首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alteration of the geometrical surface configuration of cortical bone allografts may improve incorporation into host bone. A porous biodegradable coating that would maintain immediate structural recovery and subsequently allow normal graft healing and remodeling by promoting bony ingrowth could provide an osteoconductive surface scaffold. We investigated the feasibility of augmenting cortical bone grafts with osteoconductive biodegradable polymeric scaffold coatings. Three types of bone grafts were prepared: Type I--cortical bone without coating (control), Type II--cortical bone coated with PLGA-foam, Type III--cortical bone coated with PPF-foam. The grafts were implanted into the rat tibial metaphysis (16 animals for each type of bone graft). Post-operatively the animals were sacrificed at 2 weeks and 4 weeks (8 animals for each type of bone graft at each time point). Histologic and histomorphometric analysis of grafts showed that the amount of new bone forming around the foam-coated grafts was significantly higher than in the control group (uncoated; p < 0.02). Although both foam formulations were initially equally osteoconductive, PLGA-based foam coatings appeared to have degraded at two weeks postoperatively, whereas PPF-based foam coatings were still present at 4 weeks postoperatively. While significant resorption was present in control allografts with little accompanying reactive new bone formation, PLGA-coated bone grafts showed evidence of bone resorption and subsequent bony ingrowth earlier than those coated with PPF-based foams suggesting that PPF-coated cortical bone grafts were longer protected against host reactions resulting in bone resorption.  相似文献   

2.
Polymeric networks of poly(propylene fumarate) (PPF) crosslinked with poly(propylene fumarate)-diacrylate (PPF-DA) are currently being investigated as an injectable, biodegradable bone cement. This study examined the effect of crosslinking density, medium pH, and the incorporation of a beta-tricalcium phosphate (beta-TCP) filler on the in vitro degradation of PPF/PPF-DA. Cylindrical specimens were submerged in buffered saline at 37 degrees C and the change in weight, geometry, and compressive mechanical properties were monitored over a 52-week period. All formulations showed an initial increase in modulus and yield strength over the first 12 weeks, achieving maxima of 1307+/-101 and 51+/-3MPa, respectively, for the beta-TCP composite. PPF/PPF-DA networks with the lower crosslinking density demonstrated the greatest degradation with a 17% mass loss. Samples in the lower buffer pH 5.0 compared to physiological pH 7.4 did not show any differences in mass loss, but exhibited a faster decrease in the compressive strength over time. The beta-TCP composites maintained their mechanical properties at the level following their initial increase. These results show that the degradation of PPF/PPF-DA networks can be controlled by the crosslinking density, accelerated at a lower pH, and prolonged with the incorporation of the beta-TCP filler.  相似文献   

3.
In-situ preparation of poly(propylene fumarate)--hydroxyapatite composite   总被引:1,自引:0,他引:1  
Hakimimehr D  Liu DM  Troczynski T 《Biomaterials》2005,26(35):7297-7303
In-situ precipitation of hydroxyapatite (HAp) in the presence of poly(propylene fumarate) (PPF) is investigated. Amorphous calcium phosphate (ACP) precipitates in the presence of the polymer and remains in the amorphous form for a relatively long time, e.g. even after 24 h of coexistence with the mother solution. Our observations suggest that PPF interacts with the surface of the ACP particles and prevents them from transformation to crystalline hydroxyapatite. The PPF polymer seems to be more efficient in hindering the ACP to HAp transformation at higher pH conditions. From spectroscopic observations we hypothesize that the C=O bond of the PPF molecules interact with the calcium ion of the ACP particles. In case of low molecular weight PPF this interaction may lead to the incorporation of the polymer within the growing ACP particles.  相似文献   

