首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Severe neurological symptoms, cerebral edema, and atrophy are common features of the inherited metabolic disorder maple syrup urine disease (MSUD). However, the pathomechanisms involved in the neuropathology of this disease are not well established. In this study, we investigated the effects of the branched-chain keto acids (BCKA) alpha-ketoisocaproic (KIC), alpha-ketoisovaleric (KIV), and alpha-keto-beta-methylvaleric (KMV), which accumulate in MSUD, on astrocyte morphology and cytoskeleton reorganization. Cultured astrocytes from cerebral cortex of neonatal rats were exposed to various concentrations of the BCKA and cell morphology was studied. We observed that these cells changed their usual polygonal morphology when exposed to BCKA, leading to the appearance of fusiform or process-bearing cells. Furthermore, longer exposures to the BCKA elicited cell death at all concentrations studied, attaining massive death at the highest concentrations. Immunocytochemistry with anti-actin or anti-GFAP antibodies revealed that the BCKA induced reorganization of actin and GFAP cytoskeleton. In addition, astrocytes treated with lysophosphatidic acid, an upstream activator of the RhoA GTPase pathway, totally prevented the morphological alterations and cytoskeletal reorganization induced by KIV, indicating that this effect could be mediated by the RhoA signaling pathway. Furthermore, the effects of BCKA on astrocyte morphology were prevented by creatine. In addition, creatine kinase activity was inhibited by KIC and KIV; this inhibition was prevented by creatine, indicating that these keto acids compromise brain energy metabolism. Considering that astroglial cells are critical to brain development and functioning, it is conceivable that alterations of the actin network by BCKA may have important implications in astrocytic function and possibly in the pathogenesis of the neurological dysfunction and brain damage of MSUD patients.  相似文献   

2.
Neurological dysfunction is common in patients with maple syrup urine disease (MSUD). However, the mechanisms underlying the pathophysiology of this disorder are poorly known. In the present study we investigated the effect of intrastriatal administration of the alpha-keto acids accumulating in MSUD on the behavior of adult rats. After cannula placing, rats received unilateral intrastriatal injections of alpha-ketoisocaproic acid (KIC, 8 micromol), alpha-ketoisovaleric acid (KIV, 8 micromol), alpha-keto-beta-methylvaleric acid (KMV, 6 micromol) or NaCl. KIV elicited clonic convulsions in a dose-response manner, whereas KIC and KMV did not induce seizure-like behavior. Convulsions provoked by KIV were prevented by intrastriatal preadministration of muscimol (46 pmol) and MK-801 (3 nmol), but not by the preadministration of DNQX (8 nmol). These results indicate that among the keto acids that accumulate in MSUD, KIV is the only metabolite capable of causing convulsions in the present animal model and indicates that KIV is an important excitatory metabolite. Moreover, the participation of GABAergic and glutamatergic NMDA mechanisms in the KIV-induced convulsant behavior is suggested, since KIV-induced convulsions are attenuated by muscimol and MK-801. The authors suggest that KIV may play an important role in the convulsions observed in MSUD, and highlight its relevance to the understanding of the pathophysiology of the neurological dysfunction of MSUD patients.  相似文献   

3.
Neurological dysfunction is common in patients with maple syrup urine disease (MSUD). However, the mechanisms underlying the pathophysiology of this disorder are poorly known. In the present study we investigated the effect of intrastriatal administration of the α-keto acids accumulating in MSUD on the behavior of adult rats. After cannula placing, rats received unilateral intrastriatal injections of α-ketoisocaproic acid (KIC, 8 μmol), α-ketoisovaleric acid (KIV, 8 μmol), α-keto-β-methylvaleric acid (KMV, 6 μmol) or NaCl. KIV elicited clonic convulsions in a dose–response manner, whereas KIC and KMV did not induce seizure-like behavior. Convulsions provoked by KIV were prevented by intrastriatal preadministration of muscimol (46 pmol) and MK-801 (3 nmol), but not by the preadministration of DNQX (8 nmol). These results indicate that among the keto acids that accumulate in MSUD, KIV is the only metabolite capable of causing convulsions in the present animal model and indicates that KIV is an important excitatory metabolite. Moreover, the participation of GABAergic and glutamatergic NMDA mechanisms in the KIV-induced convulsant behavior is suggested, since KIV-induced convulsions are attenuated by muscimol and MK-801. The authors suggest that KIV may play an important role in the convulsions observed in MSUD, and highlight its relevance to the understanding of the pathophysiology of the neurological dysfunction of MSUD patients.  相似文献   

