one-third the time required in the original method, while the number of erythrocyte and reticulocyte equivalents analyzed per sample were increased by factors of 100 and 10, respectively. The data strongly support the value of using the immunomagnetic separation technique for enumerating Pig-a mutation frequencies. These results also demonstrate that the ongoing international trial will benefit from the inclusion of studies that are based on both acute and protracted repeat dosing schedules in conjunction with the acquisition of longitudinal data, at least until more data have been accumulated.  相似文献   

9.
The product of the phosphatidylinositol glycan complementation group A gene (Pig-A) is involved in the synthesis of glycosylphosphatidylinositol (GPI) anchors that link various protein markers to the surface of several types of mammalian cells, including hematopoietic cells. Previous observations indicate that Pig-A mutation results in the lack of GPI synthesis and the absence of GPI-anchored proteins on the cell surface. As a first step in designing a rapid assay for measuring Pig-A mutation in the rat, we developed flow cytometry (FCM) strategies for detecting GPI-negative cells in rat peripheral blood and spleen. Anti-CD59 was used to detect GPI-anchored proteins on red blood cells (RBCs), and anti-CD48 was used to detect GPI-anchored proteins on spleen T-cells. The spontaneous frequency of CD59-negative RBCs in five male F344 rats ranged from 1 x 10(-6) to 27 x 10(-6). In contrast, treatment of five rats with three doses of 40 mg/kg N-ethyl-N-nitrosourea (ENU) increased the frequency of CD59-negative RBCs to 183 x 10(-6) to 249 x 10(-6) at 2 weeks and to 329 x 10(-6) to 413 x 10(-6) at 4 weeks after dosing. In the same 4-week posttreatment rats, the frequency of CD48-negative T-cells was 11 x 10(-6) to 16 x 10(-6) in control rats and 194 x 10(-6) to 473 x 10(-6) in ENU-treated rats. The frequencies of GPI-deficient cells were similar for RBCs and spleen T-cells. These results indicate that FCM detection of GPI-linked markers may form the basis for a rapid in vivo mutation assay. Although RBCs may be useful for a minimally invasive assay, T-cells are a promising tissue for both detecting GPI-deficient cells and confirming that Pig-A gene mutation is the cause of the phenotype.  相似文献   

10.
A collaborative international trial was conducted to evaluate the reproducibility and transferability of an in vivo mutation assay based on the enumeration of CD59-negative rat erythrocytes, a phenotype that is indicative of Pig-a gene mutation. Fourteen laboratories participated in this study, where anti-CD59-PE, SYTO 13 dye, and flow cytometry were used to determine the frequency of CD59-negative erythrocytes (RBC(CD59-)) and CD59-negative reticulocytes (RET(CD59-)). To provide samples with a range of mutant phenotype cell frequencies, male rats were exposed to N-ethyl-N-nitrosourea (ENU) via oral gavage for three consecutive days (Days 1-3). Each laboratory studied 0, 20, and 40 mg ENU/kg/day (n = 5 per group). Three sites also evaluated 4 mg/kg/day. At a minimum, blood samples were collected three times: predosing and on Days 15 and 30. Blood samples were processed according to a standardized sample processing and data acquisition protocol, and three endpoints were measured: %reticulocytes, frequency of RET(CD59-) , and frequency of RBC(CD59-) . The methodology was found to be reproducible, as the analysis of technical replicates resulted in experimental coefficients of variation that approached theoretical values. Good transferability was evident from the similar kinetics and magnitude of the dose-related responses that were observed among different laboratories. Concordance correlation coefficients showed a high level of agreement between the reference site and the test sites (range: 0.87-0.99). Collectively, these data demonstrate that with adequate training of personnel, flow cytometric analysis is capable of reliably enumerating mutant phenotype erythrocytes, thereby providing a robust in vivo mutation assay that is readily transferable across laboratories.  相似文献   