4.
Bioresorbable bone graft substitutes could alleviate disadvantages associated with the use of autografts, allografts, and other synthetic materials. However, little is known about the minimum autograft/extender ratio for a given material at which a sufficient osteoinductive effect is still seen. Therefore, we investigated a bioresorbable bone graft substitute made from the unsaturated polyester poly(propylene fumarate), PPF, at various mixing ratios with autograft. The bone graft extender is cross-linked in the presence of a hydroxylapatite filler and effervescent foaming agents citric acid and sodium bicarbonate. The porous bone graft extender material develops porosity in vivo by generating carbon dioxide during the effervescent reaction, resulting in foam formation and expansion with respective pore sizes of 50 to 1000 microm. In an attempt to determine how much cancellous autograft bone could be extended with the poly(propylene fumarate) material and at which ratio the autograft/extender combination remained supportive of the overall structural integrity of the repairing defect site, we studied the amount of new bone formation on implantation of the materials in 3-mm holes made in the anteromedial tibial metaphysis of Sprague-Dawley rats. The extender formulation was analyzed at high autograft/extender (75% autograft/25% extender) and low autograft/extender (25% autograft/75% extender) mixing ratios and compared with negative (extender alone) and positive (autograft alone) controls. Animals from each of the formulations were killed in groups of eight at 6 weeks postoperatively. Hence, a total of 32 animals were included in this study. Histologic analysis of the healing process revealed enhanced in vivo osteoinduction with the bone graft extender regardless of the autograft loading. Histomorphometry did not show any statistically significant difference between the high and low autograft/extender ratios. All formulations maintained implant integrity and did not provoke sustained inflammatory responses. This study suggested that the presence of even a small amount of autograft within the polymer-based bone graft extender results in significant enhancement of osteoinduction. This finding has immediate applicability to the development of bone graft extender formulations for clinical use.  相似文献   

5.
A partially saturated linear polyester based on poly(propylene fumarate) (PPF) was synthesized for potential application in filling skeletal defects. The synthesis was carried out according to a two-step reaction scheme. Propylene glycol and fumaryl chloride were first combined to form an intermediate fumaric diester. The intermediate was then subjected to a transesterification to form the PPF-based polymer. This method allowed for production of a polymer with a number average molecular weight up to 1500 and a polydispersity index of 2.8 and below. The polymeric backbone structure was investigated through the use of FTIR and NMR. Kinetic studies of the transesterification allowed mapping of the molecular weight increase with reaction time. The final product was also characterized by thermal and solubility analysis.  相似文献   

6.
The photocross-linking of poly(propylene fumarate) (PPF) to form porous scaffolds for bone tissue engineering applications was investigated. PPF was cross-linked using the photoinitiator bis(2,4,6-trimethylbenzoyl) phenylphosphine oxide (BAPO) and exposure to 30 min of long wavelength ultraviolet (UV) light. The porous photocross-linked PPF scaffolds (6.5 mm diameter cylinders) were synthesized by including a NaCl porogen (70, 80, and 90 wt% at cross-linking) prior to photocross-linking. After UV exposure, the samples were placed in water to remove the soluble porogen, revealing the porous PPF scaffold. As porogen leaching has not been used often with cross-linked polymers, and even more rarely with photoinitiated cross-linking, a study of the efficacy of this strategy and the properties of the resulting material was required. Results show that the inclusion of a porogen does not significantly alter the photoinitiation process and the resulting scaffolds are homogeneously cross-linked throughout their diameter. It was also shown that porosity can be generally controlled by porogen content and that scaffolds synthesized with at least 80 wt% porogen possess an interconnected pore structure. Compressive mechanical testing showed scaffold strength to decrease with increasing porogen content. The strongest scaffolds with interconnected pores had an elastic modulus of 2.3+/-0.5 MPa and compressive strength at 1% yield of 0.11+/-0.02 MPa. This work has shown that a photocross-linking/porogen leaching technique is a viable method to form porous scaffolds from photoinitiated materials.  相似文献   

7.
The bioactivity of a nano-hydroxyapatite-augmented, bioresorbable bone graft substitute made from the unsaturated polyester, poly(propylene fumarate), was analyzed by evaluating biocompatibility and osteointegration of implants placed into a rat tibial defect. Three groups of eight animals each were evaluated by grouting bone graft substitutes into 3-mm holes that were made into the anteromedial tibial metaphysis of rats. Thus, a total of 24 animals was included in this study. Two different formulations varying as to the type of hydroxyapatite were used: Group 1 - nano-hydroxyapatite, Group 2 - micron-hydroxyapatite, with a Group 3 control defect remaining unfilled. Animals of each of the three groups were sacrificed in groups of eight at postoperative week three. Histologic analysis revealed best superior biocompatibility and osteointegration of bone graft substitutes when nanohydroxyapatite was employed. At three weeks, there was more reactive new bone formation in this group when compared to the micron-hydroxyapatite group. The control group showed incomplete closure of the defect. This study suggested that nano-hydroxyapatite may improve upon the bioactivity of bone implant and repair materials. The model scaffold used in this study, poly(propylene fumarate), appeared to provide an osteoconductive pathway by which bone will grow in faster. Clinical implications of the use potential advantages of nano-hydroxyapatite on bone repair and orthopaedic implant design are discussed.  相似文献   