4.
In this study we investigated the effects of alpha-ketoisovaleric (KIV) and alpha-keto-beta-methylvaleric acids (KMV), metabolites accumulating in the inherited neurometabolic disorder maple syrup urine disease (MSUD), on the in vitro incorporation of 32P into intermediate filament (IF) proteins from cerebral cortex of young rats during development (9-21 days of age) We observed that KMV significantly increased the in vitro incorporation of 32P into the IF proteins studied in cortical slices of 12-day-old rats through the PKA and PKCaMII, with no alteration at the other ages. In contrast, KIV was ineffective in altering the phosphorylating system associated with IF proteins at all ages examined. A similar effect on IF phosphorylation was achieved by incubating cortical slices with gamma-aminobutiric acid (GABA). Furthermore, by using specific GABA antagonists, we verified that KMV induced a stimulatory effect on IF phosphorylation of tissue slices from 12-day-old rats mediated by GABA(A) and GABA(B) receptors. In conclusion, our results indicate the involvement of the GABAergic system in the alterations of IF phosphorylation caused by KMV, one of the branched-chain keto acids accumulating in MSUD.  相似文献   

5.
In this study we investigated the effects of alpha-ketoisocaproic (KIC), alpha-ketoisovaleric (KIV) and alpha-keto-beta-methylvaleric (KMV) acids on the phosphorylation of intermediate filament (IF) proteins of cerebral cortex of rats. Tissue slices were incubated with [32P] orthophosphate in the presence or absence of the acids. The intermediate filament enriched cytoskeletal fraction was isolated and the radioactivity incorporated into neurofilament subunits, vimentin and glial fibrillary acidic protein was measured. Results demonstrated that KIC significantly increased phosphorylation of these proteins whereas the other acids had no effect. Experiments using protein kinase inhibitors indicated that the effect of KIC was mediated by Ca2+/calmodulin- and cAMP-dependent protein kinases. This study provides evidence that KIC, a key metabolite accumulating in maple syrup urine disease, increases phosphorylation of IF proteins.  相似文献   

6.
In this study we investigated the involvement of Ca2+ on the effects of alpha-ketoisocaproic acid (KIC), the main metabolite accumulating in maple syrup urine disease (MSUD), on the phosphorylating system associated with the intermediate filament (IF) proteins in slices from cerebral cortex of 9-day-old rats. We first observed that KIC significantly decreased the in vitro phosphorylation of IF proteins in brain slices. KIC-induced dephosphorylation was mediated especially by the protein phosphatase PP2B, a Ca2+-dependent protein phosphatase, but also by PP2A. We also demonstrated the involvement of Ca2+-dependent mechanisms in the KIC effects using the specific L-voltage-dependent Ca2+ channels (L-VDCC) inhibitor nifedipine, the NMDA antagonist DL-AP5 and the intracellular Ca2+ chelator BAPTA-AM. Blockage of Ca2+ channels or chelating intracellular Ca2+ completely prevented the effects of KIC on the phosphorylating system associated to IF proteins. In addition, we verified that KIC increased 45Ca2+ uptake in brain slices after 3 and 30 min incubation. Taken together, our present data indicate that KIC increase intracellular Ca2+ levels, probably promoting the activation of calcineurin. These results might be associated with the increased dephosphorylation of the IF proteins in slices of cerebral cortex of immature rats exposed to KIC at similar concentrations from those found in blood and tissues of patients with MSUD.  相似文献   