11.
The in vivo rodent Pig‐a mutation assay is a sensitive test to identify exposure to mutagenic substances, and has been proposed as an assay for the identification of impurities for pharmaceuticals. Red blood cells (RBCs) and reticulocytes (RETs) are analyzed by flow cytometry after exposure to potentially mutagenic chemicals for cells deficient in the cell surface anchored protein CD59, representing mutation in the X‐linked Pig‐a gene. The full potential of the assay as well as its limitations are currently being explored. The current study investigated the effects of regenerative erythropoietic bone marrow responses on the frequency of Pig‐a mutated reticulocytes (RETCD59‐) and erythrocytes (RBCCD59‐). We hypothesized that a robust regenerative erythropoietic response would not increase the basal frequency of RETCD59‐ or RBCCD59‐ cells. Two groups of six male Sprague‐Dawley rats either had 2 mL of blood sampled each day via an indwelling catheter over a period of 5 days or were minimally sampled for hematology and used as controls. Blood was also then collected and evaluated 5, 18, and 49 days after the initial bleed period for the number of Pig‐a mutant cells in either the RET or RBC population. Despite the expected decrease in hematocrit and the correlative increase in reticulocytes after bleeding, no increase in the number of Pig‐a mutant cells was observed in male Sprague‐Dawley rats that were bled for five consecutive days. These results indicate that changes in erythropoiesis and hematology parameters in rats appear to have no effect on the background levels of Pig‐a mutated RETs and RBCs. Environ. Mol. Mutagen. 59:91–95, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

12.
Acetaminophen, a nonmutagenic compound as previously concluded from bacteria, in vitro mammalian cell, and in vivo transgenic rat assays, presented a good profile as a nonmutagenic reference compound for use in the international multilaboratory Pig-a assay validation. Acetaminophen was administered at 250, 500, 1,000, and 2,000 mg·kg−1·day−1 to male Sprague Dawley rats once daily in 3 studies (3 days, 2 weeks, and 1 month with a 1-month recovery group). The 3-Day and 1-Month Studies included assessments of the micronucleus endpoint in peripheral blood erythrocytes and the comet endpoint in liver cells and peripheral blood cells in addition to the Pig-a assay; appropriate positive controls were included for each assay. Within these studies, potential toxicity of acetaminophen was evaluated and confirmed by inclusion of liver damage biomarkers and histopathology. Blood was sampled pre-treatment and at multiple time points up to Day 57. Pig-a mutant frequencies were determined in total red blood cells (RBCs) and reticulocytes (RETs) as CD59-negative RBC and CD59-negative RET frequencies, respectively. No increases in DNA damage as indicated through Pig-a, micronucleus, or comet endpoints were seen in treated rats. All positive controls responded as appropriate. Data from this series of studies demonstrate that acetaminophen is not mutagenic in the rat Pig-a model. These data are consistent with multiple studies in other nonclinical models, which have shown that acetaminophen is not mutagenic. At 1,000 mg·kg−1·day−1, Cmax values of acetaminophen on Day 28 were 153,600 ng/ml and 131,500 ng/ml after single and repeat dosing, respectively, which were multiples over that of clinical therapeutic exposures (2.6–6.1 fold for single doses of 4,000 mg and 1,000 mg, respectively, and 11.5 fold for multiple dose of 4,000 mg) (FDA 2002). Data generated were of high quality and valid for contribution to the international multilaboratory validation of the in vivo Rat Pig-a Mutation Assay.  相似文献   

