首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 387 毫秒
1.
In this functional magnetic resonance imaging study, we explored the effects of both stimulus material and encoding task demands on activation in lateral prefrontal cortex (PFC). Two factors were manipulated: material type and task instructions. Subjects encoded words or abstract figures (factor 1: stimulus type) and were required to make either a meaning-based or a form-based (letter or shape) decision about each stimulus (factor 2: task instructions). Abstract figures engendered significantly higher levels of right PFC activity than did words. This effect was seen for meaning-based and form-based processing tasks and was significantly greater for the former. We did not observe a differential response of left lateral PFC to verbal and pictorial material. A double dissociation, however, was found within left PFC. A ventrolateral region (within left inferior frontal gyrus) showed the highest levels of activity when words were processed according to their meaning whereas activity in a more dorsolateral region (within left middle frontal gyrus) was greatest when words were processed according to their form (constituent letters). We have therefore observed a main effect of material type in producing lateralized activation of frontal lobes, although the strength of this effect is sensitive to the nature of the task that subjects are asked to perform. Left-side lateral PFC activity is also sensitive to task instructions but this effect was specific to verbal material. The complex patterns of frontal effect counsel against any simple dichotomy of frontal function at the level of either material or task type.  相似文献   

2.
Early elementary schooling in 2nd and 3rd grades (ages 7-9) is an important period for the acquisition and mastery of basic mathematical skills. Yet, we know very little about neurodevelopmental changes that might occur over a year of schooling. Here we examine behavioral and neurodevelopmental changes underlying arithmetic problem solving in a well-matched group of 2nd (n = 45) and 3rd (n = 45) grade children. Although 2nd and 3rd graders did not differ on IQ or grade- and age-normed measures of math, reading and working memory, 3rd graders had higher raw math scores (effect sizes = 1.46-1.49) and were more accurate than 2nd graders in an fMRI task involving verification of simple and complex two-operand addition problems (effect size = 0.43). In both 2nd and 3rd graders, arithmetic complexity was associated with increased responses in right inferior frontal sulcus and anterior insula, regions implicated in domain-general cognitive control, and in left intraparietal sulcus (IPS) and superior parietal lobule (SPL) regions important for numerical and arithmetic processing. Compared to 2nd graders, 3rd graders showed greater activity in dorsal stream parietal areas right SPL, IPS and angular gyrus (AG) as well as ventral visual stream areas bilateral lingual gyrus (LG), right lateral occipital cortex (LOC) and right parahippocampal gyrus (PHG). Significant differences were also observed in the prefrontal cortex (PFC), with 3rd graders showing greater activation in left dorsal lateral PFC (dlPFC) and greater deactivation in the ventral medial PFC (vmPFC). Third graders also showed greater functional connectivity between the left dlPFC and multiple posterior brain areas, with larger differences in dorsal stream parietal areas SPL and AG, compared to ventral stream visual areas LG, LOC and PHG. No such between-grade differences were observed in functional connectivity between the vmPFC and posterior brain regions. These results suggest that even the narrow one-year interval spanning grades 2 and 3 is characterized by significant arithmetic task-related changes in brain response and connectivity, and argue that pooling data across wide age ranges and grades can miss important neurodevelopmental changes. Our findings have important implications for understanding brain mechanisms mediating early maturation of mathematical skills and, more generally, for educational neuroscience.  相似文献   

3.
A recent consistent finding in neuroimaging studies of human memory is that the prefrontal cortex (PFC) is activated during episodic memory retrieval. To date, however, there has been no direct evidence to explain how activity in the right and left PFC and in the anterior and posterior PFC are functionally interconnected. The goal of the present study was to obtain such evidence by event-related functional magnetic resonance imaging (MRI) and the functional connectivity method. Subjects were first asked to try to remember a series of associate-word lists outside the MRI scanner in preparation for a later recognition test. In the MRI scanning phase, they were asked to make recognition judgments in regard to old words, semantically related lure words, and unrelated new words. The analysis of functional connectivity revealed that the posterior PFC in each hemisphere had strong functional interconnections with the contralateral posterior PFC, whereas the anterior PFC in each hemisphere had only weak functional interconnections with the contralateral anterior PFC. No strong functional interconnections were found between the anterior and posterior PFC in either hemisphere. These findings support the hypothesis of an associative contribution of the bilateral posterior PFC to episodic memory retrieval and a dissociative contribution of the bilateral anterior PFC.  相似文献   

