首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S.M. Hersch  E.L. White 《Neuroscience》1981,6(6):1043-1051
Five pyramidal cells from the posteromedial barrel subfield of mouse SmI cortex were labeled by Golgi impregnation and then gold-toned and de-impregnated (Fairén, Peters & Saldanha, 1977). Subsequently, 40 to 70 μm-long segments of their apical dendrites occurring in layer IV were graphically reconstructed from serial thin sections to determine the distribution of their synapses. Thalamocortical synapses onto these dendritic segments were identified by lesion-induced degeneration.The synaptic pattern of the pyramidal cell apical dendrites was consistent with previous reports in that most synapses occurred on spines and were asymmetrical and the smaller number of shaft synapses were primarily symmetrical. Some axospinous synapses were formed by degenerating thalamocortical axon terminals. The proportion of thalamocortical synapses onto reconstructed dendritic segments was different for different neurons. For example, thalamocortical axon terminals formed 15% of the synapses involving the spines of the reconstructed segment from a medium superficial layer V pyramidal cell and 10% of the synapses onto portions of the segment from a large layer VI pyramidal cell. In contrast, reconstructed dendritic segments of three other layer VI pyramidal cells formed no more than one thalamocortical synapse.An analysis of the distribution of synapses onto reconstructed dendritic segments revealed that the segments of 3 medium and large pyramidal cells had a ratio of about 12.5 asymmetrical synapses per symmetrical synapse, whereas the segments of 2 small pyramidal cells had ratios of only 6.5 asymmetrical synapses per symmetrical synapse. That these ratios fall into 2 distinct groups suggests that the relative number of asymmetrical and symmetrical synapses is stereotyped within populations of neurons.  相似文献   

2.
The integrative properties of neurons depend strongly on the number, proportions and distribution of excitatory and inhibitory synaptic inputs they receive. In this study the three-dimensional geometry of dendritic trees and the density of symmetrical and asymmetrical synapses on different cellular compartments of rat hippocampal CA1 area pyramidal cells was measured to calculate the total number and distribution of excitatory and inhibitory inputs on a single cell.A single pyramidal cell has approximately 12,000 microm dendrites and receives around 30,000 excitatory and 1700 inhibitory inputs, of which 40 % are concentrated in the perisomatic region and 20 % on dendrites in the stratum lacunosum-moleculare. The pre- and post-synaptic features suggest that CA1 pyramidal cell dendrites are heterogeneous. Strata radiatum and oriens dendrites are similar and differ from stratum lacunosum-moleculare dendrites. Proximal apical and basal strata radiatum and oriens dendrites are spine-free or sparsely spiny. Distal strata radiatum and oriens dendrites (forming 68.5 % of the pyramidal cells' dendritic tree) are densely spiny; their excitatory inputs terminate exclusively on dendritic spines, while inhibitory inputs target only dendritic shafts. The proportion of inhibitory inputs on distal spiny strata radiatum and oriens dendrites is low ( approximately 3 %). In contrast, proximal dendritic segments receive mostly (70-100 %) inhibitory inputs. Only inhibitory inputs innervate the somata (77-103 per cell) and axon initial segments. Dendrites in the stratum lacunosum-moleculare possess moderate to small amounts of spines. Excitatory synapses on stratum lacunosum-moleculare dendrites are larger than the synapses in other layers, are frequently perforated ( approximately 40 %) and can be located on dendritic shafts. Inhibitory inputs, whose percentage is relatively high ( approximately 14-17 %), also terminate on dendritic spines.Our results indicate that: (i) the highly convergent excitation arriving onto the distal dendrites of pyramidal cells is primarily controlled by proximally located inhibition; (ii) the organization of excitatory and inhibitory inputs in layers receiving Schaffer collateral input (radiatum/oriens) versus perforant path input (lacunosum-moleculare) is significantly different.  相似文献   

