首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Exonic variants can alter pre‐mRNA splicing either by changing splice sites or by modifying splicing regulatory elements. Often these effects are difficult to predict and are only detected by performing RNA analyses. Here, we analyzed, in a minigene assay, 26 variants identified in the exon 7 of BRCA2, a cancer predisposition gene. Our results revealed eight new exon skipping mutations in this exon: one directly altering the 5′ splice site and seven affecting potential regulatory elements. This brings the number of splicing regulatory mutations detected in BRCA2 exon 7 to a total of 11, a remarkably high number considering the total number of variants reported in this exon (n = 36), all tested in our minigene assay. We then exploited this large set of splicing data to test the predictive value of splicing regulator hexamers’ scores recently established by Ke et al. ( 2011 ). Comparisons of hexamer‐based predictions with our experimental data revealed high sensitivity in detecting variants that increased exon skipping, an important feature for prescreening variants before RNA analysis. In conclusion, hexamer scores represent a promising tool for predicting the biological consequences of exonic variants and may have important applications for the interpretation of variants detected by high‐throughput sequencing.  相似文献   

2.
3.
4.
5.
A considerable fraction of mutations associated with hereditary disorders and cancers affect splicing. Some of them cause exon skipping or the inclusion of an additional exon, whereas others lead to the inclusion of intronic sequences or deletion of exonic sequences through the activation of cryptic splice sites. We focused on the latter cases and have designed a series of vectors that express modified U7 small nuclear RNAs (snRNAs) containing a sequence antisense to the cryptic splice site. Three cases of such mutation were investigated in this study. In two of them, which occurred in the PTCH1 and BRCA1 genes, canonical splice donor sites had been partially impaired by mutations that activated nearby intronic cryptic splice donor sites. Another mutation found in exonic region in CYP11A created a novel splice donor site. Transient expression of the engineered U7 snRNAs in HeLa cells restored correct splicing in a sequence-specific and dose-dependent manner in the former two cases. In contrast, the third case, in which the cryptic splice donor site in the exonic sequence was activated, the expression of modified U7 snRNA resulted in exon skipping. The correction of aberrant splicing by suppressing intronic cryptic splice sites with modified U7 is expected be a promising alternative to gene replacement therapy. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
7.
8.
A large fraction of sequence variants of unknown significance (VUS) of the breast and ovarian cancer susceptibility genes BRCA1 and BRCA2 may induce splicing defects. We analyzed 53 VUSs of BRCA1 or BRCA2, detected in consecutive molecular screenings, by using five splicing prediction programs, and we classified them into two groups according to the strength of the predictions. In parallel, we tested them by using functional splicing assays. A total of 10 VUSs were predicted by two or more programs to induce a significant reduction of splice site strength or activation of cryptic splice sites or generation of new splice sites. Minigene-based splicing assays confirmed four of these predictions. Five additional VUSs, all at internal exon positions, were not predicted to induce alterations of splice sites, but revealed variable levels of exon skipping, most likely induced by the modification of exonic splicing regulatory elements. We provide new data in favor of the pathogenic nature of the variants BRCA1 c.212+3A>G and BRCA1 c.5194−12G>A, which induced aberrant out-of-frame mRNA forms. Moreover, the novel variant BRCA2 c.7977−7C>G induced in frame inclusion of 6 nt from the 3′ end of intron 17. The novel variants BRCA2 c.520C>T and BRCA2 c.7992T>A induced incomplete skipping of exons 7 and 18, respectively. This work highlights the contribution of splicing minigene assays to the assessment of pathogenicity, not only when patient RNA is not available, but also as a tool to improve the accuracy of bioinformatics predictions.  相似文献   

9.
《Genetics in medicine》2020,22(4):701-708
PurposeGenetic testing of individuals often results in identification of genomic variants of unknown significance (VUS). Multiple lines of evidence are used to help determine the clinical significance of these variants.MethodsWe analyzed ~138,000 individuals tested by multigene panel testing (MGPT). We used logistic regression to predict carrier status based on personal and family history of cancer. This was applied to 4644 tested individuals carrying 2383 BRCA1/2 variants to calculate likelihood ratios informing pathogenicity for each. Heterogeneity tests were performed for specific classes of variants defined by in silico predictions.ResultsTwenty-two variants labeled as VUS had odds of >10:1 in favor of pathogenicity. The heterogeneity analysis found that among variants in functional domains that were predicted to be benign by in silico tools, a significantly higher proportion of variants were estimated to be pathogenic than previously indicated; that missense variants outside of functional domains should be considered benign; and that variants predicted to create de novo donor sites were also largely benign.ConclusionThe evidence presented here supports the use of personal and family history from MGPT in the classification of VUS and will be integrated into ongoing efforts to provide large-scale multifactorial classification.  相似文献   

10.

Background  

Genetic screening of breast cancer patients and their families have identified a number of variants of unknown clinical significance in the breast cancer susceptibility genes, BRCA1 and BRCA2. Evaluation of such unclassified variants may be assisted by web-based bioinformatic prediction tools, although accurate prediction of aberrant splicing by unclassified variants affecting exonic splice enhancers (ESEs) remains a challenge.  相似文献   

11.

Background

A large number of distinct mutations in the BRCA1 and BRCA2 genes have been reported worldwide, but little is known regarding the role of these inherited susceptibility genes in breast cancer risk among Indian women. We investigated the distribution and the nature of BRCA1 and BRCA2 germline mutations and polymorphisms in a cohort of 204 Indian breast cancer patients and 140 age-matched controls.

