首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have implicated cytokines associated with Th2 cells in the genetic resistance to murine Lyme borreliosis. Because the B7/CD28 costimulatory pathway has been shown to influence the differentiation of Th-cell subsets, we investigated the contribution of the B7 molecules CD80 and CD86 to the Th2 cytokine profile and development of arthritis in BALB/c mice infected with Borrelia burgdorferi. Effective blockade of CD86/CD28 interaction was demonstrated by elimination of interleukin 4 (IL-4) and upregulation of gamma interferon (IFN-γ) responses by B. burgdorferi-specific T cells and by reduction of B. burgdorferi-specific immunoglobulin G. Despite the shift toward a Th1 cytokine pattern, which others have associated with disease susceptibility, the severity of arthritis was unchanged. Moreover, combined CD80/CD86 blockade by using anti-CD80 and anti-CD86 monoclonal antibodies or CTLA-4Ig enhanced IFN-γ production over that seen with CD86 blockade alone, yet augmentation of this Th1-associated cytokine did not enhance disease. These results demonstrate that IL-4 production by T cells in B. burgdorferi-infected BALB/c mice is dependent upon CD86/CD28 interaction and that this cytokine does not contribute significantly to host resistance to the development of arthritis. In addition, combined CD80/CD86 blockade resulted in preferential expansion of IFN-γ-producing T cells in B. burgdorferi infection, suggesting that costimulatory pathways other than B7/CD28 may contribute to T-cell activation during continuous antigen stimulation. These studies may provide insight into the role of the B7/CD28 pathway in other infectious and autoimmune diseases in which deviation of Th cell immune responses occurs and antigen is persistently present.Lyme disease is a multisystem illness due to infection with the tick-transmitted spirochete Borrelia burgdorferi. Experimental infection of laboratory mice with B. burgdorferi results in acute arthritis and carditis that reproducibly peak at 2 to 4 weeks of infection and then resolve within 3 months despite spirochete persistence (4). Studies using SCID mice, which lack functional T and B cells, have demonstrated that disease is due to the innate immunity of the host and can occur in the absence of specific immune responses (6, 28). The persistent and progressive nature of disease manifestations in SCID mice underscores the importance of T and B cells in initiating disease regression (5, 6, 28). Recent studies support the additional role of specific immunity in modulating disease severity via direct effects on spirochete burden through B. burgdorferi-specific antibodies (5) and indirectly through Th cell-associated cytokines that influence the activation of innate immune cells (14, 23). In particular, the dominance of Th1-type responses, which support macrophage activation, in patients with chronic Lyme arthritis has implicated this T-cell phenotype in the development and perpetuation of severe inflammatory disease (32, 37). Th1-type responses have also been observed during B. burgdorferi infection of C3H mice, a disease-susceptible strain, whereas Th2 responses, which promote B-cell functions, can be detected in BALB/c mice, a comparatively disease-resistant strain (14, 23). Despite the greater inflammatory response in C3H mice, their pathogen burden as assessed by quantitative PCR of spirochete DNA remains higher than that of disease-resistant mouse strains (36), suggesting that the recruitment of innate immune cells is appropriate yet ineffective at controlling infection (29).In addition to signals provided by T-cell antigen receptor engagement, the interaction of costimulatory molecules present on antigen-presenting cells (APCs) with their ligands on T cells is believed to be necessary for the initial priming of naive T cells. In particular, the B7/CD28 costimulatory pathway has been implicated in the differentiation of naive Th0 cells into Th1 and Th2 subsets (33). The mechanisms by which these molecules assist in the priming of the T-cell immune response are complex and poorly understood. Two members of the B7 family have been characterized, CD80 and CD86 (also known as B7-1 and B7-2, respectively), and differ not only in their binding properties to CD28 on T cells but also in the timing of their appearance on conventional APCs during the initiation of an immune response (11). CD86 appears earlier on the surface of mitogen-activated APCs and has a lower affinity for CD28 than does CD80. Once activated, T cells express CTLA-4, a second receptor to which both CD80 and CD86 bind with greater affinity than they bind CD28 (21). Interaction of CD80/CD86 with CTLA-4 can downregulate the T-cell immune response (35). Blockade of CD86 during the initiation of a T-cell response results in an immune response oriented toward a Th1 phenotype, whereas a similar blockade of CD80 does not consistently favor a Th2 phenotype (20). Experiments using mutant mice deficient in CD80 and/or CD86 reveal the important role of these molecules in sustaining a Th-cell phenotype and, in the case of CD86 expression, in the development of a Th2 response (20). Costimulation through the B7/CD28 pathway contributes to the expansion of autoimmune disease processes seen in experimental autoimmune encephalitis (17, 27), a predominantly Th1-associated disease, and autoimmune diabetes (19). Studies using a soluble recombinant form of CTLA-4 designated CTLA-4Ig have supported many of the observations made with anti-B7 antibodies (13, 19, 26).We have recently reported that the Th2 response of B. burgdorferi-infected BALB/c mice is preceded by a Th1 response and that the presence of interleukin 4 (IL-4) is associated with accelerated resolution of arthritis (12). A hind-foot inoculation route was used in that study so that T-cell responses could be examined in lymph nodes adjacent to joints afflicted with arthritis. We demonstrated that this route of inoculation induces moderately severe arthritis in BALB/c mice at day 14 of infection that undergoes more rapid regression than the arthritis seen in similarly infected C3H mice, in which IL-4 responses are not detectable. Previous studies have shown that treatment of mice with anti-IL-4 monoclonal antibody (MAb) exacerbates arthritis in BALB/c mice assessed at intervals corresponding to the plateau and resolution phases of disease, providing evidence that IL-4 modulates the severity of established arthritis (14, 23). The influence of Th2 cell effector functions on the development of arthritis remains unknown. In the current study, we have examined the effects of interruption of Th2 cell differentiation by B7/CD28 blockade with anti-CD80 and/or anti-CD86 MAb or CTLA-4Ig on the cytokine profiles and development of arthritis in BALB/c mice infected with B. burgdorferi.  相似文献   

2.
Immunization with Neisseria meningitidis group B capsular polysaccharide (CpsB) elicited responses in adult mice that showed the typical dynamic characteristics of the response to a thymus-independent antigen, in contrast to the thymus-dependent behavior of antibody responses to CpsC. The former had a short latent period and showed a rapid increase in serum antibodies that peaked at day 5, and immunoglobulin M (IgM) was the major isotype even though IgG (mainly IgG2a and IgG2b) was also detectable. This response was of short duration, and the specific antibodies were rapidly cleared from the circulation. The secondary responses were similar in magnitude, kinetics, IgM predominance, and IgG distribution. Nevertheless, a threefold IgG increase, a correlation between IgM and IgG levels, and dose-dependent secondary responses were observed. Hyperimmunization considerably reinforced these responses: 10-fold for IgM and 300-fold for IgG. This favored isotype switch was accompanied by a progressive change in the subclass distribution to IgG3 (62%) and IgG1 (28%), along with the possible generation of B-cell memory. The results indicate that CpsB is being strictly thymus independent and suggest that unresponsiveness to purified CpsB is due to tolerance.

