首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The purpose of this study was to compare thalamic size in adolescent patients with either schizophrenia or bipolar disorder and healthy controls. T2-weighted axial magnetic resonance images were used to manually define the area of the thalamus for 20 schizophrenia patients, 15 bipolar patients and 16 normal control subjects, all of whom were adolescents. Two orthogonal planned contrasts were tested: Contrast 1, patients with schizophrenia vs. patients with bipolar disorder; and Contrast 2, both patient groups taken as a single group compared to controls. Contrast 1 was not statistically significant for right or left thalamic area. Contrast 2 was statistically significant and indicated reductions in thalamic area in the patients as compared to controls. The same pattern of results emerged after adjustment for total brain volume. Our results indicate that thalamic abnormalities reported in adult schizophrenic and bipolar patients are also observed in adolescent patients. Our findings also add to the evidence implicating the thalamus in the pathophysiology of schizophrenia and bipolar disorder.  相似文献   

2.
Thalamic abnormalities have been hypothesized to explain much of the psychopathology in schizophrenia, however, quantitative magnetic resonance imaging (MRI) studies have yielded discrepant results as to whether there are thalamic volume alterations. The current study utilized high resolution MRI and an axial voluming protocol to determine if there was a significant reduction in the volume of the thalamus in patients with schizophrenia. Quantitative analysis was performed on magnetic resonance images of the brain in 41 male medicated schizophrenic patients and 39 male normal control subjects similar in age, education and handedness. There were no group differences in thalamic volumes between controls and patients with schizophrenia, even after adjusting for intracranial volume, total brain tissue volume, and gray matter volume. There were also no significant correlations between thalamic volume and either current neuroleptic dose or illness duration. However, there was a significant right greater than left thalamic volume asymmetry in schizophrenics and controls, and the degree of thalamic volume asymmetry was similar in both groups. The failure to detect any significant difference in thalamic volumes may be due to the heterogeneity of the schizophrenic population and as yet undetermined chronic effects of neuroleptic medication on the thalamus. However, another reasonable explanation for the study findings is that quantitative MRI voluming of the entire thalamus may not be sensitive enough to detect more subtle regional neuropathology within the thalamus.  相似文献   

3.
BACKGROUND: Local alterations in morphological parameters are poorly characterized in several brain regions widely implicated in schizophrenia neuropathology. METHODS: Surface-based anatomical modeling was applied to magnetic resonance data to obtain three-dimensional (3D) average anatomical maps and measures of location, shape, asymmetry, and volume for the lateral ventricles, hippocampus, amygdala, and superior temporal gyrus in schizophrenic (n = 25; 15 male) and normal subjects (n = 28; 15 male) matched for demographic variables. For all regions, intra-group variability was visualized and group differences assessed statistically to discriminate local alterations in anatomy across sex and diagnosis. RESULTS: Posterior hippocampal volumes, lengths, and widths were reduced in patients. The right amygdala showed volume increases in schizophrenia patients versus controls. Ventricular enlargements, pronounced in the left hemisphere, occurred in the superior and lateral dimensions in patients, and these effects interacted with gender. Superior horn anterior extremes, inferior horn volumes, and hippocampal asymmetries exhibited gender effects. Significant group differences were absent in superior temporal gyrus parameters. Finally, regional variability profiles differed across groups. CONCLUSIONS: Clear morphometric differences of the lateral ventricles, hippocampus, and amygdala indicate regional displacements and shape distortions in several functional systems in schizophrenia. Alterations in these structures as mapped in 3D may provide the foundation for establishing brain abnormalities not previously defined at such a local level.  相似文献   