3.
Neurons were studied in the striate cortex of the cat following intracellular recording and iontophoresis of horseradish peroxidase. The three selected neurons were identified as large basket cells on the basis that (i) the horizontal extent of their axonal arborization was three times or more than the extent of the dendritic arborization; (ii) some of their varicose terminal segments surrounded the perikarya of other neurons. The large elongated perikarya of the first two basket cells were located around the border of layers III and IV. The radially-elongated dendritic field, composed of beaded dendrites without spines, had a long axis of 300-350 microns, extending into layers III and IV, and a short axis of 200 microns. Only the axon, however, was recovered from the third basket cell. The lateral spread of the axons of the first two basket cells was 900 microns or more in layer III and, for the third cell, was over 1500 microns in the antero-posterior dimension, a value indicating that the latter neuron probably fulfills the first criterion above. The axon collaterals of all three cells often branched at approximately 90 degrees to the parent axon. The first two cells also had axon collaterals which descended to layers IV and V and had less extensive lateral spreads. The axons of all three cells formed clusters of boutons which could extend up a radial column of their target cells. Electron microscopic examination of the second basket cell showed a large lobulated nucleus and a high density of mitochondria in both the perikarya and dendrites. The soma and dendrites were densely covered by synaptic terminals. The axons of the second and third cells were myelinated up to the terminal segments. A total of 177 postsynaptic elements was analysed, involving 66 boutons of the second cell and 89 boutons of the third cell. The terminals contained pleomorphic vesicles and established symmetrical synapses with their postsynaptic targets. The basket cell axons formed synapses principally on pyramidal cell perikarya (approximately 33% of synapses), spines (20% of synapses) and the apical and basal dendrites of pyramidal cells (24% of synapses). Also contacted were the perikarya and dendrites of non-pyramidal cells, an axon, and an axon initial segment. A single pyramidal cell may receive input on its soma, apical and basal dendrites and spines from the same large basket cell.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Summary A Golgi-impregnated spiny stellate cell was selected from layer IV of SmI cortex in a mouse whose ipsilateral ventrobasal complex had been lesioned. The neuron was gold-toned, thin sectioned and then reconstructed in three dimensions using wooden sheets of appropriate thickness. These procedures enabled the numbers and distribution of thalamocortical and other synapses onto the reconstructed neuron to be determined. Results show the cell body to be roughly spherical and to receive 49 symmetrical synapses and four synapses which are intermediate between the asymmetrical and symmetrical type. A single, clearly asymmetrical axosomatic synapse is made by a degenerating, thalamocortical axon terminal. Five primary dendrites and their branches were reconstructed and, interestingly, these processes are distinctly elliptical in cross-section. The reconstructed dendrites receive 68 symmetrical synapses onto their shafts and 373 synapses onto spines of which 359 are asymmetrical and 14 symmetrical. Forty-eight, or about 13%, of the asymmetrical axospinous synapses are made by degenerating, thalamocortical axon terminals. An intriguing finding is that in many regions of the dendritic tree, two or more spines involved in thalamocortical synapses are attached to the dendritic shaft at intervals of 5±0.5 m.  相似文献   

5.
When the corpus callosum of the rat is sectioned, the callosal fibres in the cerebral cortex undergo degeneration. In the auditory cortex (area 41) the degenerating axon terminals form asymmetric synapses, and the vast majority of them synapse with dendritic spines. Some other synapse with the shafts of both spiny and smooth dendrites, and a few with the perikarya of non-pyramidal cells. The degenerating axon terminals are contained principally within layer II/III, in which they aggregate in patches. Using a technique in which neurons within the cortex are Golgi-impregnated, then gold-toned and examined in the electron microscope, it has been shown that the dendritic spines of pyramidal neurons with cell bodies in different layers receive the degenerating callosal afferents. The spines arise from the main apical dendritic shafts and their branches, from the dendrites of the apical tufts, and in some cases from the basal dendrites of the pyramidal neurons. The shafts of some pyramidal cell apical dendrites also form asymmetric synapses with callosal afferents. Since we have encountered no spiny non-pyramidal neurons in Golgi preparations of rat auditory cortex, and because other types of non-pyramidal cells have few dendritic spines, it is concluded that practically all of the dendritic spines synapsing with callosal afferents originate from pyramidal neurons.  相似文献   