Method

Cases were selected with regard to early onset disease (≤40 years) and family history of breast and ovarian cancer. Two hundred four breast cancer cases along with 140 age-matched controls were analyzed for mutations. All coding regions and exon-intron boundaries of the BRCA1 and BRCA2 genes were screened by heteroduplex analysis followed by direct sequencing of detected variants.

Results

In total, 18 genetic alterations were identified. Three deleterious frame-shift mutations (185delAG in exon 2; 4184del4 and 3596del4 in exon 11) were identified in BRCA1, along with one missense mutation (K1667R), one 5'UTR alteration (22C>G), three intronic variants (IVS10-12delG, IVS13+2T>C, IVS7+38T>C) and one silent substitution (5154C>T). Similarly three pathogenic protein-truncating mutations (6376insAA in exon 11, 8576insC in exon19, and 9999delA in exon 27) along with one missense mutation (A2951T), four intronic alterations (IVS2+90T>A, IVS7+75A>T, IVS8+56C>T, IVS25+58insG) and one silent substitution (1593A>G) were identified in BRCA2. Four previously reported polymorphisms (K1183R, S1613G, and M1652I in BRCA1, and 7470A>G in BRCA2) were detected in both controls and breast cancer patients. Rare BRCA1/2 sequence alterations were observed in 15 out of 105 (14.2%) early-onset cases without family history and 11.7% (4/34) breast cancer cases with family history. Of these, six were pathogenic protein truncating mutations. In addition, several variants of uncertain clinical significance were identified. Among these are two missense variants, one alteration of a consensus splice donor sequence, and a variant that potentially disrupts translational initiation.

Conclusion

BRCA1 and BRCA2 mutations appear to account for a lower proportion of breast cancer patients at increased risk of harboring such mutations in Northern India (6/204, 2.9%) than has been reported in other populations. However, given the limited extent of reported family history among these patients, the observed mutation frequency is not dissimilar from that reported in other cohorts of early onset breast cancer patients. Several of the identified mutations are unique and novel to Indian patients.  相似文献   

12.
13.
BRCA1 and BRCA2 (BRCA1/2) germline variants disrupting the DNA protective role of these genes increase the risk of hereditary breast and ovarian cancers. Correct identification of these variants then becomes clinically relevant, because it may increase the survival rates of the carriers. Unfortunately, we are still unable to systematically predict the impact of BRCA1/2 variants. In this article, we present a family of in silico predictors that address this problem, using a gene‐specific approach. For each protein, we have developed two tools, aimed at predicting the impact of a variant at two different levels: Functional and clinical. Testing their performance in different datasets shows that specific information compensates the small number of predictive features and the reduced training sets employed to develop our models. When applied to the variants of the BRCA1/2 (ENIGMA) challenge in the fifth Critical Assessment of Genome Interpretation (CAGI 5) we find that these methods, particularly those predicting the functional impact of variants, have a good performance, identifying the large compositional bias towards neutral variants in the CAGI sample. This performance is further improved when incorporating to our prediction protocol estimates of the impact on splicing of the target variant.  相似文献   

14.
It is possible to estimate the prior probability of pathogenicity for germline disease gene variants based on bioinformatic prediction of variant effect/s. However, routinely used approaches have likely led to the underestimation and underreporting of variants located outside donor and acceptor splice site motifs that affect messenger RNA (mRNA) processing. This review presents information about hereditary cancer gene germline variants, outside native splice sites, with experimentally validated splicing effects. We list 95 exonic variants that impact splicing regulatory elements (SREs) in BRCA1, BRCA2, MLH1, MSH2, MSH6, and PMS2. We utilized a pre‐existing large‐scale BRCA1 functional data set to map functional SREs, and assess the relative performance of different tools to predict effects of 283 variants on such elements. We also describe rare examples of intronic variants that impact branchpoint (BP) sites and create pseudoexons. We discuss the challenges in predicting variant effect on BP site usage and pseudoexonization, and suggest strategies to improve the bioinformatic prioritization of such variants for experimental validation. Importantly, our review and analysis highlights the value of considering impact of variants outside donor and acceptor motifs on mRNA splicing and disease causation.  相似文献   

15.
16.
Germline mutations in the BRCA2 gene have been shown to be associated with familial female and male breast cancer. Mutations occur throughout the entire coding region of the gene, and there is considerable ethnic and geographical diversity in the deleterious mutations detected in different populations. No data exist on the role of the BRCA2 gene in the Cypriot population. In this study we present the results of characterizing mutations in the BRCA2 gene, in 26 Cypriot families with multiple cases of breast/ovarian cancer. The entire coding region, including splice sites, of BRCA2 were sequenced using cycle sequencing. In total 29 BRCA2 variants were detected which include 3 truncating mutations, 8 missense mutations, 6 polymorphisms and 12 intronic variants. The 3 truncating mutations are frameshift mutation 8984delG (exon 22), and two nonsense mutations, namely C1913X (exon 11) which is a novel mutation, and K3326X (exon 27). It is of interest that frameshift mutation 8984delG was the most frequent, since it was detected in 5 patients from three different families. Among the 6 polymorphisms detected, polymorphism T77T is novel and similarly 4 of the 12 intronic variants were also novel, namely IVS1+8G>A, IVS1-96insA, IVS4+36A>G and IVS11-51G>T. These results show that deleterious BRCA2 mutations, occur at the same frequency, about 20%, in Cypriot families, as that recorded in other European populations. We conclude that the BRCA2 gene plays a significant role in the familial breast cancer phenotype in the Cypriot population.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号