首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Frequent hypermethylation of the RASSF1A gene in prostate cancer   总被引:16,自引:0,他引:16  
Liu L  Yoon JH  Dammann R  Pfeifer GP 《Oncogene》2002,21(44):6835-6840
  相似文献   

3.
The human Ras association domain family 1A (RASSF1A) gene, recently isolated from the lung and breast tumor suppressor locus 3p21.3, is highly methylated in primary lung, breast, nasopharyngeal and other tumors, and re-expression of RASSF1A suppresses the growth of several types of cancer cells. Epigenetic inactivation of RASSF1A by promoter hypermethylation is also important in the development of several human cancers. The methylation status of the promoter region of RASSF1A was analysed in primary brain tumors and glioma cell lines by methylation-specific polymerase chain reaction. In primary brain tumors, 25 of 46 (54.3%) gliomas and five of five (100%) medulloblastomas showed RASSF1A methylation. In benign tumors, only one of 10 (10%) schwannomas and two of 12 (16.7%) meningiomas showed RASSF1A methylation. The RASSF1A promoter region was methylated in all four glioma cell lines. RASSF1A was re-expressed in all methylated cell lines after treatment with the demethylating agent 5-aza-2'-deoxycytidine. Methylation of the promoter CpG islands of the RASSF1A may play an important role in the pathogenesis of glioma and medulloblastoma.  相似文献   

4.
5.
6.
RAS相关家族1A基因在胃癌中的表达和启动子甲基化   总被引:1,自引:1,他引:1  
董剑  彭志海  王兆文  裘国强 《肿瘤》2005,25(6):589-592
目的分析散发性胃癌中RAS相关家族1A基因(RASSF1A基因)的表达、突变和启动子甲基化状况,探讨RASSF1A基因在胃癌发生、发展中的意义.方法采用定量PCR、RT-PCR和SSCP的检测90例胃癌组织和30例相应癌旁正常组织中RASSF1A基因表达水平以及基因突变的情况;采用甲基化特异性PCR (MSP)方法检测RASSF1A基因启动子甲基化情况.结果 90例胃癌中有52例(57.8%)RASSF1A无表达或表达低下.RASSF1A无表达或表达低下和肿瘤细胞的分化(P<0.05)以及分期(P<0.001)相关,但是和肿瘤的浸润深度以及淋巴结转移不相关(P>0.05).90例胃癌中52例启动子发生甲基化(57.8%),其中90.3%(47/52)的RASSF1A无表达或表达低下组织中检测到RASSF1A基因启动子的甲基化,然而癌旁正常组织未发现有RASSF1A基因启动子的甲基化,SSCP没有发现任何突变.结论胃癌中存在较多的启动子异常甲基化造成RASSF1A基因失活,这可能是胃癌发生发展的因素之一.  相似文献   

7.
8.
O6-methylguanine-DNA methyltransferase (MGMT) repairs the cytotoxic and mutagenic O6-alkylguanine produced by alkylating agents such as chemotherapeutic agents and mutagens. Recent studies have shown that in a subset of tumors, MGMT expression is inversely linked to hypermethylation of the CpG island in the promoter region; however, how the epigenetic silencing mechanism works, as it relates to hypermethylation, was still unclear. To understand the mechanism, we examined the detailed methylation status of the whole island with bisulfite-sequencing in 19 MGMT non-expressed cancer cell lines. We found two highly methylated regions in the island. One was upstream of exon 1, including minimal promoter, and the other was downstream, including enhancer. Reporter gene assay showed that methylation of both the upstream and downstream regions suppressed luciferase activity drastically. Chromatin immunoprecipitation assay revealed that histone H3 lysine 9 was hypermethylated throughout the island in the MGMT negative line, whereas acetylation on H3 and H4 and methylation on H3 lysine 4 were at significantly high levels outside the minimal promoter in the MGMT-expressed line. Furthermore, MeCP2 preferentially bound to the CpG-methylated island in the MGMT negative line. Given these results, we propose a model for gene silencing of MGMT that is dependent on the epigenetic state in cancer.  相似文献   

9.
Gene silencing associated with aberrant methylation of promoter region CpG islands is an acquired epigenetic alteration that serves as an alternative to genetic defects in the inactivation of tumor suppressor and other genes in human cancers. The hypothesis that aberrant methylation plays a direct causal role in carcinogenesis hinges on the question of whether aberrant methylation is sufficient to drive gene silencing. To identify downstream targets of methylation-induced gene silencing, we used a human cell model in which aberrant CpG island methylation is induced by ectopic expression of DNA methyltransferase. Here we report the isolation and characterization of TMS1 (target of methylation-induced silencing), a novel CpG island-associated gene that becomes hypermethylated and silenced in cells overexpressing DNA cytosine-5-methyltransferase-1. We also show that TMS1 is aberrantly methylated and silenced in human breast cancer cells. Forty percent (11 of 27) of primary breast tumors exhibited aberrant methylation of TMS1. TMS1 is localized to chromosome 16p11.2-12.1 and encodes a 22-kDa predicted protein containing a COOH-terminal caspase recruitment domain, a recently described protein interaction motif found in apoptotic signaling molecules. Ectopic expression of TMS1 induced apoptosis in 293 cells and inhibited the survival of human breast cancer cells. The data suggest that methylation-mediated silencing of TMS1 confers a survival advantage by allowing cells to escape from apoptosis, supporting a new role for aberrant methylation in breast tumorigenesis.  相似文献   