6.
A combined Golgi-electron microscope method was used to study the ultrastructural maturation of synapses on identified pyramidal and multipolar non-pyramidal neurons in the visual cortex of young and adult rabbits. In samples of 10 (time of eye opening), 14, 20 day old and 7 month old animals, fully impregnated pyramidal neurons within the layers II-V and multipolar non-pyramidal neurons mainly located in lower layer III and layer IV was studied. We found that synapses in 10 and 14 day old animals were occasionally immature in appearance. They were characterized by either a poorly defined postsynaptic band or equal rims of pre- and postsynaptic electron-dense material and could therefore not be classified as Gray type I or II. The distinction between both types of synapses was easier at day 20 and in the adults when the postsynaptic band of the asymmetrical (type I) synapses had become remarkably thicker. In pyramidal neurons the cytoplasmic organelles increased in number during development. Although a few symmetrical synapses were present on dendritic spines of pyramidal neurons in 14 and 20 day old animals, all pyramidal neurons exhibited the same types of synapses on specific sites of their neuronal surface. They received exclusively type II synapses on their somata, type I synapses on their dendritic spines and both types of synapses on their dendritic shafts. However, in the adult animals the frequency of occurrence of type II synapses, especially on basal dendritic shafts, had increased. In some cases only type II and no type I synapses were present. A striking finding in all young and adult animals was that synapses at the borderline between somata and apical dendritic shafts as well as on dendritic spines were frequently complex or interrupted. The characteristic ultrastructural features of adult spine-free and sparsely spiny multipolar non-pyramidal neurons e.g. the many cytoplasmic organelles and type I and II synapses on somata and on dendrites were already present at day 10. After day 10 the number of organelles and synapses increased prominently and in adult animals the different types of synapses on dendrites were located at relatively short intervals of about 4 microns. In contrast with the dendritic shafts of pyramidal neurons many asymmetrical synapses were observed on dendritic shafts of the non-pyramidal neurons analysed in the adult animals. Furthermore, it appeared that the number of synapses on these non-pyramidal neurons is about twice that on pyramidal neurons in day 20 old animals and about four times in adult animals.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
To investigate the morphological changes of accessory olfactory bulb (AOB) neurons arising from pheromonal signals, a coculture system of AOB neurons and vomeronasal (VN) neurons had been established. Our previous study indicates that under coculture condition, the density of dendritic spines of an AOB neuron is less and the individual spine-head volume is larger than those under monoculture condition. In this study, to determine whether these differences in the dendrites of AOB neurons reflect the differences in synapse formation and synaptic properties, we observed these cultured cells by electron microscopy. Various synapses were observed under each culture condition. Synapses were classified on the basis of their postsynaptic structure and the size of postsynaptic density (PSD) was measured. Under the coculture condition with VN neurons, synapses on dendritic spines, which formed between AOB neurons, were observed frequently. In contrast, many synapses were formed on dendritic shafts under monoculture condition. The PSD of asymmetrical synapses on the spines under coculture condition was larger than that under monoculture condition. Moreover, some dendrodendritic reciprocal synapses were found only in coculture. We confirmed synapse formation between VN axons and AOB dendrites by immunohistochemical electron microscopy; thus, the characteristics of synapses between AOB neurons are considered to be modified by the synaptic contacts with VN axons.  相似文献   

8.
Tyrosine hydroxylase-immunoreactive fibres in the rat neostriatum were studied in the electron microscope in order to determine the nature of the contacts they make with other neural elements. The larger varicose parts of such fibres contained relatively few vesicles and rarely displayed synaptic membrane specializations; however, thinner parts of axons (0.1-0.4 micron) contained many vesicles and had symmetrical membrane specializations, indicative of en passant type synapses. By far the most common postsynaptic targets of tyrosine hydroxylase-immunoreactive boutons were dendritic spines and shafts, although neuronal cell bodies and axon initial segments also received such input. Six striatonigral neurons in the ventral striatum were identified by retrograde labelling with horseradish peroxidase and their dendritic processes were revealed by Golgi impregnation using the section-Golgi procedure. The same sections were also developed to reveal tyrosine hydroxylase immunoreactivity and so we were able to study immunoreactive boutons in contact with the Golgi-impregnated striatonigral neurons. Each of the 280 immunoreactive boutons examined in the electron microscope displayed symmetrical synaptic membrane specializations: 59% of the boutons were in synaptic contact with the dendritic spines, 35% with the dendritic shafts and 6% with the cell bodies of striatonigral neurons. The dendritic spines of striatonigral neurons that received input from immunoreactive boutons invariably also received input, usually more distally, from unstained boutons that formed asymmetrical synaptic specializations. A study of 87 spines along the dendrites of an identified striatonigral neuron showed that the most common type of synaptic input was from an individual unstained bouton making asymmetrical synaptic contact (53%), while 39% of the spines received one asymmetrical synapse and one symmetrical immunoreactive synapse. It is proposed that the spatial distribution of presumed dopaminergic terminals in synaptic contact with different parts of striatonigral neurons has important functional implications. Those synapses on the cell body and proximal dendritic shafts might mediate a relatively non-selective inhibition. In contrast, the major dopaminergic input that occurs on the necks of dendritic spines is likely to be highly selective since it could prevent the excitatory input to the same spines from reaching the dendritic shaft. One of the main functions of dopamine released from nigrostriatal fibres might thus be to alter the pattern of firing of striatal output neurons by regulating their input.  相似文献   