4.
Kang DH  Kim SH  Kim CW  Choi JS  Jang JH  Jung MH  Lee JM  Kim SI  Kwon JS 《Neuroreport》2008,19(6):609-613
The authors performed a three-dimensional shape deformation analysis to clarify the various patterns of specific thalamic nuclei abnormality using three age-matched and sex-matched groups of 22 patients with obsessive-compulsive disorder (OCD), 22 patients with schizophrenia and 22 control participants. Compared with the healthy volunteers, the anterior, lateral outward surface deformities of the thalamus were significant in OCD patients, whereas the posterior, medial outward deformities of the thalamus were prominent in schizophrenia patients. In terms of thalamic asymmetry, both OCD and schizophrenia patients exhibited the loss of a leftward pattern of asymmetry on the posterior, medial surface of the thalamus. Different patterns of shape abnormality of specific thalamic nuclei may be related to the different phenomenology of OCD and schizophrenia.  相似文献   

5.
CONTEXT: Abnormalities of the thalamus are thought to be central to the pathophysiology of schizophrenia. These abnormalities include altered structure and shape of the thalamus itself and possibly changes to the adhesio interthalamica (or massa intermedia), the gray matter bridge connecting the 2 thalamic lobes. However, it is not clear to what extent these abnormalities are determined by the genetic liability for schizophrenia. OBJECTIVE: To investigate thalamic volume and the presence of the adhesio interthalamica in monozygotic (MZ) twins concordant or discordant for schizophrenia. DESIGN: Study of MZ twins. SETTING: Patients were drawn from inpatient and outpatient clinics. Twin controls were recruited from a volunteer twin register and through media advertisements. PARTICIPANTS: A total of 123 twins participated: 19 MZ twin pairs concordant for schizophrenia, 15 MZ schizophrenic twins and 16 MZ nonschizophrenic twins drawn from 17 pairs discordant for schizophrenia, and 27 MZ twin pairs without schizophrenia. Groups were matched for age, sex, handedness, level of education, parental socioeconomic status, and ethnicity. MAIN OUTCOME MEASURES: The volume of the thalamus (including right and left hemispheres) was measured (in cubic centimeters) and the presence of the adhesio interthalamica was ascertained from structural magnetic resonance images. RESULTS: Concordant twin pairs displayed significantly reduced thalamic volume compared with control twins, even when covarying for effects of whole-brain volume, age, and sex. There was a significant linear decrease in thalamic volume (control greater than discordant nonschizophrenic greater than discordant schizophrenic greater than concordant). In all groups, right thalamus was larger than left thalamus. There was no difference across groups in the frequency of the adhesio interthalamica. CONCLUSIONS: Volumetric thalamic abnormalities in schizophrenia occur in twin pairs concordant for schizophrenia. These abnormalities may mark the substantial genetic contribution to the illness seen in concordant twin pairs, whereas the adhesio interthalamica is unlikely to be affected in schizophrenia.  相似文献   

6.
BACKGROUND: The importance of neuronal interactions in development, the cortical dependence of many thalamic nuclei, and the phenomenon of transsynaptic degeneration suggest possible abnormalities in thalamic nuclei with connections to other brain regions implicated in schizophrenia. Because frontal and temporal lobe volumes are diminished in schizophrenia, volume loss could characterize their primary thalamic relay nuclei (mediodorsal nucleus [MDN] and pulvinar). METHODS: Tracers delineated the thalamus, MDN, and pulvinar on contiguous 1.2-mm magnetic resonance images in 12 schizophrenic patients, 12 with schizotypal personality disorder (SPD), and 12 normal control subjects. The MDN and pulvinar were rendered visible by means of a Sobel intensity-gradient filter. RESULTS: Pixel overlap for delineation of all structures by independent tracers was at least 80%; intraclass correlations were r = 0.78 for MDN and r = 0.83 for pulvinar. Pulvinar volume was smaller in schizophrenic (1.22 +/- 0.24 cm(3)) and SPD (1.20 +/- 0.23 cm(3)) patients than controls (1.37 +/- 0.25 cm(3)). Differences for MDN were not statistically significant; however, when expressed as percentage of total brain volume, pulvinar and MDN together were reduced in SPD (0.14%) and schizophrenic (0.15%) patients vs controls (0.16%). Reductions were more prominent in the left hemisphere, with MDN reduced only in the schizophrenic group, and pulvinar in both patient groups. Total thalamic volume did not differ among the 3 groups. CONCLUSIONS: Measurement of MDN and pulvinar in magnetic resonance images is feasible and reproducible. Schizophrenic and SPD patients have volume reduction in the pulvinar, but only schizophrenic patients show reduction relative to brain volume in MDN.  相似文献   