13.
We previously reported that rat spleen T-cells and peripheral red blood cells that are deficient in glycosylphosphatidylinositol (GPI) synthesis [presumed mutants for the phosphatidylinositol glycan complementation group A gene (Pig-A)] could be detected by flow cytometry (FCM) as cells negative for GPI-linked markers (CD48 and CD59, respectively). To establish this procedure as a rapid in vivo gene mutation assay, we have examined the Pig-A gene of GPI-deficient rat spleen T-cells for DNA sequence alterations. Splenocytes were isolated from male F344 rats, primed with ionomycin and phorbol-12-myristate-13-acetate, and seeded at limiting-dilution into 96-well plates. To select for GPI-deficient T-cells, the cells were cultured for 10 days in a medium containing rat T-STIM and 2 nM proaerolysin (ProAER). The frequency of ProAER-resistant (ProAER(r)) spleen T-cells from control rats ranged from 1.3 x 10(-6) to 4.8 x 10(-6), while administration of three doses of 40 mg/kg N-ethyl-N-nitrosourea increased the frequency of ProAER(r) T-cells 100-fold at 4 weeks after dosing. FCM analysis of the cells in ProAER(r) clones revealed that they were CD48-negative, and thus presumably GPI-deficient. Sequencing of Pig-A cDNA from six ProAER(r) clones indicated that they all contained alterations in the Pig-A protein coding sequence; five had base pair substitutions and one had multiple exons deleted. These results indicate that GPI-deficient spleen T-cells are Pig-A gene mutants and support the use of FCM analysis of GPI-deficient cells as a rapid assay for measuring in vivo gene mutation.  相似文献   

14.
Ethyl methanesulfonate (EMS) was evaluated as part of the validation effort for the rat Pig‐a mutation assay and compared with other well‐established in vivo genotoxicity endpoints. Male Sprague‐Dawley (SD) rats were given a daily dose of 0, 6.25, 12.5, 25, 50, or 100 mg/kg/day EMS for 28 days, and evaluated for a variety of genotoxicity endpoints in peripheral blood, liver, and colon. Blood was sampled pre‐dose (Day 1) and at various time points up to Day 105. Pig‐a mutant frequencies were determined in total red blood cells (RBCs) and reticulocytes (RETs) as RBCCD59? and RETCD59? frequencies. The first statistically significant increases in mutant frequencies were seen in RETs on Day 15 and in RBCs on Day 29 with the maximum RETCD59? on Day 29 and of RBCCD59? on Day 55. The lowest dose producing a statistically significant increase of RETCD59? was 12.5 mg/kg on Day 55 and 25 mg/kg for RBCCD59? on Day 55. EMS also induced significant increases in % micronucleated RETs (MN‐RETs) in peripheral blood on Days 3, 15, and 28. No statistically significant increases in micronuclei were seen in liver or colon. Results from the in vivo Comet assay on Day 29 showed generally weak increases in DNA damage in all tissues evaluated with little evidence for accumulation of damage seen over time. The results with EMS indicate that the assessment of RBCCD59? and/or RETCD59? in the Pig‐a assay could be a useful and sensitive endpoint for a repeat dose protocol and complements other genotoxicity endpoints. Environ. Mol. Mutagen. 55:492–499, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
A rapid in vivo somatic cell gene mutation assay is being developed that measures mutation in the endogenous X-linked phosphatidylinositol glycan, class A gene (Pig-a). The assay detects Pig-a mutants by flow cytometric identification of cells deficient in glycosylphosphatidyl inositol (GPI) anchor synthesis. GPI-deficient, presumed Pig-a mutant cells also can be detected in a cloning assay that uses proaerolysin (ProAER) selection. Previously, we demonstrated that ProAER-resistant (ProAER(r) ) rat spleen T-cells have mutations in the Pig-a gene. In the present study, we report on a more complete analysis of ProAER(r) rat spleen T-cell mutants and describe a mutation spectrum for mutants isolated from rats 4 weeks after treatment with three consecutive doses of 35.6 mg/kg N-ethyl-N-nitrosourea (ENU). We identified a total of 55 independent mutations, with the largest percentage (69%) involving basepair substitution at A:T. The overall spectrum of Pig-a gene mutations was consistent with the types of DNA adducts formed by ENU and was very similar to what has been described for in vivo ENU-induced mutation spectra in other rodent reporter genes (e.g., in the endogenous Hprt gene and transgenic shuttle vectors). These data are consistent with the rat Pig-a assay detecting test-agent-induced mutational responses.  相似文献   