9.
Pyramidal cells of regio inferior in slice cultures of the rat hippocampus were impaled and intracellularly stained with horseradish peroxidase. A correlated light- and electron-microscopic analysis was then performed to study the properties of these neurons under culture conditions with particular emphasis on input synapses onto these cells. Like pyramidal cells in situ, CA3 pyramidal neurons in slice cultures had a triangular cell body with an apical stem dendrite emerging from it. Several basal dendrites and the axon arose from the basal pole of the cell body. The peripheral thin branches of both apical and basal dendrites were covered with small spines, whereas proximal thick dendritic segments and portions of the cell body exhibited large spines or excrescences. The axon gave off numerous fine varicose collaterals which projected to stratum radiatum of CA1 (Schaffer collaterals), to the alveus and to the hilar region. In one case a collateral could be followed to stratum moleculare of the fascia dentata. Electron-microscopic analysis of the injected pyramidal neurons revealed that their cell bodies, dendritic shafts and spines formed synaptic contacts with presynaptic terminals. Mossy fiber endings were identified by their large size and their numerous clear synaptic vesicles with some dense-core vesicles intermingled, and were observed to form synaptic contacts on the large spines or excrescences. Since extrinsic afferents degenerate in slice cultures, the numerous synaptic boutons on the identified pyramidal neurons probably arise from axons of intrinsic neurons that have sprouted in response to deafferentation. This assumption is supported by the finding that collaterals of the injected neurons formed abundant synaptic contacts on dendritic shafts and spines of other cells. These results suggest that, although pyramidal cells under culture conditions retain a remarkable number of their normal characteristics, considerable synaptic reorganization does take place.  相似文献   

10.
本研究用免疫组织化学方法观察了 Calbindin D-2 8k( CB)样和 Parvalbumin ( PV)样胞体、纤维和终末在三叉神经脊束核尾侧亚核 ( Vc) 层内的分布及它们的突触联系。在光镜下观察到 CB样和 PV样阳性胞体、纤维和终末在 II层内侧带 ( IIi)最为密集 ,PV样阳性神经元的胞体稍大 ,但数量少于 CB样阳性神经元。在电镜下观察到 CB样或 PV样阳性结构主要形成下列 4种突触联系 :( 1)阳性轴突终末与阳性或阴性轴突终末形成对称性轴 -轴突触和少量非对称性轴 -轴突触 ;( 2 )阳性轴突终末与阳性树突形成非对称性和对称性轴 -树突触 ;( 3 ) CB样阳性轴突终末与阴性树突主要形成非对称性轴 -树突触 ,PV样阳性轴突终末与阴性树突主要形成对称性轴 -树突触 ;( 4 )阴性轴突终末与阳性树突形成非对称性和对称性轴 -树突触。另外还可见到 CB样或PV样阳性或阴性树突、轴突及终末与 CB样、PV样阳性或阴性的初级传入纤维终末形成 型和 II型突触小球。 型突触小球数量较多 ,有典型的扇贝样初级传入纤维终末和不均一的小泡 ,线粒体少 ;II型突触小球的初级传入纤维终末粗大而清亮 ,外观不规则 ,有均匀一致的小泡和丰富的线粒体。根据上述结果可以推知在面口部伤害性信息的传递和调控过程中 ,Vc II层神经元发挥着重要的作用  相似文献   