The capsular polysaccharide (Cps) of Neisseria meningitidis group B (CpsB), the major cause of meningococcal disease in developed countries (38), is a linear homopolymer of α(2→8)-linked sialic acid on host sialogangliosides and sialoproteins (12, 16) causes immunological tolerance to sequential CpsB epitopes, with the anti-CpsB antibodies being mainly, if not solely, directed against conformational determinants preferably expressed by chains of eight or more residues (10). The conformational antigenic nature and metastable spatial structure of CpsB (10, 19), in combination with its neuraminidase sensitivity, tendency to internal lactonization, and intramolecular self-cleavage under mild acidic conditions (22, 29), were proposed to explain its poor immunogenicity (35). According to this hypothesis, the interaction of CpsB with B cells is transitory and therefore unable to elicit an antibody response (34). Alternatively, the high expression of longer sialic acid polymers (>12 residues), having the same α(2→8) linkage in polysialylated glycoproteins of vertebrate fetal tissues as well as limited areas of the adult neural system (21, 42), has been proposed to induce tolerance also to the conformational epitopes of CpsB (11). A feasible mechanism for inducing and maintaining tolerance, however, is not known. In any event, the poor immunogenicity of CpsB is associated with the α(2→8) linkage. Purified CpsC, a homopolymer of α(2→9)-linked sialic acid, has been shown to be immunogenic in mice (48).Bacterial Cps complexed to protein carriers induces long-lasting immunoglobulin G (IgG) antibody responses in young children and mice, which is indicative of the Cps conversion to a T-cell-dependent (TD) antigen (18). In contrast, CpsB conjugated to tetanus toxoid (3, 8, 20) or complexed with meningococcal outer membrane proteins (OMPs) (23, 24) is able to induce only low levels of CpsB-specific IgM. In these responses, however, CpsB-specific IgG was detectable (3, 8, 23). Since in simple terms protection from these infectious agents is due to the presence of circulating specific antibodies (13) and bearing in mind that an artificial IgG immune response may initiate an autoimmune process (11), we studied the evolution over time of the serum antibodies and changes in isotype distribution obtained by immunization with the native form of CpsB—namely, live N. meningitidis—in order to further explore the underlying mechanisms in the generation of the immune responses to this peculiar autoantigen which has both epitopes disseminated in the host and epitopes of ontogenetic and topologically restricted expression, a situation reproduced in the mouse model.  相似文献   

3.
The isotype and epitope specificities of antibodies both contribute to the efficacy of antibodies that mediate immunity to Cryptococcus neoformans, but the relationship between these properties is only partially understood. In this study, we analyzed the efficacy of protection of two sets of immunoglobulin G (IgG) isotype switch variants from two IgG3 monoclonal antibodies (MAbs) which are either not protective or disease enhancing, depending on the mouse model used. The two IgG3 MAbs 3E5 and 4H3 have different epitope specificities. Protection experiments were done with A/JCr mice infected intravenously with C. neoformans and administered with 3E5 IgG3 and its IgG1, IgG2a, and IgG2b switch variants. These experiments revealed that IgG1, IgG2b, and IgG2a were each more effective than IgG3. For 4H3 IgG3 and its IgG1 and IgG2b switch variants, the relative efficacy was IgG2b > IgG1 >> IgG3. The combination of 3E5 IgG3 and 4H3 IgG3 was more deleterious than either IgG3 alone. All IgG isotypes were opsonic for mouse bronchoalveolar cells, with the relative efficacy being IgG2b > IgG2a > IgG1 > IgG3. These results (i) confirm that a nonprotective IgG3 MAb can be converted to a protective MAb by isotype switching, (ii) indicate that the efficacy of protection of an IgG1 MAb can be increased by isotype switching to another subclass, (iii) show that protective and nonprotective IgG MAbs are opsonic, and (iv) provide additional evidence for the concept that the efficacy of the antibody response to C. neoformans is dependent on the type of MAb elicited.Cryptococcus neoformans is a fungus which is a frequent cause of life-threatening meningoencephalitis in patients with impaired immunity (22, 25). Cryptococcosis has been reported to occur in 6 to 8% of patients with AIDS (7). In immunocompromised individuals, C. neoformans infections are often incurable with conventional antifungal agents, and these patients frequently require lifelong therapy (45). The difficulties involved in the management of cryptococcosis in immunocompromised individuals have led to a reexamination of the potential of antibody-mediated immunity for prevention and therapy of cryptococcal infections. A polysaccharide-tetanus toxoid (TT) conjugate vaccine which is highly immunogenic and can elicit protective antibodies in mice has been made (3, 8, 9). In addition, several monoclonal antibodies (MAbs) have been shown to modify the course of infection in mice, and these may be useful in therapy of human infection (12, 14, 28, 42, 43).Cell-mediated immunity is generally acknowledged to provide important host defense against C. neoformans infection (4, 20, 26, 31, 42). In contrast, the role of antibody-mediated immunity in host resistance is less certain (2), but there is considerable evidence that administration of some MAbs can modify the course of infection in mice (8, 12, 14, 16, 28, 33). C. neoformans is unusual among fungal pathogens in that it has a polysaccharide capsule composed primarily of glucuronoxylomannan (GXM) (6), which is important for virulence (5). The capsular polysaccharide has been shown to produce a variety of deleterious effects including inhibition of phagocytosis (21), interference with antigen presentation (39), shedding of adhesion molecules (11), inhibition of leukocyte migration (10), and alterations in cytokine production by host effector cells (24, 40, 41). Antibodies to the C. neoformans capsular polysaccharide may contribute to host defense through multiple effects including enhanced opsonization (13, 18, 23, 30, 44), clearance of polysaccharide antigen (15), promotion of granuloma formation (14), and release of oxygen- and nitrogen-derived oxidants (27, 38).In previous studies, we demonstrated that immunoglobulin G3 (IgG3) MAbs are not protective in various mouse models of cryptococcal infection (32, 42). When one of these nonprotective IgG3 MAbs was switched to IgG1, the IgG1 significantly prolonged animal survival (32, 42). In the present study, we analyzed two families of IgG switch variants generated in vitro from two nonprotective IgG3 MAbs with different epitope specificities. We found that MAbs with different isotypes have different protective efficacies and that switching of nonprotective IgG3 MAbs to IgG1, IgG2b, and IgG2a significantly increased antibody protective efficacy. These studies demonstrate a complex relationship among efficacy of antibody protection, epitope specificity, and isotype.  相似文献   