16.
As part of the Stage 3 of the Pig-a international trial, we evaluated 7,12-dimethylbenz(a)anthracene (DMBA) for induction of Pig-a gene mutation using a 28-day repeat dose study design in Sprague-Dawley rats. In the same study, chromosomal damage in peripheral blood and primary DNA damage in liver were also investigated by the micronucleus (MN) assay and the Comet assay, respectively. In agreement with previously published data (Dertinger et al., [2010]: Toxicol Sci 115:401-411), DMBA induced dose-dependent increases of CD59-negative erythrocytes/reticulocytes and micronucleated reticulocytes (MN-RETs). However, there was no significant increase in DNA damage in the liver cells when tested up to 10 mg/kg/day, which appears to be below the maximum tolerated dose. When tested up to 200 mg/kg/day in a follow-up 3 dose study, DMBA was positive in the liver Comet assay. Additionally, we evaluated diethylnitrosamine (DEN), a known mutagen/hepatocarcinogen, for induction of Pig-a mutation, MN and DNA damage in a 28-day study. DEN produced negative results in both the Pig-a mutation assay and the MN assay, but induced dose-dependent increases of DNA damage in the liver and blood Comet assay. In summary, our results demonstrated that the Pig-a mutation assay can be effectively integrated into repeat dose studies and the data are highly reproducible between different laboratories. Also, integration of multiple genotoxicity endpoints into the same study not only provides a comprehensive evaluation of the genotoxic potential of test chemicals, but also reduces the number of animals needed for testing, especially when more than one in vivo genotoxicity tests are required.  相似文献   

17.
During interlaboratory validation trials for the Pig‐a gene mutation assay we assessed the genotoxicity of 4‐nitroquinoline‐1‐oxide (4NQO) across endpoints in multiple tissues: induction of Pig‐a mutant red blood cells (RBCs) and reticulocytes (RETs); micronucleated RETs (MN RETs); and DNA damage in blood and liver via the alkaline Comet assay (%tail intensity [TI]). In a previous subchronic toxicity study with 28 daily doses, biologically meaningful increases were observed only for Pig‐a mutant RBCs/RETs while marginal increases in the frequency of MN RET were observed, and other clastogenic endpoints were negative. Follow up acute studies were performed using the same cumulative doses (0, 35, 70, 105, and 140 mg/kg) administered in a bolus, or split over three equal daily doses, with samples collected up to 1 month after the last dose. Both of the acute dosing regimens produced similar results, in that endpoints were either positive or negative, regardless of 1 or 3 daily doses, but the three consecutive daily dose regimen yielded more potent responses in TI (in liver and blood) and Pig‐a mutant frequencies. In these acute studies the same cumulative doses of 4NQO induced positive responses in clastogenic endpoints that were negative or inconclusive using a subchronic study design. Additionally, a positive control group using combination doses of cyclophosphamide and ethyl methanesulfonate was employed to assess assay validity and potentially identify a future positive control treatment for integrated genetic toxicity studies. Environ. Mol. Mutagen. 57:17–27, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
This laboratory has previously described a method for scoring the incidence of rodent blood Pig‐a mutant phenotype erythrocytes using immunomagnetic separation in conjunction with flow cytometric analysis (In Vivo MutaFlow®). The current work extends this approach to human blood. The frequencies of CD59‐ and CD55‐negative reticulocytes (RETCD59?/CD55?) and erythrocytes (RBCCD59?/CD55?) serve as phenotypic reporters of PIG‐A gene mutation. Immunomagnetic separation was found to provide an effective means of increasing the number of reticulocytes and erythrocytes evaluated. Technical replicates were utilized to provide a sufficient number of cells for precise scoring while at the same time controlling for procedural accuracy by allowing comparison of replicate values. Cold whole blood samples could be held for at least one week without affecting reticulocyte, RETCD59?/CD55? or RBCCD59?/CD55? frequencies. Specimens from a total of 52 nonsmoking, self‐reported healthy adult subjects were evaluated. The mean frequency of RETCD59?/CD55? and RBCCD59?/CD55? were 6.0 × 10?6 and 2.9 × 10?6, respectively. The difference is consistent with a modest selective pressure against mutant phenotype erythrocytes in the circulation, and suggests advantages of studying both populations of erythrocytes. Whereas intra‐subject variability was low, inter‐subject variability was relatively high, with RETCD59?/CD55? frequencies differing by more than 30‐fold. There was an apparent correlation between age and mutant cell frequencies. Taken together, the results indicate that the frequency of human PIG‐A mutant phenotype cells can be efficiently and reliably estimated using a labeling and analysis protocol that is well established for rodent‐based studies. The applicability of the assay across species, its simplicity and statistical power, and the relatively non‐invasive nature of the assay should benefit myriad research areas involving DNA damage, including studies of environmental factors that modify “spontaneous” mutation frequencies. Environ. Mol. Mutagen. 56:366–377, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
Monitoring patients treated with single antineoplastic agents is aiding our understanding of what hazard these drugs pose in vivo. In this study, the frequency of mutant 6-thioguanine-resistant (TG(R)) peripheral blood lymphocytes was monitored before treatment and for < or =35 weeks after treatment of patients with cyclophosphamide (CP) or chlorambucil (CAB). The mean mutant frequency before treatment for six multiple sclerosis patients treated with high-dose CP was 2.53 x 10(-5) and increased after treatment to 4.61 x 10(-5) (P = 0.08, paired t-test). Using each patient as their own control, there were significant increases (each at P < 0.04) detectable within 2-4 weeks in four of the multiple sclerosis patients treated with CP. There was no increase in an untreated control monitored over the same period. In a patient receiving five sequential CP treatments at 1 month intervals, there were cumulative increases in the frequency of mutant cells. The mutant frequency increased from 0.31 x 10(-5) before treatment to 3.64 x 10(-5) after the final treatment and had decreased to 0.53 x 10(-5) at 35 weeks after treatment. In one of two CAB-treated patients with indolent non-Hodgkin's lymphoma, there was a significant increase in mutant frequency (P < 0.03) after treatment. Freshly isolated peripheral blood lymphocytes treated with 4-hydroperoxy-CP in vitro demonstrate a dose-dependent increase in mutant frequency. The increment in mutant frequency observed in vivo is of the order expected from the in vitro experiments. Although this study demonstrates that single or multiple doses of a single antineoplastic agent are mutagenic in vivo for some patients, further studies are needed to determine the extent and mechanism of the inter-individual variations in mutagenic response.  相似文献   