7.
Maple syrup urine disease (MSUD) is a metabolic disorder biochemically characterized by the accumulation of branched-chain alpha-amino acids (BCAA) and their branched-chain alpha-keto acids (BCKA) in blood and tissues. Neurological dysfunction is usually present in the patients, but the mechanisms of brain damage in this disease are far from be understood. The main objective of this study was to investigate the mechanisms by which BCAA inhibit creatine kinase activity, a key enzyme of energy homeostasis, in the brain cortex of 21-day-old Wistar rats. For the kinetic studies, Lineweaver-Burk and a modification of the Chevillard et al. plots were used to characterize the mechanisms of enzyme inhibition. The results indicated that BCAA inhibit creatine kinase by competition with the substrates phosphocreatine and ADP at the active site. Considering the crucial role creatine kinase plays in energy homeostasis in brain, if these effects also occur in the brain of MSUD patients, it is possible that inhibition of this enzyme activity may contribute to the brain damage found in this disease. In this case, it is possible that creatine supplementation to the diet might benefit MSUD patients.  相似文献   

8.
In this study we investigated the effects of alpha-ketoisocaproic acid (KIC), the main keto acid accumulating in the inherited neurometabolic disorder maple syrup urine disease (MSUD), on the in vitro incorporation of 32P into intermediate filament (IF) proteins from cerebral cortex of rats during development. KIC decreased the in vitro incorporation of 32P into the IF proteins studied up to day 12, had no effect on day 15, and increased this phosphorylation in cortical slices of 17- and 21-day-old rats. A similar effect on IF phosphorylation was achieved along development by incubating cortical slices with glutamate. Furthermore, the altered phosphorylation caused by the presence of KIC in the incubation medium was mediated by the ionotropic receptors NMDA, AMPA and kainate up to day 12 and by NMDA and AMPA in tissue slices from 17- and 21-day-old rats. The results suggest that alterations of IF phosphorylation may be associated with the neuropathology of MSUD.  相似文献   

9.
In rabbit platelets, collagen (50 micrograms/ml)- or thrombin (0.5 U/ml)-induced diacylglycerol formation was dose-dependently prevented by phorbol 12-myristate 13-acetate (PMA, 2-50 nM). However, collagen-induced arachidonic acid liberation and lysophosphatidylcholine formation were rather enhanced by PMA, while the thrombin-induced liberation was not. We also demonstrated with saponin-permeabilized platelets that collagen (100 micrograms/ml)-induced arachidonic acid liberation was enhanced by GTP gamma S and inhibited by GDP beta S, both dose-dependently. Since these results lead us to consider that protein kinase C affects a guanine-nucleotide-binding protein (G-protein) to modulate phospholipase A2 and C, we investigated this dual effect of PMA on arachidonic acid liberation and diacylglycerol formation induced by G-protein activator. Addition of GTP gamma S (100 microM) to saponin-permeabilized platelets significantly induced these responses, and PMA (2-10 nM)-pretreatment before the cell permeabilization inhibited diacylglycerol formation and enhanced arachidonic acid liberation and lysophosphatidylcholine formation, dose-dependently. Likewise, PMA (20 nM) had differential effects on the similar NaF (20 mM)-induced responses in intact platelets. Contrarily, 10 nM PMA had no effect on diacylglycerol formation caused by an addition of high concentration of Ca2+ (1 mM) alone after the cell permeabilization, while it still had a potentiating effect on arachidonic acid liberation under the condition. These results suggest that protein kinase C may have a dual regulatory effect on the activation of phospholipase A2 (positive feedback) and phospholipase C (negative feedback), probably through influences on two distinct G-proteins associated separately with these two enzymes.  相似文献   