7.
Some cognitive disturbances accompanying schizophrenia may be due to abnormalities in the thalamus and components of the limbic system. The fornix is an important white-matter relay pathway connecting these structures and is likely to be affected in schizophrenia as well.Magnetic resonance images of the fornix were analyzed in 15 schizophrenic patients and 15 matched comparison group subjects. Fornix volume was compared between the two groups and was also correlated with the volumes of other neuroanatomical structures, as well as with illness presentation, clinical status, and cognitive/psychological measures.There was no significant difference in fornix volume between the two groups. Of note, fornix volume correlated significantly with the volumes of the hippocampus, parahippocampus, and the superior temporal gyrus in the schizophrenic subjects, but not in the controls. Moreover, the correlation between fornix and parahippocampal gyrus volumes differed significantly between the two groups. No association was found between fornix volume and illness presentation or between fornix and cognitive/clinical measures.Results suggest that there are no marked changes in fornix volume in schizophrenia by MRI. The fornix, however, may be part of a network of structures affected in schizophrenia, as indicated by correlated volumetric changes.  相似文献   

8.
BACKGROUND: A number of meta-analytic reviews of structural brain imaging studies have shown that multiple subtle brain abnormalities are consistently found in schizophrenia. However, quantitative reviews till now published have included mainly studies performed on chronic schizophrenic patients but have failed to provide clear information on specific, possibly different, findings in first-episode schizophrenia. METHODS: We performed a systematic search for MRI studies that reported quantitative measurements of volumes of brain regions in first-episode schizophrenic patients and in healthy controls. Twelve meta-analyses were performed for 6 cerebral regions. RESULTS: Twenty-one studies were identified as suitable for analysis. Significant overall effect sizes were demonstrated for lateral and third ventricular volume increase, and for volume reduction of whole brain and hippocampus, but not for temporal lobe, amygdala and total intracranial volumes. CONCLUSIONS: The available literature data strongly indicate that some brain abnormalities are already present in first-episode schizophrenic patients. However, unlike the results of published meta-analyses conducted primarily on samples of chronic schizophrenic patients, the present study did not confirm a significant reduction of temporal lobe or amygdala volumes in first-episode schizophrenia. These findings support the hypothesis of different patterns of involvement of various cerebral areas over the time course of schizophrenia.  相似文献   

9.
Affective deficits are one common denominator of schizophrenia (SZ), bipolar disorder (BD) and obsessive compulsive disorder (OCD) with the amygdala indicated as one of the major structures involved in emotion regulation. Previous findings of differences in amygdala volume between healthy controls and patients with SZ, BD or OCD diverge with respect to the affected hemisphere, size and direction of the effect. Variability in the CACNA1C gene has been linked to BD, SZ as well as structural and functional variation in the amygdala in healthy people and patients with BD. We were interested to investigate whether amygdala volumes differ between hemispheres, diagnostic or genotype groups, and whether any interactive effects exist. We combined genotyping of SNP rs1006737 in CACNA1C with structural MRI measurements of relative gray matter (GM) amygdala volume in patients with SZ, BD or OCD as well as healthy controls (N Total = 72). The CACNA1C genotype showed a significant effect on relative GM amygdala volume in patients with SZ. There was a significant left versus right relative GM amygdala volume decrease in patients with SZ or BD. The effects of hemisphere and diagnosis (controls vs. patients with SZ) on relative GM amygdala volume were genotype specific. Our data suggest that the CACNA1C genotype may account for some heterogeneity in the effects of hemisphere and diagnosis on amygdala volume when comparing patients with SZ and controls and point to disturbed Ca2+-signaling as a plausible mechanism contributing to the pathology in patients with SZ.  相似文献   