4.
Growing evidence suggests that age-related deficits in associative memory are alleviated when the to-be-associated items are semantically related. Here we investigate whether this beneficial effect of semantic relatedness is paralleled by spatio-temporal changes in cortical EEG dynamics during incidental encoding. Young and older adults were presented with faces at a particular spatial location preceded by a biographical cue that was either semantically related or unrelated. As expected, automatic encoding of face-location associations benefited from semantic relatedness in the two groups of age. This effect correlated with increased power of theta oscillations over medial and anterior lateral regions of the prefrontal cortex (PFC) and lateral regions of the posterior parietal cortex (PPC) in both groups. But better-performing elders also showed increased brain-behavior correlation in the theta band over the right inferior frontal gyrus (IFG) as compared to young adults. Semantic relatedness was, however, insufficient to fully eliminate age-related differences in associative memory. In line with this finding, poorer-performing elders relative to young adults showed significant reductions of theta power in the left IFG that were further predictive of behavioral impairment in the recognition task. All together, these results suggest that older adults benefit less than young adults from executive processes during encoding mainly due to neural inefficiency over regions of the left ventrolateral prefrontal cortex (VLPFC). But this associative deficit may be partially compensated for by engaging preexistent semantic knowledge, which likely leads to an efficient recruitment of attentional and integration processes supported by the left PPC and left anterior PFC respectively, together with neural compensatory mechanisms governed by the right VLPFC.  相似文献   

5.
Price GR  Ansari D 《NeuroImage》2011,57(3):1205-1211
Arabic digits are one of the most ubiquitous symbol sets in the world. While there have been many investigations into the neural processing of the semantic information digits represent (e.g. through numerical comparison tasks), little is known about the neural mechanisms which support the processing of digits as visual symbols. To characterise the component neurocognitive mechanisms which underlie numerical cognition, it is essential to understand the processing of digits as a visual category, independent of numerical magnitude processing. The 'Triple Code Model' (Dehaene, 1992; Dehaene and Cohen, 1995) posits an asemantic visual code for processing Arabic digits in the ventral visual stream, yet there is currently little empirical evidence in support of this code. This outstanding question was addressed in the current functional Magnetic Resonance (fMRI) study by contrasting brain responses during the passive viewing of digits versus letters and novel symbols at short (50 ms) and long (500 ms) presentation times. The results of this study reveal increased activation for familiar symbols (digits and letters) relative to unfamiliar symbols (scrambled digits and letters) at long presentation durations in the left dorsal Angular gyrus (dAG). Furthermore, increased activation for Arabic digits was observed in the left ventral Angular gyrus (vAG) in comparison to letters, scrambled digits and scrambled letters at long presentation durations, but no digit specific activation in any region at short presentation durations. These results suggest an absence of a digit specific 'Visual Number Form Area' (VNFA) in the ventral visual cortex, and provide evidence for the role of the left ventral AG during the processing of digits in the absence of any explicit processing demands. We conclude that Arabic digit processing depends specifically on the left AG rather than a ventral visual stream VNFA.  相似文献   

6.
The chronology of the component processes subserving working memory (WM) and hemodynamic response lags has hindered the use of fMRI for exploring neural substrates of WM. In the present study, however, participants completed full trials that involved encoding two or six letters, maintaining the memory set over a delay, and then deciding whether a probe was in the memory set or not. Additionally, they completed encode-only, encode-and-maintain, and encode-and-decide partial trials intermixed with the full trials. The inclusion of partial trials allowed for the isolation of BOLD signal changes to the different trial periods. The results showed that only lateral and medial prefrontal cortex regions differentially responded to the 2- and 6-letter memory sets over the trial periods, showing greater activation to 6-letter sets during the encode and maintain trial periods. Thus, the data showed the differential involvement of PFC in the encoding and maintenance of supra- and sub-capacity memory sets and show the efficacy of using fMRI partial trial methods to study WM component processes.  相似文献   