8.
In this work, we evaluated the in vitro cytotoxicity and in vivo biocompatibility of a novel poly(propylene fumarate) (PPF)-based/alumoxane nanocomposite for bone tissue engineering applications. The incorporation of functionalized alumoxane nanoparticles into the PPF-based polymer was previously shown to significantly increase the material's flexural mechanical properties. In the current study, samples underwent accelerated in vitro degradation to allow the study of biological responses to these materials over the course of their degradation on a shortened timescale. The polymer, a macrocomposite composed of the polymer and micron-sized particles, and the nanocomposite were evaluated at three stages of degradation for in vitro cytotoxicity with a fibroblast cell line and in vivo soft-tissue response after 3 and 12 weeks of implantation in adult goats. All three material groups experienced mass loss during degradation, but the nanocomposite group eroded significantly faster than the other groups. Nondegraded materials demonstrated minimal cytotoxicity and a minor inflammatory response in soft tissue. On the contrary, predegraded samples elicited more pronounced responses, though these were due to the increase in surface area, surface roughness, and fragmentation associated with the degradation process. The presence of alumoxane nanoparticles in the PPF-based nanocomposite did not significantly affect its cytotoxicity or biocompatibility.  相似文献   

9.
目的 合成新型可注射性生物降解材料聚丙烯延胡索酸酯[poly(propylene fumarate), PPF],检测其交联温度、交联时间、生物力学性能和体外降解过程。方法 合成PPF,将PPF和N-乙烯基吡咯烷酮(N-vinyl pyrrolidinone,N-VP)在过氧化苯甲酰(benzoyl peroxide,BP)催化下交联,并且加入β-磷酸三钙(β-TCP)和氯化钠(NaCl),检测交联温度、时间、生物力学性能,和PMMA骨水泥进行比较。将PPF交联后浸泡于PBS。检测体外降解时质量和力学强度的变化。结果 交联温度在41.2±2.2℃和47.5±1.7℃间,交联时间从8.1±0.8min到63.7±4.4min,PPF的压应力为2.6±0.5MPa到12.0±2.3Mpa,压缩模量为26.6±8.7MPa到252.8±57.6Mpa,体外降解后4周PPF压应力为8.4±1.6Mpa。结论 PPF有合适的交联温度、交联时间和生物力学强度,体外降解过程中力学强度可以维持4周以上,是一个有应用前景的新型可注射生物高分子聚合材料。  相似文献   

10.
The photocross-linking of poly(propylene fumarate) (PPF) to form porous scaffolds for bone tissue engineering applications was investigated. PPF was cross-linked using the photoinitiator bis(2,4,6-trimethylbenzoyl) phenylphosphine oxide (BAPO) and exposure to 30 min of long wavelength ultraviolet (UV) light. The porous photocross-linked PPF scaffolds (6.5 mm diameter cylinders) were synthesized by including a NaCl porogen (70, 80, and 90 wt% at cross-linking) prior to photocross-linking. After UV exposure, the samples were placed in water to remove the soluble porogen, revealing the porous PPF scaffold. As porogen leaching has not been used often with cross-linked polymers, and even more rarely with photoinitiated cross-linking, a study of the efficacy of this strategy and the properties of the resulting material was required. Results show that the inclusion of a porogen does not significantly alter the photoinitiation process and the resulting scaffolds are homogeneously cross-linked throughout their diameter. It was also shown that porosity can be generally controlled by porogen content and that scaffolds synthesized with at least 80 wt% porogen possess an interconnected pore structure. Compressive mechanical testing showed scaffold strength to decrease with increasing porogen content. The strongest scaffolds with interconnected pores had an elastic modulus of 2.3 ± 0.5 MPa and compressive strength at 1% yield of 0.11 ± 0.02 MPa. This work has shown that a photocross-linking/porogen leaching technique is a viable method to form porous scaffolds from photoinitiated materials.  相似文献   