10.
Diminished hippocampal volume occurs in the anterior segment of some schizophrenic patients, and in the posterior segment in others. The significance of hippocampal pathology in general and these segmental differences in specific is not known. Several lines of evidence suggest anterior hippocampal pathology underlies the life-threatening hyponatremia seen in a subgroup of patients with schizophrenia; therefore our goal was to determine if this region was preferentially diminished in hyponatremic patients. We studied seven polydipsic hyponatremic, ten polydipsic normonatremic, and nine nonpolydipsic normonatremic schizophrenic inpatients, as well as 12 healthy controls. All underwent structural scanning on a high resolution (3.0 T) magnetic resonance imaging (MRI) scanner. Hippocampal formation, amygdala, and third ventricle volumes were manually traced in each subject. The hippocampus was divided at the posterior extent of the uncus, and all structural volumes were corrected for whole brain volume and other significant recognized factors (i.e., age, gender, height, parental education). Despite being overhydrated, anterior hippocampal formation volume was diminished in those with polydipsia and hyponatremia relative to each of the other three groups. Third ventricle volume was larger in this group than in healthy controls but similar to the two patient groups. Posterior hippocampal and amygdala volumes did not differ between groups. Other potential confounds (e.g., water imbalance) either had no effect or accentuated these differences. We conclude the anterior hippocampal formation is smaller in hyponatremic schizophrenic patients, thereby linking an important and objective clinical feature of schizophrenia to a neural pathway that can be investigated in animal models. The findings strengthen the hypothesis that anterior hippocampal formation pathology disrupts functional connectivity with other limbic structures in schizophrenia.  相似文献   

11.
The superior temporal gyrus (STG) may be involved in the pathophysiology of obsessive-compulsive disorder (OCD). Moreover, the anterior STG has rich interconnections with the orbitofrontal cortex and the amygdala, and plays a role in visuospatial processing, which is impaired in patients with OCD. This study was designed to examine the morphological abnormalities of the anterior STG and their relationships with visuospatial function and clinical symptom in patients with OCD. We measured gray matter volumes of the anterior STG [rostral STG and planum polare (PP)] by three-dimensional (3D) magnetic resonance imaging in age- and sex-matched groups, which consisted of 22 patients with OCD and 22 normal volunteers. Visuospatial function and clinical symptom were assessed using the Rey-Osterrieth Complex Figure (ROCF) test, the Yale-Brown Obsessive Compulsive Scale, and the Maudsley Obsessive Compulsive Inventory. We found significant volume reductions in bilateral PPs, but there were no significant correlations between brain volumes and the ROCF copy score, immediate or delayed recall score, and clinical symptom in patients with OCD. These results suggest that volume reduction of the anterior STG, especially the PP, may be related to the pathophysiology of OCD, but further research may be needed to explore a relationship of the PP volume change with cognitive impairment observed in patients with OCD.  相似文献   