10.
DNA methylation has a role in mediating epigenetic silencing of CpG island genes in cancer and other diseases. Identification of all gene promoters methylated in cancer cells "the cancer methylome" would greatly advance our understanding of gene regulatory networks in tumorigenesis. We previously described a new method of identifying methylated tumor suppressor genes based on pharmacologic unmasking of the promoter region and detection of re-expression on microarray analysis. In this study, we modified and greatly improved the selection of candidates based on new promoter structure algorithm and microarray data generated from 20 cancer cell lines of 5 major cancer types. We identified a set of 200 candidate genes that cluster throughout the genome of which 25 were previously reported as harboring cancer-specific promoter methylation. The remaining 175 genes were tested for promoter methylation by bisulfite sequencing or methylation-specific PCR (MSP). Eighty-two of 175 (47%) genes were found to be methylated in cell lines, and 53 of these 82 genes (65%) were methylated in primary tumor tissues. From these 53 genes, cancer-specific methylation was identified in 28 genes (28 of 53; 53%). Furthermore, we tested 8 of the 28 newly identified cancer-specific methylated genes with quantitative MSP in a panel of 300 primary tumors representing 13 types of cancer. We found cancer-specific methylation of at least one gene with high frequency in all cancer types. Identification of a large number of genes with cancer-specific methylation provides new targets for diagnostic and therapeutic intervention, and opens fertile avenues for basic research in tumor biology.  相似文献   

11.
Hesson LB  Wilson R  Morton D  Adams C  Walker M  Maher ER  Latif F 《Oncogene》2005,24(24):3987-3994
We report in silico identification and characterisation of a novel member of the ras association domain family 1 (RASSF1)/NORE1 family, namely, RASSF2, located at chromosomal region 20p13. It has three isoforms, all contain a ras association domain in the C-terminus. The longest isoform RASSF2A contains a 5' CpG island. RASSF2A was cloned from a brain cDNA library and directly sequenced, confirming the genomic gene structure. In previous reports, we and others have demonstrated that RASSF1A is epigenetically inactivated in a variety of cancers, including sporadic colorectal cancer (CRC). In the present report, we analysed the methylation status of RASSF2A promoter region CpG island in sporadic CRC and compared it to K-ras mutation status. RASSF2A promoter region CpG island was hypermethylated in a majority of colorectal tumour cell lines (89%) and in primary colorectal tumours (70%), while DNA from matched normal mucosa was found to be unmethylated (tumour-specific methylation). RASSF2A expression was reactivated in methylated tumour cell lines after treatment with 5-aza 2-deoxycytidine. RASSF2A methylation is an early event, detectable in 7/8 colon adenomas. Furthermore, 75% of colorectal tumours with RASSF2A methylation had no K-ras mutations (codons, 12 and 13) (P=0.048), Fisher's exact test). Our data demonstrate that RASSF2A is frequently inactivated in CRCs by CpG island promoter hypermethylation, and that epigenetic (RASSF2A) and genetic (K-ras) changes are mutually exclusive and provide alternative pathways for affecting Ras signalling.  相似文献   

12.
13.
Glioblastoma multiforme (GBM) is an incurable malignancy with inherent tendency to recur. In this study, we have comparatively analyzed the epigenetic profile of 32 paired tumor samples of relapsed GBM and their corresponding primary neoplasms with special attention to genes involved in the mitochondria-independent apoptotic pathway. The CpG island promoter hypermethylation status was assessed by methylation-specific polymerase chain reaction and selected samples were double checked by bisulfite genomic sequencing. Thirteen genes were analyzed for DNA methylation: the pro-apoptotic CASP8, CASP3, CASP9, DcR1, DR4, DR5 and TMS1; the cell adherence CDH1 and CDH13; the candidate tumor suppressor RASSF1A and BLU; the cell cycle regulator CHFR and the DNA repair MGMT. The CpG island promoter hypermethylation profile of relapsed GBM in comparison with their corresponding primary tumors was identical in 37.5% of the cases, whereas in 62.5% of patients, differences in the DNA methylation patterns of the 13 genes were observed. The most prominent distinction was the presence of previously undetected CASP8 hypermethylation in the GBM relapses (P = 0.031). This finding was also linked to the observation that an unmethylated CASP8 CpG island together with methylated BLU promoter in the primary GBM was associated with prolonged time to tumor progression (P = 0.0035). Our data strongly suggest that hypermethylation of the pro-apoptotic CASP8 is a differential feature of GBM relapses. These remarkable findings may foster the development of therapeutic approaches using DNA demethylating drugs and activators of the extrinsic apoptotic pathway to improve the dismal prognosis of GBM.  相似文献   