11.
Fisher JP  Dean D  Mikos AG 《Biomaterials》2002,23(22):4333-4343
The development of tissue engineered materials for the treatment of large bone defects would provide attractive alternatives to the autografts, allografts, non-degradable polymers, ceramics, and metals that are currently used in clinical settings. To this end, poly(propylene fumarate) (PPF), a viscous polyester synthesized from diethyl fumarate (DEF), has been studied for use as an engineered bone graft. We have investigated the photocrosslinking of PPF dissolved in its precursor, DEF, using the photoinitiator bis(2,4,6-trimethylbenzoyl) phenylphosphine oxide (BAPO) and low levels of ultraviolet light exposure. A three factor, 2 x 2 x 4 factorial design was developed, studying the effects of PPF number average molecular weight, BAPO initiator content, and DEF content upon photocrosslinking characteristics and mechanical properties. Uncured DEF/PPF solution viscosity fell over three orders of magnitude as DEF content was increased from 0% to 75%. The exothermic photocrosslinking reaction released low levels of heat, with no more than 160J/g released from any formulation tested. As a result, the maximum photocrosslinking temperature remained below 47 degrees C for all samples. Both sol fraction and swelling degree generally increased with increasing DEF content. Compressive mechanical properties were within the range of trabecular bone, with the strongest samples possessing an elastic modulus of 195.3 +/- 17.5 MPa and a fracture strength of 68.8 +/- 9.4MPa. Finally, the results indicate that PPF crosslinking was facilitated at low DEF precursor concentrations, but hindered at higher precursor concentrations. These novel DEF/PPF solutions may be preferred over pure PPF as the basis for an engineered bone graft because they (1) exhibit reduced viscosity and thus are easily handled, (2) form polymer networks with compressive strength at fracture suitable for consideration for trabecular bone replacement, and (3) may be readily fabricated into solids with a wide range of structures.  相似文献   

12.
Regeneration of skeletal tissues has been recognized as a new means for reconstruction of skeletal defects. We investigated the feasibility of an injectable and expandable porous implant system for in situ regeneration of bone. Therefore, a composite biodegradable foaming cement based on poly(propylene fumarate) was injected into a critical size defect made in the rat tibia. Animals were divided into two groups comparing the foam in the experimental group against sham-operated animals having a drill hole but no implant in the control group. Eight animals were included in each group. Animals were sacrificed at 1, 3, and 7 weeks postoperatively. Implantation sites were then evaluated with histologic and histomorphometric methods. Results of this study showed that defects did not heal in sham-operated animals. In the experimental group, metaphyseal and cortical defects healed within the first postoperative week by formation of immature woven bone. At the site of the cortical drill hole defect, healing was noted to progress to complete closure by formation of mature bone. Histomorphometry corroborated these findings and showed that metaphyseal bone remodeling peaked at 1 week postoperatively and then decreased as healing of the cortical defect progressed. This suggests that near-complete restoration of the original state of the tibial bone occurred in this animal model supporting the concept of in situ bone regeneration by application of engineered biodegradable porous scaffolds. () ()  相似文献   

13.
BACKGROUND: Poly(propylene fumarate) (PPF) can crosslink at room temperature, and β-tricalcium phosphate (β-TCP) has good biocompatibility, but PPF/β-TCP composite bone cement has not yet been systematically studied. OBJECTIVE: To prepare PPF/β-TCP composite bone cement and to explore its in vitro bioactivity and degradability. METHODS: β-TCP and PPF were respectively synthesized by liquid-phase precipitation and a two-step method, and PPF/β-TCP composite bone cement was prepared through mixing PPF with β-TCP. The    in vitro bioactivity of PPF/β-TCP was compared with the commercial poly(methyl methacrylate) (PMMA) through the ability of forming hydroxyapatite after immersed in simulated body fluid for 7 days. The in vitro degradability of PPF/β-TCP was studied via investigating the transformation of pH values, water uptake and mass loss, compressive strength and morphology at each time point. RESULTS AND CONCLUSION: There were hydroxyapatites formed on the PPF/β-TCP material, but none on the commercial PMMA material. The pH values of the PPF/β-TCP were stable in PBS for 63 days, indicating its degradation is moderate; the mass loss was up to 13.5% after 84 days. Scanning electron microscope displayed the degraded PPF/β-TCP surface, and its compressive strength was decreased gradually, which good for the integrity and sustainability of mechanical properties during degradation. These results suggest that PPF/β-TCP bone cement holds mineralization and degradability in vitro.  相似文献   