7.
Faces are processed by a neural system with distributed anatomical components, but the roles of these components remain unclear. A dominant theory of face perception postulates independent representations of invariant aspects of faces (e.g., identity) in ventral temporal cortex including the fusiform gyrus, and changeable aspects of faces (e.g., emotion) in lateral temporal cortex including the superior temporal sulcus. Here we recorded neuronal activity directly from the cortical surface in 9 neurosurgical subjects undergoing epilepsy monitoring while they viewed static and dynamic facial expressions. Applying novel decoding analyses to the power spectrogram of electrocorticograms (ECoG) from over 100 contacts in ventral and lateral temporal cortex, we found better representation of both invariant and changeable aspects of faces in ventral than lateral temporal cortex. Critical information for discriminating faces from geometric patterns was carried by power modulations between 50 to 150 Hz. For both static and dynamic face stimuli, we obtained a higher decoding performance in ventral than lateral temporal cortex. For discriminating fearful from happy expressions, critical information was carried by power modulation between 60–150 Hz and below 30 Hz, and again better decoded in ventral than lateral temporal cortex. Task-relevant attention improved decoding accuracy more than10% across a wide frequency range in ventral but not at all in lateral temporal cortex. Spatial searchlight decoding showed that decoding performance was highest around the middle fusiform gyrus. Finally, we found that the right hemisphere, in general, showed superior decoding to the left hemisphere. Taken together, our results challenge the dominant model for independent face representation of invariant and changeable aspects: information about both face attributes was better decoded from a single region in the middle fusiform gyrus.  相似文献   

8.
The prefrontal cortex (PFC) plays a fundamental role in internally guided behavior. Although it is generally accepted that PFC subserves working memory and executive control operations, it remains unclear whether the subregions within lateral PFC support distinct executive control processes. An event-related fMRI study was implemented to test the hypothesis that ventrolateral and dorsolateral PFC are functionally distinct, as well as to assess whether functional specialization exists within ventrolateral PFC. Participants performed two executive control tasks that differed in the types of control processes required. During rote rehearsal, participants covertly rehearsed three words in the order presented, thus requiring phonological access and maintenance. During elaborative rehearsal, participants made semantic comparisons between three words held in working memory, reordering them from least to most desirable. Thus, in addition to maintenance, elaborative rehearsal required goal-relevant coding of items in working memory ("monitoring") and selection from among the items to implement their reordering. Results revealed that left posterior ventrolateral PFC was active during performance of both tasks, whereas right dorsolateral PFC was differentially engaged during elaborative rehearsal. The temporal characteristics of the hemodynamic responses further suggested that dorsolateral activation lagged ventrolateral activation. Finally, differential activation patterns were observed within left ventrolateral PFC, distinguishing between posterior and anterior regions. These data suggest that anatomically separable subregions within lateral PFC may be functionally distinct and are consistent with models that posit a hierarchical relationship between dorsolateral and ventrolateral regions such that the former monitors and selects goal-relevant representations being maintained by the latter.  相似文献   

9.
Weissman DH  Prado J 《NeuroImage》2012,61(4):798-804
To enable unexpected shifts of covert visual spatial attention, a ventral attention network is thought to dampen activity in a dorsal attention network that maintains the current focus of attention. However, direct evidence to support this view is scarce. In the present study, we investigated this hypothesis by asking healthy young adults to perform a covert visual spatial attention task while their brain activity was recorded with functional magnetic resonance imaging (fMRI). In each trial, participants discriminated the orientation of a target-colored letter in the cued visual field (valid trials) or, occasionally, in the uncued visual field (invalid trials). Consistent with prior work, the ventral attention network was more active in invalid trials than in valid trials. Most importantly, functional connectivity analyses revealed that an increase of activity in the right inferior frontal gyrus (a key region of the ventral attention network) was linked to smaller increases of activity in (a) the right inferior parietal lobe (a key region of the dorsal attention network) and (b) the left dorsolateral prefrontal cortex and dorsal anterior cingulate cortex (other regions enabling the control of attention) in invalid trials, relative to valid trials. These findings provide novel support for the view that key regions of the ventral attention network help to enable unexpected shifts of covert visual spatial attention by dampening activity in brain regions that participate in maintaining the current focus of attention.  相似文献   