14.
15.
PURPOSE: The RAS-association domain family 1, isoform A (RASSF1A) gene is shown to be inactivated in prostate cancers. However, the molecular mechanism of silencing of the RASSFIA gene is not fully understood. The present study was designed to investigate the mechanisms of inactivation of the RASSF1A gene through the analysis of CpG methylation and histone acetylation and H3 methylation associated with the RASSF1A promoter region. EXPERIMENTAL DESIGN: Methylation status of the RASSF1A gene was analyzed in 131 samples of prostate cancer, 65 samples of benign prostate hypertrophy (BPH), and human prostate cell lines using methylation-specific PCR. Histone acetylation (acetyl-H3, acetyl-H4) and H3 methylation (dimethyl-H3-K4, dimethyl-H3-K9) status associated with the promoter region in prostate cells were analyzed by chromatin immunoprecipitation (ChIP) assay. RESULTS: Aberrant methylation was detected in 97 (74.0%) prostate cancer samples and 12 (18.5%) BPH samples. The methylation frequency of RASSF1A showed a significant increase with high Gleason sum and high stage. The ChIP assays showed enhancement of histone acetylation and dimethyl-H3-K4 methylation on the unmethylated RASSF1A promoter. TSA alone was unable to alter key components of the histone code. However, after 5-aza-2'-deoxy-cytidine treatment, there was a complete reversal of the histone components in the hypermethylated promoter. Levels of acetyl-H3, acetyl-H4, and dimethyl-H3-K4 became more enriched, whereas H3K9me2 levels were severely depleted. CONCLUSIONS: This is the first report suggesting that reduced histone acetylation or H3K4me2 methylation and increased dimethyl-H3-K9 methylation play a critical role in the maintenance of promoter DNA methylation-associated RASSF1A gene silencing in prostate cancer.  相似文献   

16.
CpG island hypermethylation is a frequent epigenetic event in cancer. We have recently developed an array-based method, called differential methylation hybridization (DMH), allowing for a genome-wide screening of CpG island hypermethylation in breast cancer cell lines (T. H-M. Huang et al., Hum. Mol. Genet., 8: 459-470, 1999). In the present study, DMH was applied to screen 28 paired primary breast tumor and normal samples and to determine whether patterns of specific epigenetic alterations correlate with pathological parameters in the patients analyzed. Amplicons, representing a pool of methylated CpG DNA derived from these samples, were used as hybridization probes in an array panel containing 1104 CpG island tags. Close to 9% of these tags exhibited extensive hypermethylation in the majority of breast tumors relative to their normal controls, whereas others had little or no detectable changes. Pattern analysis in a subset of CpG island tags revealed that CpG island hypermethylation is associated with histological grades of breast tumors. Poorly differentiated tumors appeared to exhibit more hypermethylated CpG islands than their moderately or well-differentiated counterparts (P = 0.041). This early finding lays the groundwork for a population-based DMH study and demonstrates the need to develop a database for examining large-scale methylation data and for associating specific epigenetic signatures with clinical parameters in breast cancer.  相似文献   

17.
Early-onset breast cancer is one of the most common malignancies and causes of death among young women, and its incidence is increasing. In the present study, we aimed to investigate the epigenetic modifications of the breast cancer type 1 susceptibility gene (BRCA1) in breast tissues and blood cells derived from women with breast cancer and women without breast cancer. BRCA1 promoter methylation was examined by methylation-specific PCR in 47 breast cancer tissues and in peripheral blood cells derived from 7 breast cancer patients and 73 healthy women. Subsequently, the methylation status of the BRCA1 promoter was confirmed and analyzed at high resolution by sodium bisulfite genomic sequencing. BRCA1 promoter methylation was detected in 13 primary sporadic breast cancer tissues (27.3%) and in 2 blood cell samples derived from breast cancer patients (28.5%). A strong association (p-value, 0.0038) was found between BRCA1 methylation and young age (≤ 40 years) at diagnosis. The BRCA1 promoter was also methylated in blood cells from 8 women without breast cancer (10.9%) and 2 breast cancer patients (28%). The methylation pattern of the BRCA1 promoter CpG island was similar in the blood cells from healthy women as well as in women with breast cancer. Moreover, we report for the first time, the observation of methylation-related mutations leading to the formation of non-CpG methylation, as well as the formation of novel methylated CpG sites in the 5' regulatory region of the BRCA1 gene in the peripheral blood cells from cancer-free women. These results suggest the possible implication of BRCA1 promoter methylation in the early onset of breast cancer and propose the use of this epigenetic modification as a powerful molecular marker for detecting women potentially predisposed to cancer.  相似文献   