4.
The correlation between various adherence patterns and adherence-related DNA sequences in Escherichia coli isolates from 1- to 4-year-old children with and without diarrhea in São Paulo, Brazil, was evaluated. A total of 1,801 isolates obtained from 200 patients and 200 age-matched controls were studied. The adherence patterns found were classified as diffuse, aggregative, aggregative in a 6-h assay, aggregative predominantly in coverslips, localized, localized-like, and noncharacteristic. In general, the DNA sequences used as probes showed excellent specificities (>93%), but their sensitivities varied. Thus, the results of bioassays and assays with DNA probes normally used to search for adherent E. coli did not correlate well, and the best method for the identification of these organisms in the clinical research setting remains controversial. Isolates presenting diffuse adherence or hybridizing with the related daaC probe, or both, were by far the most frequent in patients (31.5, 26.0, and 23.0%, respectively), followed by isolates presenting aggregative adherence or hybridizing with the related EAEC probe, or both (21.5, 13.0, and 10.5%, respectively). None of the different combinations of adherence patterns and adherence-related DNA sequences found were associated with acute diarrhea.The first step in the establishment of the diarrheal diseases caused by the various categories of diarrheagenic Escherichia coli is adherence to epithelial cells of the intestinal mucosa. In vitro assays with eukaryotic cell lines (HeLa and HEp-2 cells) have identified three distinct adherence patterns among fecal isolates of E. coli: localized, diffuse, and aggregative (37, 38, 41). Localized adherence (LA) is characterized by formation of bacterial microcolonies on a restricted area(s) of the cell surface, while diffuse adherence (DA) is the scattered attachment of bacteria over the whole surface of the cell (41). The pattern of aggregative adherence (AA) consists of bacterial attachment to the cells and the intervening cell growth surface in a stacked brick-like lattice (37).The LA pattern was first detected in strains classified as enteropathogenic E. coli (EPEC) among serogroups associated with outbreaks of infantile diarrhea (41). Although E. coli strains exhibiting DA (DAEC) have been isolated at similar frequencies from feces of infants and young children with acute diarrhea and nondiarrheic controls in some populations (3, 10, 11, 14, 18), they were significantly associated with diarrhea in other settings (1, 17, 24, 29, 33). E. coli strains showing AA, termed enteroaggregative E. coli (EAEC), have been linked to sporadic persistent diarrhea (3, 4, 7, 10, 13, 26, 27, 44) and to outbreaks of diarrhea in both developing and developed countries (8, 12, 28, 43). However, the role of EAEC in acute diarrhea is still controversial: some studies have shown a correlation (7, 23, 25, 27, 34, 37), but others (1, 3, 6, 10, 11, 1315, 17, 18, 24, 26, 29, 33, 44) have not.DNA probes derived from adherence-related sequences have been constructed (2, 5, 16, 31, 36) and used in hybridization assays for the detection of the different established and putative categories of diarrheagenic E. coli in many epidemiological studies.We evaluated the relationship between the LA, DA, and AA patterns and hybridization with adherence-related DNA sequences and tested children 1 to 4 years old with and without acute diarrhea for the presence of adherent E. coli strains.  相似文献   

5.
6.
Acanthamoeba keratitis is a chronic inflammatory disease of the cornea which is highly resistant to many antimicrobial agents. The pathogenic mechanisms of this disease are poorly understood. However, it is believed that the initial phases in the pathogenesis of Acanthamoeba keratitis involve parasite binding and lysis of the corneal epithelium. These processes were examined in vitro, using Acanthamoeba castellanii trophozoites. Parasites readily adhered to Chinese hamster corneal epithelial cells in vitro; however, parasite binding was strongly inhibited by mannose but not by lactose. Although mannose prevented trophozoite binding, it did not affect cytolysis of corneal epithelial cells. Moreover, mannose treatment induced trophozoites to release cytolytic factors that lysed corneal epithelial cells in vitro. These factors were uniquely induced by mannose because supernatants collected from either untreated trophozoites or trophozoites treated with other sugars failed to lyse corneal cells. The soluble factors were size fractionated in centrifugal concentrators and found to be ≥100 kDa. Treatment of the supernatants with the serine protease inhibitor phenylmethylsulfonyl fluoride inhibited most, but not all, of the cytopathic activity. These data suggest that the binding of Acanthamoeba to mannosylated proteins on the corneal epithelium may exacerbate the pathogenic cascade by initiating the release of cytolytic factors.Acanthamoeba spp. are protozoal parasites capable of infecting the skin, brain, and eye (10, 15, 17, 31, 32, 37). Corneal inflammation produced by Acanthamoeba was first recognized in 1973 and has since been intimately associated with contact lens wear (15, 31). Often the disease displays a ring-like neutrophilic stromal infiltrate with an overlying epithelial ulcer. The epithelium often undergoes a recurrent cycle of healing and breakdown during the progression of the disease. Topical or systemic treatment with antibiotics, antifungals, corticosteroids, and antivirals is often ineffectual (2). Typical treatment consists of around-the-clock hourly topical treatments with propamidine isothionate, polyhexamethylene biguanide, neomycin, or chlorhexidine, alone or in combination. This therapeutic regimen may continue for weeks. Many patients receive therapeutic corneal transplants, which can be reinfected by quiescent parasites residing in the periphery of the cornea.Parasite binding to the corneal epithelium is believed to be an important first step in the infectious cascade of Acanthamoeba keratitis. We have shown that adherence of Acanthamoeba to corneal buttons in vitro varies among mammalian species and correlates with susceptibility to experimental Acanthamoeba keratitis (14, 19, 35). Parasitic infections, such as Acanthamoeba keratitis, often occur in a sequential manner and are initiated by the pathogen’s adherence to host cells. Bacteria, fungi, and amoebae have been shown to bind to epithelial cells via lectin-glycoprotein interactions (5, 6, 11, 18, 2022, 26, 27, 40). The cell surface of Pseudomonas aeruginosa is decorated with lectins which bind surface glycoproteins of the epithelium to be invaded (30, 39). Entamoeba histolytica also utilizes glycoproteins as receptor ligands for adherence to the gastrointestinal epithelium (6, 16, 2529). Binding of Acanthamoeba polyphaga and A. castellanii to corneal epithelial cells in culture is inhibited by mannose (18, 40). Subsequent studies have indicated that the binding of A. castellanii to corneal epithelial cells is mediated by a 136-kDa mannose-binding protein on the trophozoite cell membrane (40).The pathophysiology of Acanthamoeba keratitis is poorly understood. Several studies have demonstrated that Acanthamoeba trophozoites can induce either cytolysis or apoptosis of target cells in vitro (1, 7, 24, 33, 34). Pathogenic Acanthamoeba trophozoites produce a variety of proteases which are believed to facilitate parasite penetration into the corneal stroma (9). Once in the stroma, Acanthamoeba trophozoites secrete collagenolytic enzymes which contribute to the dissolution of the stromal matrix (13).This study was undertaken to examine the cytopathic mechanisms employed by Acanthamoeba during the initial phase of ocular infection. We tested the hypothesis that blocking parasite binding to corneal epithelial cells with mannose would prevent parasite-mediated cytolysis and invasion of the corneal stroma. The results, however, indicate that although mannose blocks parasite binding, it also facilitates the release of cytolytic factors which kill corneal epithelial cells.  相似文献   