10.
In the task-switching paradigm, reaction time is longer and accuracy is worse in switch trials relative to repetition trials. This so-called switch cost has been ascribed to the engagement of control processes required to alternate between distinct stimulus-response mapping rules. Neuroimaging studies have reported an enhanced activation of the human lateral prefrontal cortex and the superior frontal gyrus during the task-switching paradigm. Whether neural activation in these regions is dissociable and associated with separable cognitive components of task switching has been a matter of recent debate. We used multi-channel near-infrared spectroscopy (fNIRS) to measure brain cortical activity in a task-switching paradigm designed to avoid task differences, order predictability, and frequency effects. The results showed a generalized bilateral activation of the lateral prefrontal cortex and the superior frontal gyrus in both switch trials and repetition trials. To isolate the activity selectively associated with the task-switch, the overall activity recorded during repetition trials was subtracted from the activity recorded during switch trials. Following subtraction, the remaining activity was entirely confined to the left portion of the superior frontal gyrus. The present results suggest that factors associated with load and maintenance of distinct stimulus-response mapping rules in working memory are likely contributors to the activation of the lateral prefrontal cortex, whereas only activity in the left superior frontal gyrus can be linked unequivocally to switching between distinct cognitive tasks.  相似文献   

11.
The present study examined the functional association of the amygdala and right ventral prefrontal cortex (PFC) during cognitive evaluation of facial expressions. A situation was created where emotional valence of the stimuli was unconsciously manipulated by using subliminal affective priming. Twelve healthy volunteers were asked to evaluate the facial expressions of a target face (500-ms duration) such as "anger", "neutral", or "happy". All target faces expressed relatively weak anger. Just before the presentation of the target face, a prime of three conditions of 35-ms duration, angry face, neutral face, and white blank was presented. The subjects could not consciously identify the primes in this procedure. Activity in the right amygdala was greater with subliminal presentation of the angry prime compared with subliminal presentation of a neutral face or white-blank stimuli. Most importantly, the degree of activation of the right amygdala was negatively correlated with that of the right ventral PFC only with the anger prime. Furthermore, activation of the amygdala was positively correlated with rate of judgment when the subjects recognized anger in the target faces. These results are discussed in terms of the functional association between the right PFC and the amygdala and its influence on cognitive processing.  相似文献   

12.
13.
Brown MR  Vilis T  Everling S 《NeuroImage》2008,39(2):793-804
Previous functional magnetic resonance imaging (fMRI) studies have compared saccade trials and nogo trials, which required subjects to look at peripheral visual stimuli and to inhibit automatic saccades evoked by peripheral stimuli, respectively. These studies surprisingly reported no activation differences in cortical saccade regions between the two tasks, despite their opposite response requirements. Here, we re-examined this issue by comparing saccades and nogo trials using a rapid event-related fMRI design in which saccade trials were presented twice as frequently as nogo trials to make the saccade response more prepotent. We hypothesized that this should increase recruitment of response inhibition processes in the nogo task, thereby increasing fMRI activation on nogo trials. Saccade and nogo trials were presented in whole and half trial versions. Whereas whole trials included a trial type instruction followed by peripheral stimulus presentation and subject response, half trials included only the instruction component, allowing us to measure instruction-related activation separately from response-evoked signals for both saccades and nogo trials. Instruction-related activation was greater for nogo versus saccade trials in right frontal eye field, middle frontal gyrus, intraparietal sulcus, and precuneus, which we attribute to a mixture of preparatory and task switching processes. Response-related activation was greater for nogo trials in supplementary eye field, anterior cingulate cortex, inferior frontal gyrus, and right supramarginal gyrus, and we attribute these results to saccade inhibition and other processes associated with an increased requirement for inhibition of the automatic saccade in nogo trials.  相似文献   

14.
背景:平衡针治疗疾病疗效显著,但缺乏相关现代科学理论机制。目的:利用静息态脑功能成像技术探讨平衡针疗法的中枢作用机制。方法:纳入10例腰椎间盘突出腰腿痛患者及10例正常受试者,于平衡针针刺前后进行功能磁共振扫描,通过AFNI软件对与双侧杏仁核表现为显著联系的脑区进行功能连接分析,并对平衡针刺后腰椎间盘突出患者及正常受试者的脑功能连接的差异进行探讨。结果与结论:经平衡针治疗后10例腰椎间盘突出患者疼痛均有好转。脑功能连接分析显示腰椎间盘突出患者丘脑、脑干、腹前核、腹外侧核、额内侧回、额上回、额叶眶上回、额下回、颞上回、颞中回、海马回、扣带回、岛叶等脑区功能连接增强。正常受试者双侧颞中回、双侧眶上回、双侧尾状核头、双侧岛叶、左侧腹背侧核、双侧额上回、左侧额中回、前扣带回、右侧顶下小叶与杏仁核连接增强;双侧小脑齿状核、小脑蚓、左侧小脑坡、双侧舌回、左侧枕中回、右侧额上回、右侧中央前回、双侧顶下小叶、右侧顶上小叶、右侧中央后回与杏仁核连接下降。提示通过静息脑功能成像技术对杏仁核的研究有助于更深入理解平衡针灸治疗腰腿痛的中枢机制。  相似文献   