10.
Mitochondrial dysfunction has been implicated in cell death in many neurodegenerative diseases. Diminished activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC), a key and arguably rate-limiting enzyme of the Krebs cycle, occurs in these disorders and may underlie decreased brain metabolism. The present studies used alpha-keto-beta-methyl-n-valeric acid (KMV), a structural analogue of alpha-ketoglutarate, to inhibit KGDHC activity to test effects of reduced KGDHC on mitochondrial function and cell death cascades in PC12 cells. KMV decreased in situ KGDHC activity by 52 +/- 7% (1 hr) or 65 +/- 4% (2 hr). Under the same conditions, KMV did not alter the mitochondrial membrane potential (MMP), as assessed with a method that detects changes as small as 5%. KMV also did not alter production of reactive oxygen species (ROS). However, KMV increased lactate dehydrogenase (LDH) release from cells by 100 +/- 4.7%, promoted translocation of mitochondrial cytochrome c to the cytosol, and activated caspase-3. Inhibition of the mitochondrial permeability transition pore (MPTP) by cyclosporin A (CsA) partially blocked this KMV-induced change in cytochrome c (-40%) and LDH (-15%) release, and prevented necrotic cell death. Thus, impairment of this key mitochondrial enzyme in PC12 cells may lead to cytochrome c release and caspase-3 activation by partial opening of the MPTP before the loss of mitochondrial membrane potentials.  相似文献   

11.
The astrocyte-derived protein S100B stimulates production of inducible nitric oxide synthase and nitric oxide (NO) in astrocytes [Hu et al., 1996, J. Biol. Chem. 271:2543], but its effect on microglia is not known. In addition, S100B's ability to modulate the activity of other glial activating agents has not been defined. In this study, we compared the ability of S100B to stimulate NO in cultures of rat primary astrocytes and the BV-2 murine microglial cell line, and investigated the effect of the combined action of S100B and other stimuli known to activate glial cells. S100B itself stimulated the production of NO in astrocytes, and did not modify or potentiated only weakly the NO production induced by interleukin-1 beta, tumor necrosis factor alpha, dibutyryl cyclic AMP, zymosan A or lipid A. In contrast, S100B alone did not induce NO in BV-2 cells but strongly potentiated NO production in the presence of lipid A but not zymosan A. The deletion of eight C-terminal amino acid residues in S100B leads to a loss of the effect of S100B on microglia but not on astrocytes. These results demonstrate that responses of glial cells to extracellular S100B can vary depending on the cell type, and suggest that different structural features of S100B are important for the protein's effects on microglia and astrocytes.  相似文献   

12.
Exposure of rat or human neocortical or hippocampal tissue to glutamate receptor agonists elicits a Ca2+-dependent, exocytotic-like release of previously accumulated [3H]noradrenaline through activation of both N -methyl- d -aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors colocalized on the noradrenergic axon terminals. Here we show that the NMDA (100 μM)-evoked release of [3H]noradrenaline from superfused thin layers of isolated rat hippocampal or cortical nerve endings was potentiated when the human immunodeficiency virus type 1 coat protein gp120 was added to the superfusion medium concomitantly with NMDA. The effect of gp120 (10 pM to 3 nM) on the 100 μM NMDA-evoked release of [3H]noradrenaline was concentration-dependent; the maximal effect (-140% potentiation) was reached at 100 pM of gp120. The protein was inactive on its own. The [3H]noradrenaline release evoked by NMDA (100 μM) + gp120 (100 μM) was prevented by classical NMDA receptor antagonists, as well as by 10 μM memantine. Neither the release evoked by NMDA nor that elicited by NMDA + gp120 was sensitive to the nitric oxide synthase inhibitor N G -nitro- l -arginine, suggesting no involvement of nitric oxide. The [3H]noradrenaline release elicited by 100 nM AMPA was unaffected by gp120. The protein potentiated the release evoked by 100 nM glutamate; the effect of 100 pM gp120 was quantitatively identical to that of 1 μM glycine, with no apparent additivity between gp120 and glycine. The antagonism by 1 μM 7-chloro-kynurenic acid of the NMDA-induced [3H]noradrenaline release was reversed by glycine or gp120. The data are compatible with gp120 acting directly as a powerful positive allosteric modulator at a neuronal NMDA receptor.  相似文献   