7.
Two studies of adult volunteers were performed to determine whether prior enteropathogenic Escherichia coli (EPEC) infection confers protective immunity against rechallenge. In the first study, a naive control group and volunteers who had previously ingested an O55:H6 strain were fed an O127:H6 strain. In the second study, a control group and volunteers who had previously ingested either the O127:H6 strain or an isogenic eae deletion mutant of that strain were challenged with the homologous wild-type strain. There was no significant effect of prior infection on the incidence of diarrhea in either study. However, in the homologous-rechallenge study, disease was significantly milder in the group previously challenged with the wild-type strain. Disease severity was inversely correlated with the level of prechallenge serum immunoglobulin G against the O127 lipopolysaccharide. These studies indicate that prior EPEC infection can reduce disease severity upon homologous challenge. Further studies may require the development of new model systems.

Enteropathogenic Escherichia coli (EPEC) strains are one of several categories of pathogenic E. coli strains that cause diarrhea. EPEC infections are prevalent on six continents (5, 2224, 28, 43). In many parts of the world, EPEC strains are the most common bacterial cause of diarrhea in infants (7, 21, 43). Disease due to EPEC can be severe, refractory to oral rehydration, protracted, and lethal (3, 14, 21, 45, 48).The pathogenesis of EPEC infection involves three distinct stages, initial adherence, signal transduction, and intimate attachment (12). Initial adherence is associated with the production of a type IV fimbria, the bundle-forming pilus (BFP) (20), that is encoded on the large EPEC adherence factor (EAF) plasmid (50). EPEC uses a type III secretion apparatus to export several proteins, including EspA, EspB, and EspD, that are required for tyrosine kinase-mediated signal transduction within the host cell (17, 25, 30, 31). This signaling leads to phosphorylation and activation of a 90-kDa protein that is a putative receptor for the bacterial outer membrane protein intimin (44). Intimin, the product of the eae gene, is required for intimate attachment of bacteria to the host cell membrane and for full virulence in volunteers (13, 26, 27). The interaction between EPEC and host cells results in the loss of microvilli and the formation of adhesion pedestals containing numerous cytoskeletal proteins (16, 33, 34, 39, 46). This interaction between bacteria and host cells is known as the attaching and effacing effect (40).One of the most striking clinical features of EPEC infections is the remarkable propensity of these strains to cause disease in very young infants. Rare reports of disease in older children and adults usually reflect common-source outbreaks that probably involve large inocula (47, 53). In contrast, in nosocomial outbreaks among neonates, EPEC spreads rapidly by person-to-person contact, apparently involving low inocula (54). The incidence of community-acquired EPEC infection is highest in the first 6 months after birth (4, 7, 21). EPEC infection is also more severe in younger children (8). Infants are more likely to develop diarrhea during the first episode of colonization with EPEC than they are during subsequent encounters (8). Whether the low incidence of EPEC diarrhea in older children and adults is due to acquired immunity or decreased inherent susceptibility is not known.The immune response to EPEC infection remains poorly characterized. It has previously been demonstrated that volunteers convalescing from experimental EPEC infection develop antibodies to the O antigen component of lipopolysaccharide (LPS) of the infecting strain, to intimin, and to type I-like fimbriae (13, 15, 29, 38). Antibodies to common EPEC O antigens are found more often in children of greater than 1 year in age than they are in younger children (42). Breast-feeding is protective against EPEC infection (2, 19, 43, 52). Breast milk contains antibodies against EPEC O antigens and outer membrane proteins and inhibits EPEC adherence to tissue culture cells (6, 9, 49).In an earlier study, it was reported that volunteers infected with EPEC developed antibodies to a 94-kDa outer membrane protein (38). Subsequently, it was determined that this antigen was intimin (26). Interestingly, the lone volunteer in that earlier study who did not have diarrhea after challenge with a wild-type EPEC strain had prechallenge serum antibodies to intimin. This led to the hypothesis that antibodies to intimin are protective against EPEC infection. To test this hypothesis and to test the more general hypothesis that EPEC infection induces protective immunity, two volunteer studies were performed. The first was a heterologous-challenge study performed in 1986, in which volunteers were infected with an O55:H6 EPEC strain and challenged, along with a naive cohort, with an O127:H6 EPEC strain. The second was a homologous-challenge study performed in 1991, in which veterans of a study comparing the virulence of a wild-type EPEC O127:H6 strain with that of an isogenic eae mutant (13) were rechallenged, along with a naive cohort, with the homologous wild-type strain. The availability of new purified antigens allowed us to analyze data from these studies in the context of humoral immune responses.  相似文献   

8.
Human CD1 is a family of nonpolymorphic major histocompatibility complex class I-like molecules capable of presenting mycobacterial lipids, including lipoarabinomannan (LAM), to double-negative (DN; CD4 CD8) as well as CD8+ T cells. Structural similarities between LAM and the capsular polysaccharides of gram-negative bacteria led us to consider the latter as candidate CD1 ligands. We derived two CD1-restricted DN T-cell populations which proliferated to Haemophilus influenzae type b (Hib) antigen. One T-cell population also proliferated to proteinase K-treated Hib antigen, suggesting that it recognized a nonpeptide. Our work thus expands the universe of T cell antigens to include nonpeptides distinct from mycobacterial lipids and suggests a potential role for CD1-restricted T cells in immunity to Hib.Human CD1 is a family of nonpolymorphic major histocompatibility complex (MHC) class I-like molecules (CD1a to CD1d) (4, 7, 15, 18). Although CD1 is encoded outside the MHC, its association with β2-microglobulin relates it structurally to MHC class I. CD1 molecules are expressed on immature thymocytes (19) and antigen-presenting cells (APC) including cytokine-activated macrophages (13), B cells (22, 23), and dermal dendritic cells (9). Recent studies have revealed that CD1 possesses the unique function of presenting nonpeptide antigen (Ag) to T cells (3, 17, 21, 24). A prototypic Ag presented in the context of CD1 is lipoarabinomannan (LAM), a mannose polymer substituted at one end with arabinose and at the other with a phosphatidic acid containing tubulostearic and palmitic acids. De-O-acylation of LAM totally abrogated T-cell responsiveness, suggesting that the lipid moiety was required for Ag recognition (21). Since gram-negative bacteria contain lipoglycans structurally analogous to LAM (2, 11, 14, 20), we sought to isolate CD1-restricted T cells which recognize antigens from Haemophilus influenzae type b (Hib), a representative gram-negative bacterium.  相似文献   