14.
This study investigated the in vivo degradation of poly(propylene fumarate) (PPF)/poly(DL-lactic-co-glycolic acid) (PLGA) composite scaffolds designed for controlled release of osteogenic factors. PPF/PLGA composites were implanted into 15.0mm segmental defects in the rabbit radius, harvested after 12 and 18 weeks, and analyzed using histological techniques to assess the extent of polymer degradation as well as the tissue response within the pores of the scaffolds. Polymer degradation was limited to micro-fragmentation of the scaffold at the ends and edges of the implant at both 12 and 18 weeks. The tissue within the pores of the scaffold consisted of fibrous tissue, blood vessels and some inflammatory cells. In areas where polymer breakdown was evident, an increased inflammatory response was observed. In contrast, areas of bone ingrowth into the polymer scaffold were characterized by minimal inflammatory response and polymer degradation. Our results show that minimal degradation of porous PPF occurs within 18 weeks of implantation in a rabbit model. Further, the in vivo degradation data of porous PPF/PLGA scaffolds are comparable with earlier obtained in vitro data.  相似文献   

15.
This study investigated the in vitro degradation of porous poly(propylene fumarate) (PPF-based) composites incorporating microparticles of blends of poly(DL-lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) during a 26-week period in pH 7.4 phosphate-buffered saline at 37 degrees C. Using a fractional factorial design, four formulations of composite scaffolds were fabricated with varying PEG content of the microparticles, microparticle mass fraction of the composite material, and initial leachable porogen content of the scaffold formulations. PPF scaffolds without microparticles were fabricated with varying leachable porogen content for use as controls. The effects of including PLGA/PEG microparticles in PPF scaffolds and the influence of alterations in the composite formulation on scaffold mass, geometry, water absorption, mechanical properties and porosity were examined for cylindrical specimens with lengths of 13 mm and diameters of 6.5 mm. The composite scaffold composition affected the extent of loss of polymer mass, scaffold length, and diameter, with the greatest loss of polymer mass equal to 15+/-5% over 26 weeks. No formulation, however, exhibited any variation in compressive modulus or peak compressive strength over time. Additionally, sample porosity, as determined by both mercury porosimetry and micro-computed tomography did not change during the period of this study. These results demonstrate that microparticle carriers can be incorporated into PPF scaffolds for localized delivery of bioactive molecules without altering scaffold mechanical or structural properties up to 26 weeks in vitro.  相似文献   

16.
Biodegradable networks of poly(propylene fumarate) (PPF) and the crosslinking reagent poly(propylene fumarate)-diacrylate (PPF-DA) were prepared with thermal- and photo-initiator systems. Thermal-crosslinking was performed with benzoyl peroxide (BP), which is accelerated by N,N-dimethyl-p-toluidine (DMT) and enables injection and in situ polymerization. Photo-crosslinking was accomplished with bis(2,4,6-trimethylbenzoyl) phenylphosphine oxide (BAPO), which is activated by long-wavelength UV light and facilitates material processing with rapid manufacturing techniques, such as stereolithography. Networks were evaluated to assess the effects of the initiators and the PPF/PPF-DA double bond ratio on the mechanical properties. Regardless of the initiator system, the compressive properties of the PPF/PPF-DA networks increased as the double bond ratio decreased from 2 to 0.5. BAPO/UV-initiated networks were significantly stronger than those formed with BP/DMT. The compressive modulus of the photo- and thermal-crosslinked PPF/PPF-DA networks ranged from 310 +/- 25 to 1270 +/- 286 MPa and 75 +/- 8 to 332 +/- 89 MPa, respectively. The corresponding fracture strengths varied from 58 +/- 7 to 129 +/- 17 MPa and 31 +/- 13 to 105 +/- 12 MPa. The mechanical properties were not affected by the initiator concentration. Characterization of the network structures indicated that BAPO was a more efficient initiator for the crosslinking of PPF/PPF-DA, achieving a higher double bond conversion and crosslinking density than its BP counterpart. Estimated average molecular weights between crosslinks (Mc) confirmed the effects of the initiators and PPF/PPF-DA double bond ratio on the mechanical properties. This work demonstrates the capability to control the properties of PPF/PPF-DA networks as well as their versatility to be used as an injectable material or a prefabricated implant.  相似文献   