13.
Adami C  Sorci G  Blasi E  Agneletti AL  Bistoni F  Donato R 《Glia》2001,33(2):131-142
We evaluated the intracellular and extracellular biological role of S100B protein with respect to microglia. S100B, which belongs to the multigenic family of Ca2+-binding proteins, is abundant in astrocytes where it is found diffusely in the cytoplasm and is associated with membranes and cytoskeleton constituents. S100B protein is also secreted by astrocytes and acts on these cells to stimulate nitric oxide secretion in an autocrine manner. However, little is known about the relationship between S100B and microglia. To address this issue, we used primary microglia from newborn rat cortex and the BV-2 microglial cell line, a well-established cell model for the study of microglial properties. S100B expression was assessed by immunofluorescence in primary microglia and by RT-PCR, Western blotting, and immunofluorescence in BV-2 cells. S100B was found in microglia in the form of a filamentous network as well as diffusely in the cytoplasm and associated with intracellular membranes. S100B relocated around phagosomes during BV-2 phagocytosis of opsonized Cryptococcus neoformans. Furthermore, interferon-gamma (IFN-gamma) treatment caused cell shape changes and redistribution of S100B, and downregulation of S100B mRNA expression in BV-2 cells. Treatment of BV-2 cells with nanomolar to micromolar amounts of S100B resulted in increased IFN-gamma-induced expression of inducible nitric oxide synthase mRNA as well as nitric oxide secretion. Taken together, these data suggest a possible role for S100B in the accomplishment/regulation of microglial cell functions.  相似文献   

14.
Maple syrup urine disease (MSUD) is an inherited disorder caused by deficiency of branched-chain L-2-keto acid dehydrogenase complex activity. Affected patients present severe brain dysfunction manifested as convulsions, coma, psychomotor delay and mental retardation. However, the underlying mechanisms of these neurological findings are virtually unknown. In this study, we tested the in vitro effect of L-leucine, L-isoleucine and L-valine, the amino acids accumulating in MSUD, on the lipid peroxidation parameters chemiluminescence and thiobarbituric acid-reactive substances (TBA-RS), as well as on total radical-trapping antioxidant potential (TRAP) and total antioxidant reactivity (TAR) in cerebral cortex from 30-day-old rats. L-Leucine significantly increased chemiluminescence and TBA-RS measurements and markedly decreased TRAP and TAR values. L-Isoleucine increased chemiluminescence and decreased TRAP measurements, but TAR and TBA-RS levels were not altered by the amino acid. Finally, TRAP measurement was diminished by L-valine. The results indicate a stimulation of lipid peroxidation and a reduction of brain capacity to efficiently modulate the damage associated with an increased production of free radicals by the branched-chain amino acids (BCAAs) accumulated in MSUD. It is therefore tempting to speculate that oxidative stress may be implicated in the brain damage found in MSUD patients.  相似文献   

15.
Central nervous system degenerative diseases are often characterized by an early, strong reaction of astrocytes and microglia. Both these cell types can play a double role, protecting neurons against degeneration through the synthesis and secretion of trophic factors or inducing degeneration through the secretion of toxic molecules. Therefore, we studied the effects of S100B and trimethyltin (TMT) on human astrocytes and microglia with two glial models, primary cultures of human fetal astrocytes and a microglia cell line. After treatment with 10(-5) M TMT, astrocytes showed morphological alterations associated with an increase in glial fibrillary acidic protein (GFAP) expression and changes in GFAP filament organization. Administration of S100B before TMT treatment prevented TMT-induced changes in morphology and GFAP expression. A decrease in inducible nitric oxide synthase expression was observed in astrocytes treated with TMT, whereas the same treatment induced iNOS expression in microglia. In both cases, S100B prevented TMT-induced changes. Tumor necrosis factor-alpha mRNA expression in astrocytes was not modified by TMT treatment, whereas it was increased in microglia cells. S100B pretreatment blocked the TMT-induced increase in TNF-alpha expression in microglia. To trace the mechanisms involved in S100B activity, the effect of BAY 11-7082, an inhibitor of nuclear factor-kappaB (NF-kappaB) activation, and of PD98059, an inhibitor of MEK-ERK1/2, were investigated. Results showed that the protective effects of S100B against TMT toxicity in astrocytes depend on NF-kappaB, but not on ERK1/2 activation. These results might help in understanding the role played by glial cells in brain injury after exposure to chemical neurotoxicants and support the view that S100B may protect brain cells in case of injury. (c) 2005 Wiley-Liss, Inc.  相似文献   