9.
The class I epitope of streptococcal M protein is an epidemiological marker for acute rheumatic fever (ARF)-associated serotypes of group A streptococci and is recognized by anti-M protein monoclonal antibody (MAb) 10B6. Using MAb 10B6, we determined the relationship between the class I epitope of M protein and the α-helical coiled-coil protein myosin. MAb 10B6 reacted by enzyme-linked immunosorbent assay and Western blotting with human cardiac myosin and rabbit skeletal myosin and its heavy meromyosin (HMM) subfragment. Overlapping synthetic peptides of M5 protein were used to identify the region of M5 protein recognized by MAb 10B6. Two C repeat peptides (C2A and C3) containing the amino acid sequence KGLRRDLDASREAK reacted with MAb 10B6. Partial sequence identity, RRDL, was found in the HMM fragment of myosin, which reacted with MAb 10B6. However, not all peptides of M5 protein and myosin containing the RRDL sequence reacted with MAb 10B6. ARF sera and sera from uncomplicated pharyngitis (UNC) reacted with C repeat region peptides of M protein, while acute glomerulonephritis sera were not as reactive. Affinity-purified human antibody to peptide C3 reacted with myosin. The data demonstrate that the class I epitope of M protein is immunologically cross-reactive with myosin and the HMM subfragment, and antibodies to peptide C3 and myosin were present in ARF and UNC sera.Acute rheumatic fever (ARF) is an inflammatory disease that can follow group A streptococcal pharyngitis. The most serious clinical manifestation is rheumatic carditis; however, arthritis, chorea, erythema marginatum, or subcutaneous nodules may be present (40, 41). The pathogenesis of ARF is thought to be mediated by autoimmune mechanisms activated during a streptococcal infection (40). The autoimmune hypothesis is supported by a number of previous observations, including a time interval of at least 3 weeks between the initial streptococcal throat infection and the onset of ARF (40, 41), the identification of heart-reactive immunoglobulin (Ig) and complement deposits in the myocardium of patients with fatal rheumatic carditis (2527, 30), and the elevation of heart-reactive antibodies in the sera of patients with ARF (46). Cardiac myosin has been identified as one of the cardiac antigens recognized by these heart-reactive antistreptococcal autoantibodies (13, 29).Streptococcal M protein, an α-helical coiled-coil protein, structurally and immunologically mimics host tissue antigens, particularly the rod region of myosin (12, 14, 15, 17, 34, 35). Sequence analysis has revealed that streptococcal M proteins contain blocks of internally repeated amino acid sequences referred to as A, B, and C repeat regions (19). The NH2-terminal nonrepeat and A repeat regions contain determinants of type specificity, while epitopes found in the B and more highly conserved C repeat regions may be common to different M serotypes (19). While there are nearly 100 different serological types of group A streptococcal M protein, epidemiological studies indicate that only a limited number of M protein serotypes are associated with ARF outbreaks (6). This finding suggests that certain M protein serotypes may be more rheumatogenic than others. In a previous attempt to classify streptococcal serotypes according to their rheumatogenic capacity, Widdowson identified human antisera directed to a non-type-specific protein moiety of M protein known as M-associated protein (44, 45). However, a more recent classification scheme has been proposed by Bessen and colleagues, in which streptococcal serotypes were grouped based on the expression of a conserved surface-exposed M protein epitope (4). It was demonstrated that the M serotypes associated with the majority of ARF outbreaks possessed an epitope (class I) defined by monoclonal antibody (MAb) probes 10B6 and 10F5. The sequence of the 10B6 and 10F5 epitope was localized to a 15-amino-acid fragment within the C repeat region of the type 6 M protein (23). The remaining serotypes (class II) lack this epitope or the determinant is structurally inaccessible in those strains. There was a close parallel between serotypes designated class I and those serotypes previously classified as M-associated protein I by Widdowson (44, 45). The fact that only certain serotypes within class I streptococci are rheumatogenic implies that these organisms are of a phenotype that is capable of inducing ARF (4). This implication is supported in part by a recent publication in which it was shown that sera of ARF patients contained high levels of antibodies to the class I epitope, suggesting that their disease was the result of an infection by a class I streptococcus (5).Elevated titers of antibodies to many streptococcal antigens (2), including M protein and the self-antigen myosin (1215, 17, 29), are associated with ARF. While antibodies to M protein are crucial for the opsonization of streptococci, they have also been implicated in the immunological cross-reactions between streptococci and host tissue antigens such as cardiac myosin (1215, 17, 29). In earlier studies, many of these cross-reactive epitopes have been localized to the N-terminal, hypervariable A and B repeat regions of the M molecule (12, 15, 17). Myosin-reactive antibodies, found to be elevated in almost all cases of ARF (13), have been shown to bind to human heart tissue and to cross-react with streptococcal M protein (12). Previous studies have demonstrated that immunization of animals with the cell walls of certain strains of group A streptococci resulted in the production of heart-reactive antibodies which could be adsorbed with streptococcal extracts containing streptococcal M protein (16, 24, 28). Human MAbs or myosin affinity-purified antibodies produced from patients with ARF cross-reacted with streptococcal M protein and human cardiac myosin and contributed to the presence of heart-cross-reactive antistreptococcal antibodies in ARF (12, 13, 39). More recent studies have identified cytotoxic antistreptococcal/antimyosin MAbs from rheumatic carditis patients (1). Antimyosin antibody has been shown to deposit in the heart tissues of susceptible mice (31), and a cytotoxic mouse antistreptococcal/antimyosin antibody which binds to the surface of heart cells and to the α-helical coiled coil molecule laminin has been described (10).Identification of myosin cross-reactive epitopes of M protein recognized in ARF has been reported for the amino-terminal half of the molecule (12, 15, 17), and a study by Vashishtha and Fischetti demonstrated antimyosin antibody responses to the C repeat region. However, the reactivity was directed only to denatured myosin (43). More recently, studies of the C repeat or carboxy-terminal region of M protein have shown T-cell cross-reactions with myosin (38). The goal of the present study was to investigate the possibility that the class I epitope in the C repeat region of M protein cross-reacts immunologically with myosin. In this study we show that MAb 10B6, which recognizes the class I epitope of M protein, reacts with cardiac and skeletal myosin. This study also demonstrates that ARF and UNC sera react with a site in the conserved C repeat region of M protein within the class I epitope of rheumatogenic M protein serotypes. The new data show that in addition to previously described N-terminal epitopes, the class I epitope of streptococcal M protein is immunologically cross-reactive with myosin.(Portions of this work were presented at the XIII International Lancefield Society Meeting on Streptococci and Streptococcal Diseases at the Pasteur Institute in Paris, France, in September 1996.)  相似文献   

