首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hsu SC  Chang CP  Tsai CY  Hsieh SH  Wu-Hsieh BA  Lo YS  Yang JM 《Immunology》2012,136(2):139-152
MHC class I-restricted CD8 T-lymphocyte epitopes comprise anchor motifs, T-cell receptor (TCR) contact residues and the peptide backbone. Serial variant epitopes with substitution of amino acids at either anchor motifs or TCR contact residues have been synthesized for specific interferon-γ responses to clarify the TCR recognition mechanism as well as to assess the epitope prediction capacity of immunoinformatical programmes. CD8 T lymphocytes recognise the steric configuration of functional groups at the TCR contact side chain with a parallel observation that peptide backbones of various epitopes adapt to the conserved conformation upon binding to the same MHC class I molecule. Variant epitopes with amino acid substitutions at the TCR contact site are not recognised by specific CD8 T lymphocytes without compromising their binding capacity to MHC class I molecules, which demonstrates two discrete antigen presentation events for the binding of peptides to MHC class I molecules and for TCR recognition. The predicted outcome of immunoinformatical programmes is not consistent with the results of epitope identification by laboratory experiments in the absence of information on the interaction with TCR contact residues. Immunoinformatical programmes based on the binding affinity to MHC class I molecules are not sufficient for the accurate prediction of CD8 T-lymphocyte epitopes. The predictive capacity is further improved to distinguish mutant epitopes from the non-mutated epitopes if the peptide-TCR interface is integrated into the computing simulation programme.  相似文献   

2.
Class II MHC (Ia) molecules have been shown to be critical as restriction elements in the T helper/inducer cell recognition of antigen. Efforts to determine the role of allelic variation in MHC restricted antigen presentation have included the use of serologically selected mutants to correlate structural variations in Class II molecules with changes in the antigen presenting function of Ia bearing cells. Such studies have revealed that serologically selected mutations tend to occur in a single immunodominant region and that even a single amino acid substitution can alter T cell recognition of Ia molecules. We report here the characterization of two more serologically selected Class II A beta chain mutations. Each is due to a single base change which alters a single amino acid. One of these mutations is in the third hypervariable region (amino acid 64--glutamine to arginine) and alters the antigen presenting function. The second mutation at amino acid 48, though a relatively non-conservative change (arginine to cysteine), has no effect on APC phenotype. Such a result would be predicted based on comparisons made with the proposed three dimensional crystallographic structure of Class I molecules and models proposed for Class II molecules based on Class I structure. The amino acid change at position 48 is in a portion of the molecule that is most likely unavailable to bind antigen or interact with T cell receptor whereas the mutation at amino acid 64 is on an exposed face of the alpha helix, a region which could affect interaction with either antigen and/or the T cell receptor.  相似文献   

3.
The structural basis of T-cell allorecognition   总被引:2,自引:0,他引:2  
Foreign allogeneic major histocompatibility complex (MHC) class I and class II molecules elicit an exceptionally vigorous T-cell response. A small component of the alloresponse comprises CD4+ T cells that recognize allogeneic MHC indirectly after processing into peptide fragments that are bound and presented by self-MHC class II. The majority of alloreactive T cells directly recognize intact allogeneic MHC molecules expressed on foreign cells. Some alloreactive T-cell interactions with allogeneic MHC molecules are indifferent to the bound peptide, but evidence suggests that most show specificity to peptide. The vigor and diversity of the direct alloreactive T-cell response can therefore be explained by summation of numerous responses to each of the peptides in the novel set bound by allogeneic MHC molecules. Structural studies definitively show that the overall mechanism of T-cell receptor (TCR) recognition of self-MHC and allogeneic MHC molecules is similar. Many alloreactive T cells recognize several different combinations of MHC and bound peptide that do not necessarily possess structural homology. Flexibility within the TCR structure allows adaptation to the different contact surfaces. Crossreactivity seems to be an intrinsic property of the TCR required, because a single TCR must possess the ability to interact with both self-MHC during positive selection and at least one combination of foreign antigenic peptide presented by self-MHC. Recognition of allogeneic MHC molecules is an inadvertent consequence of the need for TCR crossreactivity.  相似文献   