16.
Brain injury resulting from stroke or trauma can be exacerbated by the release of proinflammatory cytokines, proteases, and reactive oxygen species by activated microglia. The microglial activation resulting from brain injury is mediated in part by alarmins, which are signaling molecules released from damaged cells. The nuclear enzyme poly(ADP‐ribose) polymerase‐1 (PARP‐1) has been shown to regulate microglial activation after brain injury, and here we show that signaling effects of the alarmin S100B are regulated by PARP‐1. S100B is a protein localized predominantly to astrocytes. Exogenous S100B added to primary microglial cultures induced a rapid change in microglial morphology, upregulation of IL‐1β, TNFα, and iNOS gene expression, and release of matrix metalloproteinase 9 and nitric oxide. Most, though not all of these effects were attenuated in PARP‐1‐/‐ microglia and in wild‐type microglia treated with the PARP inhibitor, veliparib. Microglial activation and gene expression changes induced by S100B injected directly into brain were likewise attenuated by PARP‐1 inhibition. The anti‐inflammatory effects of PARP‐1 inhibitors in acutely injured brain may thus be mediated in part through effects on S100B signaling pathways. GLIA 2016;64:1869–1878  相似文献   

17.
In the present study, we investigated the effects of the branched-chain amino acids (BCAA) leucine (Leu), isoleucine (Ile) and valine (Val), which accumulate in maple syrup urine disease (MSUD), on C6 glioma cell morphology and cytoskeletal reorganization by exposing the cultured cells to 1 and 5 mM BCAA. We observed that cells showed a fusiform shape with processes after 3 h treatment. Cell death was also observed when cells were incubated in the presence of the BCAA for 3 and 24 h. Val-treated cells presented the most dramatic morphological alterations. Immunocytochemistry with anti-actin and anti-GFAP antibodies revealed that all BCAA induced reorganization of actin and GFAP cytoskeleton. Although phosphorylation regulates intermediate filament (IF) assembly/disassembly, we verified that the BCAA did not change the in vitro phosphorylation of IF proteins either in C6 cells or in slices of cerebral cortex of rats during development (9-, 12-, 17- and 21-day-old). Furthermore, we observed that 3 h cell exposure to 5 mM of each BCAA resulted in a marked reduction of reduced glutathione (GSH) levels and significantly increased nitric oxide production. Finally, we observed that the morphological features caused by the BCAA on C6 cells were prevented by the use of the antioxidants GSH (1 mM) and N(omega)-nitro-L-arginine methyl ester (L-NAME, 0.5 mM). On the basis of the present results, we conclude that free radical attack might be involved in the cell morphological alterations, as well as, in the cytoskeletal reorganization elicited by the BCAA. It is therefore presumed that these findings could be involved in the neuropathological features observed in patients affected by MSUD.  相似文献   

18.
Maple syrup urine disease (MSUD) is an inherited disorder caused by a deficiency of the branched-chain alpha-keto acid dehydrogenase complex activity. In the present study we evaluated selenium levels in plasma from MSUD patients at diagnosis and under treatment and the activities of glutathione peroxidase, catalase and superoxide dismutase in erythrocytes from treated patients. We verified that MSUD patients present a significant selenium deficiency at diagnosis, which becomes more pronounced during treatment, as well as a decrease of erythrocyte glutathione peroxidase activity during treatment. In contrast, erythrocyte catalase and superoxide dismutase activities were not altered in these patients. Our present results suggest that the reduction of an important antioxidant enzyme activity may be partially involved in the pathomechanisms of this disorder and that plasma selenium levels must be corrected through dietary supplementation in MSUD patients.  相似文献   