10.
11.
With the recent introduction of combination therapy, human immunodeficiency virus type 1 (HIV-1) RNA levels in plasma have been dramatically reduced, frequently to below the limit of quantitation (400 copies/ml of plasma) of the AMPLICOR HIV-1 MONITOR Test (Roche Diagnostic Systems). To achieve enhanced sensitivity of the AMPLICOR HIV-1 MONITOR Test, a modified specimen preparation procedure that allows input of RNA from 10-fold more plasma per amplification reaction was developed. This “ultrasensitive” method allows the accurate quantitation of plasma HIV-1 RNA levels as low as 50 copies/ml. A precision study yielded average within-run and between-run coefficients of variation (CV) of 24.8 and 9.6%, respectively. A multicenter reproducibility study demonstrated that the laboratory-to-laboratory reproducibility of this assay is good, with an average CV of 32%. The linear range of this test is between 50 and 50,000 copies/ml of plasma. RNA concentrations measured by the ultrasensitive and standard HIV-1 MONITOR tests exhibited good agreement within the shared linear range of the two methods. The two measurements were within a factor of 2 for 91% of the specimens tested, with the concentration measured by the ultrasensitive method being only slightly lower (median, 22% lower). Preliminary studies suggest that this assay will prove to be useful for predicting the stability of viral suppression in patients whose RNA levels drop below 400 copies/ml in response to highly active antiretroviral therapy.

The measurement of plasma human immunodeficiency virus type 1 (HIV-1) RNA levels has become an important tool for identifying individuals likely to benefit from antiretroviral therapy (12, 15, 16, 21, 26, 29) as well as monitoring patients on therapy (5, 6, 9, 12, 18, 20, 23) and is now regarded as standard medical practice for managing the treatment of HIV-1-infected individuals (14, 22, 25, 28). Recently, the use of combination therapy resulted in rapid and potent antiretroviral and immunological effects which lead to sharp declines in the plasma HIV-1 RNA concentration, frequently to an undetectable level (6, 18, 23). A more sensitive method with a lower detection limit for plasma HIV-1 RNA is therefore required.The AMPLICOR HIV-1 MONITOR Test, an in vitro nucleic acid amplification test for the quantitation of HIV-1 RNA in plasma, is intended to be used as an indicator of disease prognosis in conjunction with other laboratory markers and clinical presentation and as an aid in assessing the efficacy of antiretroviral therapy. The lower limit of quantitation of the AMPLICOR HIV-1 MONITOR Test is 400 RNA copies/ml of plasma (24). We introduce here a modified specimen preparation procedure (17, 27) that enhances the sensitivity of the standard MONITOR test. Increased sensitivity is obtained by increasing the input plasma volume by a factor of 2.5, performing high-speed centrifugation to concentrate the virus particles from the plasma, and reducing the final resuspension volume for the recovered nucleic acid by a factor of 4. If centrifugation yields 100% recovery of virus, this modified, ultrasensitive procedure should result in a 10-fold increase in the analytical sensitivity of the AMPLICOR HIV-1 MONITOR Test. We evaluated the sensitivity, specificity, linear range, reproducibility, and precision of the ultrasensitive test. We also analyzed the correlation between RNA concentrations measured by the ultrasensitive and the standard HIV-1 MONITOR Tests.  相似文献   

12.
Based on the concept of the common mucosal immune system, immunization at various inductive sites can induce an immune response at other, remote mucosal surfaces. The immune responses elicited through rectal and oral routes of antigen delivery were compared with respect to (i) measurement of antibody responses in serum and various external secretions of the vaccinees and (ii) characterization of the nature and homing potentials of circulating antibody-secreting cells (ASC). Specific ASC appeared in the circulation in 4 of 5 volunteers after oral and 9 of 11 volunteers after rectal immunization with Salmonella typhi Ty21a. The kinetics, magnitude, and immunoglobulin isotype distribution of the ASC responses were similar in the two groups. In both groups, almost all ASC (99 or 95% after oral or rectal immunization, respectively) expressed α4β7, the gut homing receptor (HR), whereas l-selectin, the peripheral lymph node HR, was expressed only on 22 or 38% of ASC, respectively. Oral immunization elicited a more pronounced immune response in saliva and vaginal secretion, while rectal immunization was more potent in inducing a response in nasal secretion, rectum, and tears. No major differences were found in the abilities of the two immunization routes to induce a response in serum or intestinal secretion. Thus, the rectal antigen delivery should be considered as an alternative to the oral immunization route. The different immune response profiles found in various secretions after oral versus rectal antigen administration provide evidence for a compartmentalization within the common mucosal immune system in humans.

Mucosal delivery of antigens is one of the main goals of current vaccine development. Mucosal immunization has several advantages over the conventional parenteral route: it is safer, less expensive, and easier to carry out in developing countries, and the antigen can be introduced to the body through the same routes as in a natural infection. It seems appealing to administer antigens through the gastrointestinal route, as the intestine contains a large accumulation of lymphoid tissues with lymphoepithelial structures involved in the induction of mucosal immune responses (4). Accordingly, the oral route of antigen delivery is the most common and most frequently explored among the mucosal immunization routes. However, oral antigen delivery poses some problems, such as the denaturation of stomach acid and digestion of antigens due to long exposure to gastrointestinal proteolytic enzymes. Alternative gastrointestinal routes include rectal antigen delivery, which so far has not been extensively explored in humans (9, 14, 29, 35, 36). However, the rectal mucosa is known to be rich in lymphoepithelial structures analogous to Peyer’s patches (37).The different mucosal surfaces in the body are believed to be interconnected via circulating lymphocytes, as recognized by the concept of the common mucosal immune system (CMIS) (32): immunization at one mucosal inductive site (e.g., intestinal Peyer’s patches) can lead to an immune response at another, anatomically remote mucosal effector site (e.g., saliva or genital tract secretions). Consistent with this concept, mucosal immunization is known to be followed by a transient appearance of antibody-secreting cells (ASC) in the peripheral blood (11, 22), and antibody responses have been found on mucosal surfaces distant from the original site of mucosal immunization (7, 16, 32, 33). However, recent data suggest that some degree of compartmentalization may exist within the CMIS (18, 34); therefore, the general routes of lymphocyte homing from each mucosal site need to be explored.Recently, it has become possible to investigate the homing potentials of circulating ASC by examining their expression of homing receptors (HR) (2426, 40, 41). Homing of lymphocytes into tissues is currently understood as a multistep process in which a cascade of events described as initial contact and rolling, activation, arrest, and finally diapedesis follow each other (5, 38, 45, 46). Many different molecules participate in the process, yet the organ specificity is regarded to be contributed by a small selection of them. HR are cell surface receptors that specifically bind to their ligands, addressins on the endothelial cells of the target tissues: this binding is a prerequisite for the penetration of the cell through the endothelial cell wall. The organ specificity of lymphocyte homing is based on a differential expression of the addressins in the target tissues. Examination of HR expression on lymphocytes reveals the homing potentials of the cells. Among the HR contributing to the organ specificity of the homing process are α4β7 integrin (guiding cells to the gut mucosa) (3, 13, 17), l-selectin (guiding cells to the peripheral lymph node) (6, 19, 20, 28), and cutaneous lymphocyte antigen (guiding cells to the skin) (2, 39). It has been suggested that the respiratory tract may have its own, still unidentified HR (1).α4β7 integrin is known as a gut-specific HR, yet the homing mechanisms of cells to other mucosal surfaces are still obscure: this information is currently obtained by analyzing antibody responses in various secretions. To characterize the human immune responses elicited by oral versus rectal antigen administration in different compartments of the immune system, we studied the ASC response with special attention to the homing potentials of the cells and the induction of immune response in serum and various external secretions.  相似文献   