11.
Summary Two different antisera to leucine-enkephalin were used to study the localization of enkephalin-like immunoreactive material in the neostriatum and globus pallidus of the rat, by means of the unlabelled antibody-enzyme method. Thin immunoreactive varicose fibres are scattered throughout the neostriatum. In the ventral striatum, fibres come together and follow a relatively straight course for several micrometers, forming tube-like structures which can be traced to cell bodies; these cell bodies are completely surrounded by immunoreactive fibres. Occasional immunoreactive varicose fibres are also found close to another type of neuron throughout the whole neostriatum.Examination by electron microscopy of immunoreactive structures that had been identified first in the light microscope, showed that each of the nearly 200 varicosities examined was a vesicle-containing bouton that formed a synaptic contact. Rarely were asymmetrical synaptic contacts found between immunoreactive boutons and dendritic spines. All other synapses formed by enkephalin-immunoreactive boutons were symmetrical. Two types of postsynaptic neuron were identified; the first type was a medium-sized neuron with the ultrastructural features of a typical striatal spiny neuron. The second type had a larger perikaryon surrounded by numerous immunoreactive varicosities that were found to be boutons forming symmetrical synapses. The long dendrites of this second type of neuron likewise received a dense input of immunoreactive boutons forming symmetrical synapses; such ensheathed dendrites were found to be the tube-like structures seen in the light microscope. The ultrastructural features of these neurons, notably a highly indented nucleus, were those of a rare type of striatonigral neuron. In the globus pallidus, all the enkaphalin-immunoreactive boutons studied formed symmetrical synapses with ensheathed dendrites and perikarya that were similar to the latter type of postsynaptic neuron in the neostriatum. Axo-axonic synapses involving immunoreactive boutons were not seen in our material.The results are consistent with the view that enkephalin-like substances may be synaptic transmitters in the neostriatum and that they may have different actions according to the nature of the postsynaptic target. The finding that one type of neostriatal neuron, and a very similar neuron in the globus pallidus, receives multiple enkephalin-immunoreactive boutons all over its perikaryon and along its dendrites indicates a potentially important role of enkephalin in the convergence of information within the neostriatum and pallidum on to output neurons.  相似文献   

12.
Summary We have been studying the fine structural organization of slice cultures prepared from the visual cortex of 6-day-old rats and cultured for 2 weeks using a roller culture technique. Neurons in culture exhibited the characteristic cytological differences between perikarya, axons and dendrites. Neuronal and glial processes formed a dense neuropil with minimal extracellular spaces, and within the neuropil there were numerous synaptic contacts. Both morphological types of cortical synapses, type I (asymmetrical) and type II (symmetrical) could be readily identified in slice cultures. The pattern of synaptic connections in culture was remarkably similar to that observed in normal cerebral cortex: asymmetrical synapses were usually found in contact with dendritic spines, less frequently with dendritic shafts, and never on perikarya, whereas symmetrical synapses were found mostly on perikarya, occasionally on dendritic shafts but never on dendritic spines. Synaptic morphology appeared mature after 2 weeksin vitro and did not show the immature features observed at the time of culture preparation. Taken together with our previous light microscopic studies, these results indicate that cortical slice cultures are organotypically organized and serve as a useful model to study mechanisms of cortical development and plasticity.  相似文献   

13.
The present study aimed to elucidate the distribution of betaine/gamma-aminobutyric acid (GABA) transporter-1 (BGT-1) in the normal monkey cerebral neocortex and hippocampus by immunoperoxidase and Immunogold labelling. BGT-1 was observed in pyramidal neurons in the cerebral neocortex and the CA fields of the hippocampus. Large numbers of small diameter dendrites or dendritic spines were observed in the neuropil. These made asymmetrical synaptic contacts with unlabelled axon terminals containing small round vesicles, characteristic of glutamatergic terminals. BGT-1 label was observed in an extra-perisynaptic region, away from the post-synaptic density. Immunoreactivity was not observed in portions of dendrites that formed symmetrical synapses, axon terminals, or glial cells. The distribution of BGT-1 on dendritic spines, rather than at GABAergic axon terminals, suggests that the transporter is unlikely to play a major role in terminating the action of GABA at a synapse. Instead, the osmolyte betaine is more likely to be the physiological substrate of BGT-1 in the brain, and the presence of the transporter in pyramidal neurons suggests that these neurons utilize betaine to maintain osmolarity.  相似文献   