12.
The cognitive significance of P300 abnormalities in schizophrenia and obsessive-compulsive disorder (OCD) was investigated. P300 was measured by an auditory oddball paradigm, in which a series of standard tones (1000 Hz) and target tones (1500 Hz) were presented. The subject's task was to count the number of the presented target tones. Cognitive functions were evaluated by neuropsychological tests, which were chosen to be sensitive to frontal and temporal dysfunction. Twenty-two schizophrenic patients, 19 OCD patients and 21 healthy controls participated. Event-related potentials measured at 15 electrode sites, which consisted of five levels on the left-right dimension and three levels on the anterior-posterior dimension, were included in the statistical analysis. P300 amplitudes on all 15 electrode sites were significantly smaller in schizophrenic and OCD patients than in the controls. Schizophrenic patients performed poorly on almost all neuropsychological tests, while OCD patients showed impaired performance on the Rey-Osterrieth Complex Figure Test and on a controlled oral word association test. In schizophrenic patients, P300 amplitude was associated with performance on verbal memory and learning by the Luria-Nebraska Neuropsychological Battery, while for OCD patients, P300 amplitude was related to the Trail Making Test, Part B response time. These results indicate that schizophrenic patients have generalized cognitive impairments, which are substrated by a wide range of cortical dysfunctions. The major cognitive deficits observed in OCD patients were impairments of controlled attention and self-guided, flexible behavior, which are mediated by the fronto-striatal system. The neurophysiological mechanisms underlying P300 abnormalities observed in schizophrenic and OCD patients are discussed.  相似文献   

13.
BACKGROUND: Hippocampal atrophy has been described in postmortem and magnetic resonance imaging studies of schizophrenia. The specificity of this finding to schizophrenia remains to be determined. The neuropathology of bipolar disorder is understudied, and temporal lobe structures have only recently been evaluated. METHODS: Twenty-four bipolar, 20 schizophrenic, and 18 normal comparison subjects were evaluated using magnetic resonance brain imaging. Image data were acquired using a three-dimensional spoiled GRASS sequence, and brain images were reformatted in three planes. Temporal lobe structures including the amygdala, hippocampus, parahippocampus, and total temporal lobe were measured to obtain volumes for each structure in the three subject groups. Severity of symptoms in both patient groups was assessed at the time the magnetic resonance images were obtained. RESULTS: Hippocampal volumes were significantly smaller in the schizophrenic group than in both bipolar and normal comparison subjects. Further, amygdala volumes were significantly larger in the bipolar group than in both schizophrenic and normal comparison subjects. CONCLUSIONS: The results suggest differences in affected limbic structures in patients with schizophrenia and bipolar disorder. These specific neuroanatomic abnormalities may shed light on the underlying pathophysiology and presentation of the two disorders.  相似文献   

14.
OBJECTIVE: Structural neuroimaging studies have suggested an association between schizophrenia and abnormalities in brain morphology such as ventricular enlargement and differences in gray matter distribution. Less consistently reported are findings of regional abnormalities such as selective differences in thalamic volume. The authors applied an unbiased technique to test for differences in cerebral morphometry between patients with schizophrenia and matched comparison subjects. METHOD: T(1)-weighted images from 20 schizophrenic patients and matched comparison subjects were processed by using optimized automated voxel-based morphometry within multiple linear regression analyses. RESULTS: Global differences in gray matter volume were seen between the schizophrenic and comparison subjects, with selective regional gray matter differences noted in the mediodorsal thalamus and across cortical regions, including the ventral and medial prefrontal cortices. Within the schizophrenic subjects, a relationship was observed between gray matter volume loss in the medial prefrontal cortex and a positive family history of schizophrenia. There was no significant difference between patients and comparison subjects in rates of proportional gray matter reduction with age. CONCLUSIONS: These observations confirm an association between thalamocortical morphometric abnormalities and schizophrenia, consistent with theoretical models of primary pathoetiological dysfunction in filtering, integration, and information transfer processes in patients with schizophrenia.  相似文献   