15.
Somatosensory feedback plays a critical role in the coordination of articulator movements for speech production. In response to unexpected resistance to lip or jaw movements during speech, fluent speakers can use the difference between the somatosensory expectations of a speech sound and the actual somatosensory feedback to adjust the trajectories of functionally relevant but unimpeded articulators. In an effort to investigate the neural substrates underlying the somatosensory feedback control of speech, we used an event-related sparse sampling functional magnetic resonance imaging paradigm and a novel pneumatic device that unpredictably blocked subjects' jaw movements. In comparison to speech, perturbed speech, in which jaw perturbation prompted the generation of compensatory speech motor commands, demonstrated increased effects in bilateral ventral motor cortex, right-lateralized anterior supramarginal gyrus, inferior frontal gyrus pars triangularis and ventral premotor cortex, and bilateral inferior posterior cerebellum (lobule VIII). Structural equation modeling revealed a significant increased influence from left anterior supramarginal gyrus to right anterior supramarginal gyrus and from left anterior supramarginal gyrus to right ventral premotor cortex as well as a significant increased reciprocal influence between right ventral premotor cortex and right ventral motor cortex and right anterior supramarginal gyrus and right inferior frontal gyrus pars triangularis for perturbed speech relative to speech. These results suggest that bilateral anterior supramarginal gyrus, right inferior frontal gyrus pars triangularis, right ventral premotor and motor cortices are functionally coupled and influence speech motor output when somatosensory feedback is unexpectedly perturbed during speech production.  相似文献   

16.
Geier CF  Garver KE  Luna B 《NeuroImage》2007,35(2):904-915
Extended maintenance delays decrease the accuracy of information stored in spatial working memory. In order to elucidate the network underlying sustained spatial working memory, 16 subjects were scanned using fast event-related fMRI as they performed an oculomotor delayed response task containing trials with "short" (2.5 s) or "long" (10 s) delay periods. Multiple cortical and subcortical regions were common to both delay trial types indicating core task regions. Three patterns of activity were found in a subset of core regions that reflect underlying processes: maintenance-related (e.g., left FEF, right supramarginal gyrus (SMG)), response planning-related (e.g., right FEF, SEF), and motor response-related (e.g., lateral cerebellum (declive)) activation. Several regions were more active during long than short delay trials, including multiple sites in DLPFC (BA 9, 46), indicating a circuitry dynamically recruited to support sustained working memory. Our results suggest that specialized brain processes support extended periods of working memory.  相似文献   

17.
Ranganath C  Heller AS  Wilding EL 《NeuroImage》2007,35(4):1663-1673
Although substantial evidence suggests that the prefrontal cortex (PFC) implements processes that are critical for accurate episodic memory judgments, the specific roles of different PFC subregions remain unclear. Here, we used event-related functional magnetic resonance imaging to distinguish between prefrontal activity related to operations that (1) influence processing of retrieval cues based on current task demands, or (2) are involved in monitoring the outputs of retrieval. Fourteen participants studied auditory words spoken by a male or female speaker and completed memory tests in which the stimuli were unstudied foil words and studied words spoken by either the same speaker at study, or the alternate speaker. On "general" test trials, participants were to determine whether each word was studied, regardless of the voice of the speaker, whereas on "specific" test trials, participants were to additionally distinguish between studied words that were spoken in the same voice or a different voice at study. Thus, on specific test trials, participants were explicitly required to attend to voice information in order to evaluate each test item. Anterior (right BA 10), dorsolateral prefrontal (right BA 46), and inferior frontal (bilateral BA 47/12) regions were more active during specific than during general trials. Activation in anterior and dorsolateral PFC was enhanced during specific test trials even in response to unstudied items, suggesting that activation in these regions was related to the differential processing of retrieval cues in the two tasks. In contrast, differences between specific and general test trials in inferior frontal regions (bilateral BA 47/12) were seen only for studied items, suggesting a role for these regions in post-retrieval monitoring processes. Results from this study are consistent with the idea that different PFC subregions implement distinct, but complementary processes that collectively support accurate episodic memory judgments.  相似文献   