14.
Dopaminergic (DA) inputs to the basolateral nuclear complex of the amygdala (BLC) are critical for several important functions, including reward-related learning, drug-stimulus learning, and fear conditioning. Despite the importance of the DA projection to the BLC, very little is known about which neuronal subpopulations are innervated. The present study utilized dual-labeling immunohistochemistry at the electron microscopic level to examine DA inputs to pyramidal cells in the anterior basolateral amygdalar nucleus (BLa) in the rat. DA axon terminals and BLa pyramidal cells were labeled using antibodies to tyrosine hydroxylase (TH) and calcium/calmodulin-dependent protein kinase II (CaMK), respectively. Serial section reconstructions of TH-positive (TH+) terminals were performed to determine the extent to which these axon terminals formed synapses versus non-synaptic appositions in the BLa. Our results demonstrate that at least 77% of TH+ terminals form synapses in the BLa, and that 90% of these synapses are with pyramidal cells. The distal dendritic compartment received the great majority of these synaptic contacts, with CaMK+ distal dendrites and spines receiving one-third and one-half, respectively, of all synaptic inputs to pyramidal cells. Many spines receiving innervation from TH+ terminals also received asymmetrical synaptic inputs from putative excitatory terminals. In addition, TH+ terminals often formed non-synaptic appositions with axon terminals, most of which were putatively excitatory in that they were CaMK+ and/or made asymmetrical synapses. Thus, using CaMK as a marker, the present study demonstrates that pyramidal cells, especially their distal dendritic compartments, are the primary targets of dopaminergic inputs to the basolateral amygdala.  相似文献   

15.
用细胞内HRP染色的方法显示该神经元位于猫运动皮层十字沟后,在第Ⅱ/Ⅲ层之间(软膜以下438μm处),胞体截面积为15.6×28.1μm~2,呈多极形,树突呈串珠状,向四周扩展,无侧棘,轴突由胞体下方伸出,返折向上,包绕胞体周围,以软膜平行的吻尾方向行走为主,有一分枝向白质方向延伸.从立体重构图的不同角度观察,其形态不对称,如沿X轴方向旋转60°后,其形态呈扁平形,用胶体金免疫电镜观察,该神经元的递质性质为GABA能的.胞体及树突上分布有非对称型和对称型的突触,对称型的突触中有的是GABA能的,有的是非GABA能的.其轴突有髓鞘包绕,末梢与其它神经元的胞体形成一处以上相连或不相连的对称型突触,也可与其它树突形成对称型的突触.根据该神经元的形态,递质性质及突触分布的特征,可确认它是篮状细胞.  相似文献   

16.
Summary The sites of termination of afferents from the lateral geniculate nucleus to layer IV and lower layer III in area 17 of the rat visual cortex have been determined by use of a combined degeneration—Golgi/EM technique. Degeneration of geniculocortical axon terminals was produced by making lesions in the lateral geniculate body. After the animals had been allowed to survive for two days, the ipsilateral visual cortex was removed and impregnated by the Golgi technique. Suitably impregnated neurons and their processes in layer IV and lower layer III were then gold-toned and deimpregnated for examination in the electron microscope. A search was made for synapses between degenerating axon terminals and the gold-labelled postsynaptic neurons.Geniculocortical synapses were found to involve: (1) the spines of basal dendrites, as well as those of proximal shafts and collaterals of apical dendrites of layer III pyramidal neurons; (2) the spines of the apical dendritic shafts and collaterals of layer V pyramidal neurons; (3) the perikaryon and dendritic spines of a sparsely-spined stellate cell; and (4) the perikaryon and dendrites of a smooth, bitufted stellate cell. In view of this variety of postsynaptic elements it is suggested that all parts of the perikarya and dendrites of neurons contained in layer IV and lower layer III which are capable of forming asymmetric synapses can be postsynaptic to the thalamic input.Finally, an analysis of the known neuronal interrelations within the rat visual cortex is presented.  相似文献   