19.
Maple syrup urine disease (MSUD) is an inherited metabolic disease predominantly characterized by neurological dysfunction. Although a variable degree of psychomotor/delay/mental retardation is found in a considerable number of MSUD patients, the mechanisms underlying the neuropathology of this disorder are yet not defined. The present study investigated the effect of acute intrahippocampal administration of the branched-chain alpha-hydroxy acids (BCHA) accumulating in MSUD on rat behavior in non-aversive (open field) and aversive (inhibitory avoidance) tasks. Cannulated 60-day-old male Wistar rats received bilateral intrahippocampal injection of alpha-hydroxyisocaproic acid (HIC, 1.5 micromol), alpha-hydroxyisovaleric acid (HIV, 2.5 micromol), alpha-hydroxy-beta-methyl-n-valeric acid (HMV, 1.5 micromol), or NaCl (2.5 micromol)(controls) immediately after or 10 min before training. Testing session was performed 24 h later. Administration of the hydroxy acids immediately after training caused no effect on the cognitive performance of the rats. In contrast, HIV and HMV administered 10 min before training provoked a habituation deficit in the open field task. Motor activity, assessed by crossing responses, was the same for the groups infused with BCHA and NaCl. The effect of MK-801, succinate, creatine, and the antioxidants ascorbic acid plus alpha-tocopherol on the behavioral alterations provoked by HIV in the open field task revealed that only the energetic substrates (succinate and creatine) prevented these effects, reflecting a possible compromise of brain energy production by HIV. We also observed that rats pretreated with HIC, HIV, or HMV did not increase their latency in the testing session in the step-down inhibitory avoidance task, revealing an impairment of retrieval (memory retention or acquisition) in this task. Furthermore, no differences between controls and rats receiving BCHA were detected in the latency to leave the platform in the training test, suggesting similar motor activity of all groups. The data indicate that the alpha-hydroxy acids accumulating in MSUD impair cognition and may be implicated in the neuropathology and psychomotor delay/mental retardation observed in the affected patients.  相似文献   

20.
Effects of ethanol and 5-HT1A agonists on astroglial S100B   总被引:4,自引:0,他引:4  
Previous studies from this and another laboratory demonstrated that in utero ethanol exposure reduces 5-HT neurons and S100B-immunopositive glia that are proximal to these neurons. Our laboratory also found that these effects are prevented by maternal treatment with a 5-HT(1A) agonist. Because of S100B's important role in the development of 5-HT neurons, the present study used both in vivo and in vitro models to investigate the potential involvement of S100B with the damaging effects of ethanol and with the protective effects of 5-HT(1A) agonists. We used in situ hybridization to address whether a 5-HT(1A) agonist could potentially affect S100B mRNA in vivo. Maternal treatment with buspirone between gestation days 13 and 20 significantly increased S100B mRNA in neuroepithelium of G20 offspring of control (40%) and ethanol-fed dams (20%). However, S100B mRNA was not altered in neuroepithelium from ethanol-exposed offspring. In astroglial cultures, we examined whether ethanol reduces the release of S100B and whether a 5-HT(1A) agonist could stimulate the release of this protein. We also evaluated the effects of ethanol and ipsapirone on astroglial content of S100B. Neither the concentration of S100B in astroglial media nor astroglial content of S100B were affected by ethanol. However, treatment with 100 nM ipsapirone, a 5-HT(1A) agonist, between the 6th and 7th day in vitro, increased astroglial release of S100B 2- to 3-fold. Thus, the protective effects of a 5-HT(1A) agonist on ethanol-treated 5-HT neurons might be associated with the ability of these drugs to release the neurotrophic factor S100B from astrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号