13.
The in vivo role of endogenous interleukin 12 (IL-12) in modulating intrapulmonary growth of Legionella pneumophila was assessed by using a murine model of replicative L. pneumophila lung infection. Intratracheal inoculation of A/J mice with virulent bacteria (106 L. pneumophila cells per mouse) resulted in induction of IL-12, which preceded clearance of the bacteria from the lung. Inhibition of endogenous IL-12 activity, via administration of IL-12 neutralizing antiserum, resulted in enhanced intrapulmonary growth of the bacteria within 5 days postinfection (compared to untreated L. pneumophila-infected mice). Because IL-12 has previously been shown to modulate the expression of cytokines, including gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and IL-10, which regulate L. pneumophila growth, immunomodulatory effects of endogenous IL-12 on intrapulmonary levels of these cytokines during replicative L. pneumophila lung infection were subsequently assessed. Results of these experiments demonstrated that TNF-α activity was significantly lower, while protein levels of IFN-γ and IL-10 in the lung were similar, in L. pneumophila-infected mice administered IL-12 antiserum, compared to similarly infected untreated mice. Together, these results demonstrate that IL-12 is critical for resolution of replicative L. pneumophila lung infection and suggest that regulation of intrapulmonary growth of L. pneumophila by endogenous IL-12 is mediated, at least in part, by TNF-α.

Legionella pneumophila, the causative agent of Legionnaires’ disease, is an intracellular pathogen of mononuclear phagocytic cells (MPCs) (37, 43, 45). Pulmonary infection usually develops following inhalation of L. pneumophila-contaminated water aerosols or microaspiration of contaminated water sources (9). Following inhalation, the bacteria invade and replicate in host MPCs, primarily in alveolar MPCs (34, 36, 37, 43, 45). Intracellular growth of L. pneumophila results in eventual lysis of infected MPCs, the release of bacterial progeny, and reinfection of additional pulmonary cells (34, 36). Severe lung damage, mediated by tissue-destructive substances likely derived from both damaged host cells and the bacteria, ensues (20, 21).Previous studies have demonstrated that resistance to primary replicative L. pneumophila lung infection is dependent on the induction of cellular immunity and is mediated in part by cytokines including gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) (8, 12, 14, 15, 23, 27, 28, 35, 57). Growth of L. pneumophila within permissive MPCs requires iron. IFN-γ limits MPC iron, thereby converting the MPC intracellular environment from one that is permissive to one that is nonpermissive for L. pneumophila replication (14, 15). IFN-γ in combination with other cytokines including TNF-α facilitates elimination of L. pneumophila from infected MPCs, likely through the induction of effector molecules including nitric oxide (12). In contrast, other cytokines including interleukin 10 (IL-10) facilitate growth of L. pneumophila in permissive MPCs, due in part to IL-10-mediated inhibition of TNF-α secretion and IFN-γ-mediated MPC activation (46).IL-12 is a recently described cytokine with pleiotropic effects on T cells and natural killer (NK) cells which include (i) regulation of expression of cytokines including IFN-γ, TNF-α, and IL-10 by T cells and/or NK cells, (ii) induction of T-cell and/or NK cell proliferation and/or differentiation, and (iii) enhancement of NK cell and T-cell cytotoxic activity (4, 5, 19, 32, 33, 39, 44, 47, 48, 50, 56). While systemic administration of exogenous IL-12 has been demonstrated to increase host resistance to several intracellular pathogens, including Leishmania major, Toxoplasma gondii, Listeria monocytogenes, Mycobacterium tuberculosis, Mycobacterium avium, and Plasmodium chabaudi, in mice (26, 29, 33, 40, 51, 52, 55), the role of endogenous IL-12 in innate immunity to intracellular pathogens including L. pneumophila has not been thoroughly investigated. We have recently developed a model of replicative L. pneumophila lung infection in A/J mice inoculated intratracheally with virulent bacteria and have used this model system to identify immune responses which mediate host resistance to legionellosis (1012). Using this murine model of Legionnaires’ disease, we assessed the biologic relevance and immunomodulatory role of endogenous IL-12 in innate immunity to replicative L. pneumophila lung infection.  相似文献   