4.
Epidermal Langerhans cells express only very few Class I major histocompatibility complex (MHC) antigens, whose ability to present peptides released from the breakdown of endogenous proteins has not been investigated to date. Langerhans cells strongly express a "nonconventional" Class I molecule, the CD1a antigen. The role played by this antigen on the surface of Langerhans cells remains unelucidated: either release or uptake of peptides derived from the body has been speculated. Langerhans cells also express Class II MHC antigens and in vitro freshly recovered Langerhans cells are capable of capturing antigens, processing them and presenting the resulting peptides associated with Class II MHC molecules to immunocompetent cells. This property is not, however, permanent. Cultured Langerhans cells are no longer capable of processing antigens because they lose their ability to (i) acidify endosomes and (ii) produce the alpha, beta and invariant chains of class II MHC molecules. Cultured Langerhans cells acquire the capacity of stimulating T lymphocytes. This contrast between the in vitro properties of freshly recovered and cultured Langerhans cells may reflect in vivo differences between epidermal Langerhans cells and Langerhans cells which have migrated to regional lymph nodes.  相似文献   

5.
The structure and amino acid diversity of the T-cell receptor (TCR), similar in nature to that of Fab portions of antibodies, would suggest that these proteins have a nearly infinite capacity to recognize antigen. Yet all currently defined native T cells expressing an α and β chain in their TCR can only sense antigen when presented in the context of a major histocompatibility complex (MHC) molecule. This MHC molecule can be one of many that exist in vertebrates, presenting small peptide fragments, lipid molecules, or small molecule metabolites. Here we review the pattern of TCR recognition of MHC molecules throughout a broad sampling of species and T-cell lineages and also touch upon T cells that do not appear to require MHC presentation for their surveillance function. We review the diversity of MHC molecules and information on the corresponding T-cell lineages identified in divergent species. We also discuss TCRs with structural domains unlike that of conventional TCRs of mouse and human. By presenting this broad view of TCR sequence, structure, domain organization, and function, we seek to explore how this receptor has evolved across time and been selected for alternative antigen-recognition capabilities in divergent lineages.  相似文献   

6.
CD4 T cells recognize peptides bound to major histocompatibility complex (MHC) class II molecules. Most MHC class II molecules have four binding pockets occupied by amino acids 1, 4, 6, and 9 of the minimal peptide epitope, while the residues at positions 2, 3, 5, 7, and 8 are available to interact with the T cell receptor (TCR). In addition MHC class II bound peptides have flanking residues situated outside of this peptide core. Here we demonstrate that the flanking residues of the conalbumin peptide bound to I-A(k) have no effect on recognition by the D10 TCR. To study the role of peptide flanks for recognition by a second TCR, we determined the MHC and TCR contacting amino acids of the I-A(b) bound Ealpha peptide. The Ealpha peptide is shown to bind I-A(b) using four alanines as anchor residues. TCR recognition of Ealpha peptides with altered flanking residues again suggested that, in general, no specific interactions occurred with the peptide flanks. However, using an HLA-DM-mediated technique to measure peptide binding to MHC class II molecules, we found that the peptide flanking residues contribute substantially to MHC binding.  相似文献   

7.
The alphabeta TCR recognizes peptides bound to MHC molecules. In the present study, we analyzed the interaction of a soluble TCR alpha chain variable domain (Valpha4.2-Jalpha40; abbreviated to Valpha4.2) with the MHC class II molecule I-Au. Valpha4.2 bound specifically to I-Au expressed on the surface of a transfected thymoma cell line. Modifications in the amino acid residues located within the three complementarity-determining regions (CDRs) of the Valpha domain did not markedly affect this interaction. However, mutation of glutamic acid to alanine at position 69 of the fourth hypervariable region (HV4alpha) significantly increased the binding. Antibody inhibition studies suggested that the binding site was partly contributed by a region of the beta chain of I-Au. Furthermore, the binding of Valpha4.2 to the MHC molecule was dependent on the nature of the peptide bound in the groove. Soluble Valpha4.2 specifically inhibited the activation of TCR transfectants by I-Au-expressing cells pulsed with an N-terminal peptide of myelin basic protein. Valpha4.2 also bound to MHC class II-expressing spleen cell populations from mice of the H-2(u) and H-2(d) haplotypes. The binding of Valpha4.2 to I-A molecules might explain the immunoregulatory effects reported previously for TCR alpha chains. This Valpha4.2 interaction may also be relevant to models of antigen presentation involving the binding of intact proteins to MHC class II molecules followed by their processing to generate epitopes suitable for T cell recognition.  相似文献   