18.
Wu CY  Ho MH  Chen SH 《NeuroImage》2012,63(1):381-391
A growing body of neuroimaging evidence has shown that Chinese character processing recruits differential activation from alphabetic languages due to its unique linguistic features. As more investigations on Chinese character processing have recently become available, we applied a meta-analytic approach to summarize previous findings and examined the neural networks for orthographic, phonological, and semantic processing of Chinese characters independently. The activation likelihood estimation (ALE) method was used to analyze eight studies in the orthographic task category, eleven in the phonological and fifteen in the semantic task categories. Converging activation among three language-processing components was found in the left middle frontal gyrus, the left superior parietal lobule and the left mid-fusiform gyrus, suggesting a common sub-network underlying the character recognition process regardless of the task nature. With increasing task demands, the left inferior parietal lobule and the right superior temporal gyrus were specialized for phonological processing, while the left middle temporal gyrus was involved in semantic processing. Functional dissociation was identified in the left inferior frontal gyrus, with the posterior dorsal part for phonological processing and the anterior ventral part for semantic processing. Moreover, bilateral involvement of the ventral occipito-temporal regions was found for both phonological and semantic processing. The results provide better understanding of the neural networks underlying Chinese orthographic, phonological, and semantic processing, and consolidate the findings of additional recruitment of the left middle frontal gyrus and the right fusiform gyrus for Chinese character processing as compared with the universal language network that has been based on alphabetic languages.  相似文献   

19.
Goel V  Dolan RJ 《NeuroImage》2003,20(4):2314-2321
Logic is widely considered the basis of rationality. Logical choices, however, are often influenced by emotional responses, sometimes to our detriment, sometimes to our advantage. To understand the neural basis of emotionally neutral ("cold") and emotionally salient ("hot") reasoning we studied 19 volunteers using event-related fMRI, as they made logical judgments about arguments that varied in emotional saliency. Despite identical logical form and content categories across "hot" and "cold" reasoning conditions, lateral and ventral medial prefrontal cortex showed reciprocal response patterns as a function of emotional saliency of content. "Cold" reasoning trials resulted in enhanced activity in lateral/dorsal lateral prefrontal cortex (L/DLPFC) and suppression of activity in ventral medial prefrontal cortex (VMPFC). By contrast, "hot" reasoning trials resulted in enhanced activation in VMPFC and suppression of activation in L/DLPFC. This reciprocal engagement of L/DLPFC and VMPFC provides evidence for a dynamic neural system for reasoning, the configuration of which is strongly influenced by emotional saliency.  相似文献   

20.
Zhao J  Li QL  Wang JJ  Yang Y  Deng Y  Bi HY 《NeuroImage》2012,60(1):419-425
The present study examined the neural basis of phonological processing in Chinese later acquired as a second language (L2). The regularity effect of Chinese was selected to elucidate the addressed phonological processing. We recruited a group of alphabetic language speakers who had been learning Chinese as L2 for at least one year, and a control group of native Chinese speakers. Participants from both groups exhibited a regularity effect in a pilot behavioral test. Neuroimaging results revealed that L2 learners exhibited stronger activation than native Chinese speakers in the right occipitotemporal region (i.e. right lingual gyrus and right fusiform gyrus). Moreover, L2 learners exhibited greater activations in the ventral aspects of the left inferior parietal lobule (LIPL) and the left inferior frontal gyrus (LIFG) for irregular character reading minus regular character reading. In contrast, native Chinese speakers exhibited more dorsal activations in the LIPL and LIFG. According to the "accommodation/assimilation" hypothesis of second language reading, the current findings suggest that native speakers of alphabetic languages utilized an accommodation pattern for the specific requirements of the visual form of Chinese characters, and an assimilation pattern for orthography-to-phonology transformation in Chinese reading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号