18.
ARHI is a maternally imprinted tumor suppressor gene that maps to a site on chromosome 1p31 where loss of heterozygosity has been observed in 40% of human breast and ovarian cancers. ARHI is expressed in normal ovarian and breast epithelial cells, but ARHI expression is lost in a majority of ovarian and breast cancers. Expression of ARHI from the paternal allele can be down-regulated by multiple mechanisms in addition to loss of heterozygosity. This article explores the role of DNA methylation in silencing ARHI expression. There are three CpG islands in the ARHI gene. CpG islands I and II are located in the promoter region, whereas CpG island III is located in the coding region. Consistent with imprinting, we have found that all three CpG islands were partially methylated in normal human breast epithelial cells. Additional confirmation of imprinting has been obtained by studying DNA methylation and ARHI expression in murine A9 cells that carry either the maternal or the paternal copy of human chromosome 1. All three CpG islands were methylated, and ARHI was not expressed in A9 cells that contained the maternal allele. Conversely, CpG islands were not methylated and ARHI was expressed in A9 cells that contained the paternal allele of human chromosome 1. Aberrant methylation was found in several breast cancer cell lines that exhibited decreased ARHI expression. Hypermethylation was detected in 67% (6 of 9) of breast cancer cell lines at CpG island I, 33% (3 of 9) at CpG island II, and 56% (5 of 9) at CpG island III. Hypomethylation was observed in 44% (4 of 9) of breast cancer cell lines at CpG island II. When methylation of CpG islands was studied in 20 surgical specimens, hypermethylation was not observed in CpG island I, but 3 of 20 cases exhibited hypermethylation in CpG island II (15%), and 4 of 20 cases had hypermethylation in CpG island III (20%). Treatment with 5-aza-2'-deoxycytidine, a methyltransferase inhibitor, could reverse aberrant hypermethylation of CpG island I, II and III and partially restore ARHI expression in some, but not all of the cell lines. Treatment with 5-aza-2'-deoxycytidine partially reactivated ARHI expression in cell lines with hypermethylation of CpG islands I and II but not in cell lines with partial methylation or hypomethylation of these CpG islands. To test the impact of CpG island methylation on ARHI promoter activity more directly, constructs were prepared with the ARHI promoter linked to a luciferase reporter and transfected into SKBr3 and human embryo kidney 293 cells. Methylation of the entire construct destroyed promoter activity. Selective methylation of CpG island II alone or in combination with CpG island I also abolished ARHI promoter activity. Methylation of CpG I alone partially inhibited promoter activity of ARHI. Thus, hypermethylation of CpG island II in the promoter region of ARHI is associated with the complete loss of ARHI expression in breast cancer cells. Other epigenetic modifications such as hypermethylation in CpG island III may also contribute to the loss of ARHI expression.  相似文献   

19.
20.
PURPOSE: Genetic alterations were previously identified in normal epithelia adjacent to invasive cancers. The aim of this study was to determine DNA methylation in histologically normal tissues from multiple geographic zones adjacent to primary breast tumors. EXPERIMENTAL DESIGN: First, methylation status of a 4-kb region of RASSF1A promoter was interrogated using oligonucleotide-based microarray in 144 samples (primary tumors, 47; adjacent normals, 69; reduction mammoplasty tissues, 28). Second, allelic imbalance (AI)/loss of heterozygosity (LOH) surrounding RASSF1A promoter were analyzed in 30 samples (tumors, 8; adjacent normals, 22). Third, global methylation screening of 49 samples (tumors, 12; adjacent normals, 25; reduction mammoplasty, 12) was done by differential methylation hybridization. Real-time quantitative methylation-specific PCR was used to validate the microarray findings. RESULTS: DNA methylation in the core RASSF1A promoter was low in reduction mammoplasty tissues (P=0.0001) when compared with primary tumors. The adjacent normals had an intermediate level of methylation. The regions surrounding the core were highly methylated in all sample types. Microsatellite markers showed AI/LOH in tumors and some of the adjacent normals. Concurrent AI/LOH and DNA methylation in RASSF1A promoter occurred in two of six tumors. Global methylation screening uncovered genes more methylated in adjacent normals than in reduction mammoplasty tissues. The methylation status of four genes was confirmed by quantitative methylation-specific PCR. CONCLUSIONS: Our findings suggest a field of methylation changes extending as far as 4 cm from primary tumors. These frequent alterations may explain why normal tissues are at risk for local recurrence and are useful in disease prognostication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号