8.
Peptides antigens of 8 to 24 amino acid residues in length that are derived from processing of foreign proteins by antigen presenting cells (APC), and then presented to T cells in the context of major histocompatibility complex molecules (MHC) expressed by APC, are the only physiological ligands for T cell receptor (TCR). Co-ligation of TCR and CD4 co-receptor on T cells by MHC II-peptide complexes (signal 1) leads to various T cell functions depending on the nature of TCR and CD4 co-ligation, and whether costimulatory receptors (signal 2) such as CD28, CTLA-4, CD40L are involved in this interaction. Recently, the advance of genetic engineering led to the generation of a new class of antigen-specific ligands for TCR, i.e., soluble MHC class I, and MHC class II-peptide chimeras. In principle, these chimeric molecules consist of an antigenic peptide which is covalently linked to the amino terminus of α-chain in the case of MHC I, or β-chains in the case of MHC II molecules. Conceptually, such TCR/CD4 ligands shall provide the signal I to T cells. Since soluble MHC-peptide chimeras showed remarkable regulatory effects on peptide-specific T cells in vitro and in vivo, they may represent a new generation of immunospecific T cell modulators with potential therapeutic applicability in autoimmune and infectious diseases. This review is focused on the immunomodulatory effects of soluble, MHC class II-peptide chimeras, and discuss these effects in the context of the most accepted theories on T cell regulation.  相似文献   

9.
M Feng  D Chou  Y Liaw  M Lai 《Immunology》1998,95(2):185-192
T-cell receptor (TCR) interacts with an antigenic peptide deeply buried in the major histocompatibility complex (MHC) molecule. How class II MHC is contacted by TCR during antigen recognition remains largely elusive. Here we used a panel of I-Ek mutants to identify two I-Ek residues that were frequently contacted by TCR among a large pool of T cells specific for the same antigen. The restricted TCR interaction with I-Ek was independent of the antigen peptides. We also identified a dominant heteroclitic residue on I-Ek, beta81H, in which mutation led to increased recognition of antigens in individual T-cell clones. Moreover, both the conserved TCR-I-Ek interaction and the heteroclitic TCR-I-Ek recognition were detected in T lymphocytes freshly isolated from mice primed with the specific antigens. The identical TCR-I-Ek interaction in a heterogeneous T-cell population suggested the dominance of invariant TCR-class II MHC interaction.  相似文献   

10.
Specific and major histocompatibility complex (MHC)-restricted T-cell recognition of antigenic peptides is based on interactions of the T-cell receptor (TCR) with the MHC alpha helices and solvent exposed peptide residues termed TCR contacts. In the case of MHC class II-presented peptides, the latter are located in the positions p2/3, p5 and p7/8 between MHC anchor residues. For numerous epitopes, peptide substitution studies have identified the central residue p5 as primary TCR contact characterized by very low permissiveness for peptide substitution, while the more peripheral positions generally represent auxiliary TCR contacts. In structural studies of TCR/peptide/MHC complexes, this has been shown to be due to intimate contact between the TCR complementarity determining region (CDR) three loops and the central peptide residue. We asked whether this model also applied to two HLA-DR presented epitopes derived from an antigen targeted in type 1 diabetes. Large panels of epitope variants with mainly conservative single substitutions were tested for human leukocyte antigen (HLA) class II binding affinity and T cell stimulation. Both epitopes bind with high affinity to the presenting HLA-DR molecules. However, in striking contrast to the standard distribution of TCR contacts, recognition of the central p5 residue displayed high permissiveness even for non-conservative substitutions, while the more peripheral p2 and p8 TCR contacts showed very low permissiveness for substitution. This suggests that intimate TCR interaction with the central peptide residue is not always required for specific antigen recognition and can be compensated by interactions with positions normally acting as auxiliary contacts.  相似文献   