17.
Diethyl fumarate and propylene glycol were reacted in the presence of a zinc chloride catalyst to synthesize poly(propylene fumarate) (PPF) over a period of 12 hours. The kinetics of the transesterification polymerization at 130 degrees C, 150 degrees C, and 200 degrees C were determined by gel permeation chromatography (GPC) analysis. The initial rate of polymerization at each temperature was quantified by calculating the rate of change of the number average molecular weight (Mn). At 200 degrees C, gelation of the PPF occurred after 4 h. GPC analysis of the reaction showed that PPF synthesized at 150 degrees C had a higher final Mn of 4600 (+/- 190) and a higher weight average molecular weight of 10500 (+/- 760) than at 130 degrees C (n = 3). The chemical structure of the PPF was verified by NMR and FT-IR analysis. This study demonstrated that the maximum Mn of PPF by a transesterification reaction is limited due to gelation of PPF at high temperature.  相似文献   

18.
Diethyl fumarate and propylene glycol were reacted in the presence of a zinc chloride catalyst to synthesize poly(propylene fumarate) (PPF) over a period of 12 hours. The kinetics of the transesterification polymerization at 130°C, 150°C, and 200°C were determined by gel permeation chromatography (GPC) analysis. The initial rate of polymerization at each temperature was quantified by calculating the rate of change of the number average molecular weight (Mn). At 200°C, gelation of the PPF occurred after 4 h. GPC analysis of the reaction showed that PPF synthesized at 150°C had a higher final Mn of 4600 (±190) and a higher weight average molecular weight of 10 500 (±760) than at 130°C (n = 3). The chemical structure of the PPF was verified by NMR and FT-IR analysis. This study demonstrated that the maximum Mn of PPF by a transesterification reaction is limited due to gelation of PPF at high temperature.  相似文献   

19.
He S  Yaszemski MJ  Yasko AW  Engel PS  Mikos AG 《Biomaterials》2000,21(23):2389-2394
New injectable, in situ crosslinkable biodegradable polymer composites were investigated consisting of poly(propylene fumarate) (PPF), poly(ethylene glycol)-dimethacrylate (PEG-DMA), and beta-tricalcium phosphate (beta-TCP). We examined the effects of the PEG-DMA/PPF double-bond ratio and beta-TCP content on the crosslinking characteristics of the composites including the maximum crosslinking temperature and the gel point, as well as the properties of the crosslinked composites such as the compressive strength and modulus, and the water-holding capacity. The maximum crosslinking temperature was constant averaging 39.7 degrees C for the composite formulations tested. The gel points varied from 8.0 +/- 1.0 to 12.6 +/- 2.5 min and were not affected by the relative amounts of PEG-DMA. The compressive strength at yield of PEG-DMA/PPF composites without beta-TCP increased from 5.9 +/- 1.0 to 11.2 +/- 2.2 MPa as the double-bond ratio of PEG-DMA/PPF increased from 0.38 to 1.88. An increase in compressive modulus was also observed from 30.2 +/- 3.5 to 58.4 +/- 6.2 MPa for the same range of the PEG-DMA/PPF double-bond ratio. Also, the addition of beta-TCP (33 wt%) enhanced the mechanical properties of all composites. The equilibrium water content of networks without beta-TCP increased from 21.7 +/- 0.2 to 30.6 +/- 0.2% for a double-bond ratio of PEG-DMA/PPF ranging from 0.38 to 1.88. However, the mechanical properties of the swollen composites under compression were smaller than the dry ones. These data demonstrate the feasibility of fabricating injectable biodegradable polymer composites with engineered mechanical properties for orthopedic tissue engineering.  相似文献   

20.
Abstract

Poly(propylene fumarate) (PPF) has known to be a good candidate material for cartilage tissue regeneration because of its excellent mechanical properties during its degradation processes. Here, we describe the potential application of PPF-based materials as 3D printing bioinks to create macroporous cell scaffolds using micro-stereolithography. To improve cell-matrix interaction of seeded human chondrocytes within the PPF-based 3D scaffolds, we immobilized arginine-glycine-aspartate (RGD) peptide onto the PPF scaffolds. We also evaluated various cellular behaviors of the seeded chondrocytes using MTS assay, microscopic and histological analyses. The results indicated that PPF-based biocompatible scaffolds with immobilized RGD peptide could effectively support initial adhesion and proliferation of human chondrocytes. Such a 3D bio-printable scaffold can offer an opportunity to promote cartilage tissue regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号