15.
CONTEXT: Magnetic resonance imaging studies have identified hippocampal volume reductions in schizophrenia and amygdala volume enlargements in bipolar disorder, suggesting different medial temporal lobe abnormalities in these conditions. These studies have been limited by small samples and the absence of patients early in the course of illness. OBJECTIVE: To investigate hippocampal and amygdala volumes in a large sample of patients with chronic schizophrenia, patients with first-episode psychosis, and patients at ultra-high risk for psychosis compared with control subjects. DESIGN: Cross-sectional comparison between patient groups and controls. SETTING: Individuals with chronic schizophrenia were recruited from a mental health rehabilitation service, and individuals with first-episode psychosis and ultra-high risk were recruited from the ORYGEN Youth Health Service. Control subjects were recruited from the community. PARTICIPANTS: The study population of 473 individuals included 89 with chronic schizophrenia, 162 with first-episode psychosis, 135 at ultra-high risk for psychosis (of whom 39 subsequently developed a psychotic illness), and 87 controls. MAIN OUTCOME MEASURES: Hippocampal, amygdala, whole-brain, and intracranial volumes were estimated on high-resolution magnetic resonance images and compared across groups, including first-episode subgroups. We used 1- and 2-way analysis of variance designs to compare hippocampal and amygdala volumes across groups, correcting for intracranial volume and covarying for age and sex. We investigated the effects of medication and illness duration on structural volumes. RESULTS: Patients with chronic schizophrenia displayed bilateral hippocampal volume reduction. Patients with first-episode schizophrenia but not schizophreniform psychosis displayed left hippocampal volume reduction. The remaining first-episode subgroups had normal hippocampal volumes compared with controls. Amygdala volume enlargement was identified only in first-episode patients with nonschizophrenic psychoses. Patients at ultra-high risk for psychosis had normal baseline hippocampal and amygdala volumes whether or not they subsequently developed a psychotic illness. Structural volumes did not differ between patients taking atypical vs typical antipsychotic medications, and they remained unchanged when patients treated with lithium were excluded from the analysis. CONCLUSIONS: Medial temporal structural changes are not seen until after the onset of a psychotic illness, and the pattern of structural change differs according to the type of psychosis. These findings have important implications for future neurobiological studies of psychotic disorders and emphasize the importance of longitudinal studies examining patients before and after the onset of a psychotic illness.  相似文献   

16.
The objective of this study was to compare two groups of patients with obsessive-compulsive disorder (OCD) with and without comorbid schizophrenia in terms of demographic and clinical features. A total of 65 patients diagnosed with OCD were divided into two groups: one comprising 20 patients with schizophrenia and the other comprising 45 patients without schizophrenia. The groups were then compared with respect to demographic variables and scores obtained on various scales. The two groups were similar for the frequency and severity of obsessive-compulsive symptoms. Insight into obsessive-compulsive symptoms was significantly better in the group with schizophrenia. Our findings suggest that the characteristics of obsessive-compulsive symptoms in schizophrenic OCD patients are similar to those in nonschizophrenic OCD patients.  相似文献   

17.
Previous magnetic resonance imaging (MRI) studies have reported various subtle brain abnormalities in schizophrenic patients, including temporal lobe abnormalities, which are of particular interest given the role of this brain region in auditory and language processing, and the characteristic deficits in these processes in schizophrenia. Subjects in this study were 16 male patients diagnosed with chronic schizophrenia and 15 healthy male comparison subjects. These patients were characterized by negative symptoms. High spatial resolution coronal MRI 1.5-mm-thick slices were used to measure the gray matter volume of the superior temporal gyrus, anterior and posterior amygdala/hippocampal complex, and parahippocampal gyrus. Patients, relative to normal comparison subjects, evinced a reduction of gray matter volume in bilateral superior temporal gyri and anterior amygdala/hippocampal complex. The reduction in gray matter of the superior temporal gyrus in patients with schizophrenia is consistent with previous findings, and is noteworthy in that it was found in this group of patients with predominantly negative symptoms. The reduction in the anterior amygdala/hippocampal complex was an additional temporal lobe finding. These results underscore the role of temporal lobe structures in the pathophysiology of schizophrenia.  相似文献   