14.
The attenuated S. typhimurium SL3261 (aroA) strain causes mild infections in BALB/c mice. We were able to exacerbate the disease by administering anti-interleukin-12 (IL-12) antibodies, resulting in bacterial counts in the spleens and livers of anti-IL-12-treated mice that were 10- to 100-fold higher than the ones normally observed in premortem mice; yet the animals showed only mild signs of illness. Nevertheless, they eventually died of a slow, progressive disease. Mice infected with salmonellae become hypersusceptible to endotoxin. We found that IL-12 neutralization prevented the death of infected mice following subcutaneous injection of lipopolysaccharide. Granulomatous lesions developed in the spleens and livers of control animals, as opposed to a widespread infiltration of mononuclear cells seen in the organs of anti-IL-12-treated mice. In the latter (heavily infected), salmonellae were seen within mononuclear cells, indicating an impairment of the bactericidal or bacteriostatic ability of the phagocytes in the absence of biologically active IL-12. Gamma interferon (IFN-γ) levels were reduced in the sera and tissue homogenates from anti-IL-12-treated mice compared to those in control animals. Furthermore, fluorescence-activated cell sorter analysis on spleen cells showed that IL-12 neutralization impaired the upregulation of I-Ad/I-Ed antigens on macrophages from infected mice. Inducible nitric oxide synthase and IFN-γ mRNA production was down-regulated in anti-IL-12-treated mice, which also showed an increased production of IL-10 mRNA and a decrease in nitric oxide synthase activity in the tissues. Administration of recombinant IFN-γ to anti-IL-12-treated mice was able to restore host resistance, granuloma formation, and expression of major histocompatibility complex class II antigens in F4/80+ and CD11b+ spleen cells.Salmonella infections still pose a serious health hazard worldwide, affecting both humans and animals. Salmonella typhi, the agent of human typhoid fever, is not pathogenic for common laboratory animals. Therefore, natural resistance and acquired immunity to Salmonella are studied mainly in the mouse model by using host-adapted salmonellae which cause systemic infections believed to mimic the human disease.In mice, early bacterial growth in the reticuloendothelial system (RES) is controlled by the innate resistance Nramp (Ity) gene, which is expressed in macrophages (22). In lethal infections, salmonellae rapidly reach large numbers in the tissues and death occurs presumably by endotoxin poisoning when bacterial counts reach levels of ca. 108 CFU per organ (30). In sublethal infections, survival requires a host response that suppresses the exponential growth of the organisms in the RES towards the end of the first week, resulting in a plateau phase (17, 25). The establishment of the plateau phase does not require functional T cells. In fact, nude (T-cell-deficient) mice and mice depleted of T cells by administration of anti-CD4 and anti-CD8 antibodies can still suppress Salmonella growth in infected tissues (17). A bone marrow-dependent influx of radiation-sensitive cells is required for the plateau phase and for the formation of granulomas rich in mononuclear cells (17, 32). Most of the salmonellae in the spleens and livers of the infected animals are localized within the phagocytes present in the focal lesions (38). Tumor necrosis factor alpha (TNF-α), gamma interferon (IFN-γ), and nitric oxide (NO) derivatives appear to be required for the suppression of salmonella growth in the RES (27, 28, 32, 36, 37, 48). TNF-α is needed for the recruitment of mononuclear cells in the tissues and for granuloma formation (32); IFN-γ can activate macrophages to kill salmonellae in vitro (20).The establishment of the plateau phase coincides with the development of hypersusceptibility to the toxic and lethal effects of bacterial lipopolysaccharide (LPS) (29, 33). We have previously shown that mice immunized with a live attenuated aromatic-dependent Salmonella vaccine strain show transient hypersusceptibility to LPS, which can be prevented by treatment with anti-TNF-α antibodies (29). The role of other cytokines in this phenomenon is not known.Interleukin-12 (IL-12) is a 70-kDa heterodimeric cytokine produced by macrophages, B cells, polymorphonuclear leukocytes, and dendritic cells in response to a variety of stimuli including products of bacterial origin (5, 10). IL-12 mediates resistance to intracellular organisms including Listeria, Toxoplasma, Candida, Leishmania, Mycobacterium tuberculosis, and Brucella abortus (8, 13, 18, 23, 39, 46, 50). IL-12 is generally believed to mediate host resistance by inducing IFN-γ production by NK and T cells as well as by contributing to the establishment of protective Th1 antigen-specific responses (5, 6, 9, 10, 12, 13, 24, 34, 39, 43, 47).Evidence for IL-12 induction in salmonellosis has been provided. IL-12 and IL-12-specific mRNA have been detected in vivo and in vitro in response to Salmonella. Elicited peritoneal mouse macrophages stimulated with Salmonella dublin express elevated levels of IL-12 p40-specific mRNA (4, 7). Oral infection with virulent or live attenuated S. dublin induces early (6 and 20 h postinfection) production of IL-12-specific mRNA in Peyer’s patches and mesenteric lymph nodes (3); biologically active IL-12 in lymph node homogenates has been documented 36 h after S. dublin infection (21). We and others previously reported that in vivo IL-12 neutralization reduces the ability of the host to suppress the growth of virulent salmonellae in the tissues and impairs IFN-γ production (21, 31). A recent report indicates that a mutation in the IL-12 receptors renders humans more susceptible to salmonellosis (11). Nevertheless, the mechanisms by which IL-12 mediates host resistance to Salmonella are still unclear.In the present study, we attempted to clarify the mechanisms by which IL-12 contributes to host resistance in mice infected with Salmonella. We investigated the role of IL-12 in survival, granuloma formation, and macrophage activation in mice infected with an attenuated Salmonella strain that normally causes very mild infections in BALB/c mice. We also investigated the involvement of IL-12 in the toxic and lethal effects of high bacterial loads in the tissues as well as in the expression of hypersusceptibility to LPS normally seen in mice infected with salmonellae. We also wished to clarify the involvement of IFN-γ in IL-12-mediated resistance to salmonellosis.  相似文献   

15.
16.
17.
Escherichia coli isolates of different adherence phenotypes produced different amounts of d-lactate. Alterations of culture conditions did not influence the amount of d-lactate produced. The observed pH decreases in tissue culture medium corresponded with increases in d-lactate concentration. Very little [14C]succinic acid was incorporated into cells during the in vitro incubation of adherent and nonadherent E. coli with HeLa cells, but the amounts of tracer removed from the culture medium by adherent and nonadherent strains differed. The results are further evidence of a difference in the metabolic behavior of adherent and nonadherent E. coli.One of the virulence associated properties of enteropathogenic Escherichia coli (5, 13, 14) is the ability to adhere to small intestinal mucosa (3, 11, 12, 21, 24, 26, 27). Although this adherence is an important event in the induction of diarrhea, the mechanism by which adherent E. coli mediates pathogenicity remains uncertain (1, 2, 7, 18, 26, 27).Several studies have shown that the in vitro adherence of E. coli to HEp-2 or HeLa cells in tissue culture can be used as a marker of enteroadherence (4, 6, 8, 9, 15, 16, 19, 22, 23, 28, 29). We used the HeLa assay (20) to detect this virulence characteristic in E. coli isolates from infants with acute diarrhea and, during the 3-h assay, observed E. coli-induced changes in the pH of the tissue culture medium (17). The pH changes induced by organisms with different adherence phenotypes differed. Since the characteristic end products of E. coli fermentation include lactic acid, succinic acid, and acetic acid, the pH changes could be explained by differences in the production of organic acids. Other plausible explanations are differences in the removal of organic acids from the medium and interactions between bacteria and HeLa cells during adherence.This paper describes two sets of experiments, one based on the production of lactic acid and the other on the removal of succinic acid from the medium. The objectives were to determine (i) whether there is a metabolic difference between localized, diffuse, and nonadherent isolates in the amount of lactate produced or succinate removed from the incubation medium, (ii) whether E. coli changes from aerobic to anaerobic metabolism during incubation periods of up to 5 h under different culture conditions, (iii) whether an increase in lactate production or succinate removal coincides with the drop in pH previously observed, and (iv) whether the pH changes can be attributed to differences in bacterial growth rates between isolates with different in vitro adherence patterns and nonadherent strains.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号