20.
Erythrocyte‐based PIG‐A assay is sensitive and reliable in detecting exposure to mutagenetic agents in animal studies, but there are few data from human populations. In this study, we employed a method for detecting CD59 phenotypic variants, resulting from mutation in the PIG‐A gene, in human red blood cells (RBCs), and determined the CD59‐deficient RBC (RBCCD59?) frequencies in 217 subjects from general population. The majority of subjects had a relatively low mutant frequencies (MFs) (average, 5.25 ± 3.6 × 10?6, median, 4.38 × 10?6, for all subjects), but with males having a significantly greater MFs (5.97 ± 4.0 × 10?6) than females (4.19 ± 2.5 ×10?6). There was no correlation between MFs and age. In addition, MFs showed no difference between smoker and nonsmoker, and also no association with smoke duration in male subjects. However, there was a significant correlation between cigarette‐pack‐years which indicated that the MF was only slightly elevated with the increase of cigarette‐pack‐years. Moreover, intraindividual variations were investigated in three volunteer subjects over 300 days, and the MFs were relatively stable and repeatable. Furthermore, a pilot study by using white blood cell (WBC) assay based on labeling with FLAER was performed in volunteer subjects. The MFs of FLAER‐deficient WBC (WBCFLAER?) and RBCCD59? were consistently elevated in two subjects. Our findings provide baseline data that will be helpful in designing further studies using the PIG‐A assay to monitor the genotoxic effects of carcinogens in human populations. Environ. Mol. Mutagen. 57:589–604, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号