18.
OBJECTIVE: Few neuroimaging studies have been conducted regarding clinical associations between auditory hallucinations (AHs) and affective disturbances in patients with schizophrenia. This study aimed to elucidate the neurobiological basis of emotional disturbances in schizophrenic patients with persisting AHs. METHODS: Using functional magnetic resonance imaging (fMRI), the cortical responsiveness during the processing of laughing and crying sounds was measured and compared between 14 hallucinating schizophrenic patients, 14 nonhallucinating schizophrenic patients and 28 normal controls. RESULTS: The hallucinating patients showed differential neural activities in various areas including the amygdala, the hippocampus, the cingulate, the prefrontal cortex, and the parietal cortex, compared with the nonhallucinating patients and the normal controls. In particular, compared with the nonhallucinators, the hallucinators revealed reduced activation in the left amygdala and the bilateral hippocampus during the processing of crying sounds. CONCLUSION: Our findings suggest that the persistence of AHs in schizophrenia may induce functional disturbances of the emotion-related interconnected neural networks, including reduced responsiveness in the amygdala and hippocampus to negative stimuli.  相似文献   

19.
OBJECTIVE: Replicated abnormalities in schizophrenia include decreased cellular immunity. The aim of the study was to verify whether there are some abnormalities in the ultrastructure of lymphocytes in drug-free schizophrenic patients. METHOD: Fifty-nine in-patients with paranoid schizophrenia (DSM-IV 295.30) and 31 normal controls were used. Psychosis severity was assessed by the PANSS psychotic cluster. Electron microscopy and morphometric methods were applied to estimate the frequency and ultrastructural parameters of small, large, large activated lymphocytes (LAL) (containing 10 and more mitochondria) and of atypical lymphocytes (lymphoblasts, LB). RESULTS: The frequency of small lymphocytes in schizophrenic patients was lower and that of large lymphocytes, LAL and LB was higher than in controls (all p= < 0.01). The volume density (Vv) of mitochondria in LAL in individuals with schizophrenia was lower than in controls (p<0.05), correlated negatively with the frequency of LB, Vv and number of lysosomes in LB (all p<0.01) and with the psychosis severity (p<0.05). In schizophrenic patients a trend towards positive correlations between the frequency of LB and psychosis severity were found (p<0.07). CONCLUSION: The data suggest that the excess of LB in schizophrenic patients is associated with the dysfunction of energy metabolism in LAL, and these abnormalities are related to schizophrenia.  相似文献   

20.
BACKGROUND: Abnormalities in the dopaminergic system are implicated in schizophrenia. [F-18]fallypride is a highly selective, high affinity PET ligand well suited for measuring D2/D3 receptor availability in the extrastriatal regions of the brain including thalamus, prefrontal, cingulate, and temporal cortex, brain regions implicated in schizophrenia with other imaging modalities. METHODS: Resting [F-18]fallypride PET studies were acquired together with anatomical MRI for accurate coregistration and image analysis on 15 drug na?ve schizophrenics (10 men, 5 women, mean age 28.5 years) and 15 matched controls (9 men, 6 women, mean age 27.4 years). Dopamine D2/D3 receptor levels were measured as binding potential (BP). The fallypride BP images of each subject were spatially normalized and subsequently smoothed for group comparison. Measures of significance between the schizophrenic and control groups were determined using statistical parametric mapping (SPM). The medial dorsal nucleus and pulvinar were also traced on coregistered MRI for detailed assessment of BP in these regions. RESULTS: The thalamus of patients with schizophrenia had lower [F-18]fallypride BP than normal controls and this was the brain area with the greatest difference (range -8.5% to -27.2%). Left medial dorsal nucleus and left pulvinar showed the greatest decreases (-21.6% and -27.2% respectively). The patients with schizophrenia also demonstrated D2/D3 BP reduction in the amygdala region, cingulate gyrus, and the temporal cortices. CONCLUSIONS: These findings suggest that drug na?ve patients with schizophrenia have significant reductions in extrastratial D2/D3 receptor availability. The reductions were most prominent in regions of the thalamus, replicating other studies both with high affinity D2/D3 ligands and consistent with FDG-PET studies, further supporting the hypothesis of thalamic abnormalities in this patient population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号