17.
Summary Previous work has shown that the dendritic spines of pyramidal neurons of the cerebral cortex are sensitive to a wide variety of environmental and surgical manipulations. The present study shows that the normal aging process also affects these spines. The spines were studied with the light microscope in Golgi preparations from rats ranging in age from 3 to 29.5 months. Visible spines were counted on either 25 or 50 segments of the basal dendrites, apical dendrites, oblique branches, and terminal tufts of layer V pyramidal cells in area 17. A progressive loss of spines occurred at each of these loci. The smallest observed spine loss (24%) occurred on the dendrites of the terminal tuft, and the largest (40%) on the oblique branches. Age-related spine loss appears to affect all animals, and for animals of any one age the overall loss is similar. However, the cell-to-cell variability within an individual animal is pronounced, some cells with high spine densities being present at every age examined. As a general rule, there is a positive relationship between visible spine density along the apical dendrite as it traverses layer IV and the thickness of the dendrite. With advancing age, the relatively thick dendrites decrease in number so that the thinner dendrites make up an increasingly larger proportion of the total apical dendrite population. Questions that remain for the future include the genesis of the spine loss, its relation to other aging changes, and its functional significance for the neuron.Supported by United States Public Health Service Program Project Grant HDO-5796-03 and Research Grant NB-07016  相似文献   

18.
Ruan YW  Zou B  Fan Y  Li Y  Lin N  Zeng YS  Gao TM  Yao Z  Xu ZC 《Neuroscience》2006,140(1):191-201
Dendrites and spines undergo dynamic changes in physiological conditions, such as learning and memory, and in pathological conditions, such as Alzheimer's disease and epilepsy. Long-term dendritic plasticity has also been reported after ischemia/hypoxia, which might be compensatory effects of surviving neurons for the functional recovery after the insults. However, the dendritic changes shortly after ischemia, which might be associated with the pathogenesis of ischemic cell death, remain largely unknown. To reveal the morphological changes of ischemia-vulnerable neurons after ischemia, the present study investigated the alteration of dendritic arborization of CA1 pyramidal neurons in rats after transient cerebral ischemia using intracellular staining technique in vivo. The general appearance of dendritic arborization of CA1 neurons within 48 h after ischemia was similar to that of control neurons. However, a dramatic increase of dendritic disorientation was observed after ischemia with many basal dendrites coursed into the territory of apical dendrites and apical dendrites branched into the region of basal dendrites. In addition, a significant increase of apical dendritic length was found 24 h after ischemia. The increase of dendritic length after ischemia was mainly due to the dendritic sprouting rather than the extension of individual dendrites, which mainly occurred in the middle segment of the apical dendrites. These results reveal a plasticity change in dendritic arborization of CA1 neurons shortly after cerebral ischemia.  相似文献   

19.
We have examined the functional and morphological characteristics of synapses made by perforant path fibres projecting from the entorhinal cortex to the medial zone of the dentate area in adult rats which had been X-irradiated at birth, a procedure which prevents the proliferation of granule cells in that zone. We provide ultrastructural evidence that perforant path fibres in this region make synaptic contact with dendritic spines, and demonstrate that these synapses generate functional responses when the perforant path is stimulated. The evidence suggests that aberrant functional connections are made with the elongated basal dendrites of pyramidal cells.  相似文献   

20.
Summary Two synapsing and impregnated neurons in the rat visual cortex have been examined by a combined Golgi-electron microscope technique in which the Golgi precipitate is replaced by gold particles. One of the neurons is a stellate cell with smooth dendrites and a well impregnated axon, while the other is a layer III pyramidal neuron. Light microscopy showed some boutons from the axonal plexus of the stellate cell closely apposed to the soma and dendrites of the pyramid and it was predicted that synapses were present at these sites. An electron microscopic examination of serial thin sections, in which the profiles of the impregnated neurons are marked by their content of gold particles, showed most of these predicted synapses to exist. Indeed, axon terminals of the stellate cell formed five symmetric synapses with the cell body of the pyramid, one with the apical dendritic shaft and three with basal dendrites. Reasons are given for believing these synapses to be inhibitory.In addition, it was found that one of the axon terminals of the stellate cell synapsed with one of that cell's own dendrites. The significance of this finding is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号