11.
I-Ad molecules harboring single amino acid changes in the conserved 80-82 region of the beta-chain show altered trafficking in invariant chain (Ii)-negative cell lines. Since residues beta81 and beta82 form hydrogen bonds with the backbone of bound peptide, alterations in this region may result in distinct MHC class II conformers that are targeted aberrantly. We examined the assembly and peptide binding properties of the mutant I-Ad molecules generated by in vitro translation. Indeed, loss of a single hydrogen bond at beta81, or of two hydrogen bonds at beta82, is sufficient to render I-Ad incapable of stable interaction with CLIP and other antigenic peptides, despite normal assembly with intact invariant chain. These results suggest that stable interaction of MHC class II molecules with peptide requires the integrity of the H-bond network between residues in the MHC class II alpha-helices and bound peptide, and that conformational features revealed by stable peptide binding are critical for MHC class II intracellular transport.  相似文献   

12.
We have analysed, in the context of the available structural information, the frequency of occurrence of different amino acids in functional regions of both the class I MHC antigens and of the TCR alpha and beta chains. We found that in class I MHC molecules, charged residues are found frequently among those which are presumably dedicated to interactions with the TCR, while the aromatic side chain residues are found more in the interior of the groove. In the TCR, the Asn residue appears with high frequency in all the CDR equivalents. The TCR CDR3s of both alpha and beta chains are particularly rich in Gly, whereas the CDR1 and CDR2 loops exhibit strong biases in favour of charged residues. Accordingly, the interactions between the MHC molecule and the peptide antigen appear to be essentially mediated by hydrophobic interactions and hydrogen bonding, while electrostatic interactions between charged residues might be important in the association of TCR and MHC molecules. The observation that each CDR1 and CDR2 is biased towards a particular set of amino acids, taken together with the nature of the protruding residues on the MHC helices, allows us to propose, in the frame of a molecular model of the MHC-TCR complex, several plausible configurations.  相似文献   

13.
《Immunology today》1998,19(5):217-220
Much of the attention on protein antigens and their induction of T-cell responses has focused on the nature of the interactions of their `core' determinants with the major histocompatibility complex (MHC) or the T-cell receptor (TCR). Here, Kamal Moudgil and colleagues instead emphasize the vital role of the amino acid residues that flank the core antigenic determinant on the outcome of the response.  相似文献   

14.
The indirect alloimmune response seems to be restricted to a few dominant major histocompatibility complex (MHC)-derived peptides responsible for T-cell activation in allograft rejection. The molecular mechanisms of indirect T-cell activation have been studied using peptide analogues derived from the dominant allopeptide in vitro, whereas the in vivo effects of peptide analogues have not been well characterized yet. In the present study, we generated allochimeric peptide analogues by replacing the three allogeneic amino acids 5L, 9L, and 10T in the sequence of the dominant MHC class I allopeptide P1. These allochimeric peptide analogues were used to define the allogeneic amino acids critical for the MHC binding and TCR recognition. We found that position 5 (5L) of the dominant allopeptide acts as an MHC-binding residue, while the other two allogeneic positions, 9 and 10, are important for the T-cell receptor (TCR) recognition. A peptide containing the MHC-binding residue 5L, as the only different amino acid between donor (RT1.A(u)) and recipient (RT1.A(l)) sequences, did not induce proliferation of lymph node cells primed with the dominant peptide and prevented dominant peptide-induced acceleration of allograft rejection. Identification of MHC and TCR contact residues should facilitate the development of antigen-specific therapies to inhibit or regulate the indirect alloimmune response.  相似文献   

15.
The identification of naturally processed viral peptides reveals that major histocompatibility complex (MHC) class I epitopes are composed of nine or eight amino acid residues. Peptides eluted from H-2 Kb MHC class I molecules have been suggested, as a class, to be eight amino acid residues long. To assay for peptide-class I interactions, a stabilization assay described for surface labeled "empty" class I molecules was employed, but on biosynthetically labeled class I molecules. The Sendai virus nucleoprotein-derived octapeptide APGNYPAL does not bind and stabilize Kb molecules, whereas other octameric Kb-restricted peptides and the nonameric peptide FAPGNYPAL interact stably. We attribute the failure of Sendai octamer binding to the presence of proline in position two: replacement of proline renders the resulting octamers as efficient as FAPGNYPAL for binding and stabilization of H-2 Kb. Substitution of glycine in position three of APGNYPAL slightly improves its Kb stabilizing capacity. Iodination of the tyrosine residue significantly alters the binding properties of the nonamer peptide. We conclude that the length of epitopes as selected by the class I Kb molecule is influenced by their sequence and suggest that proper positioning of the NH2 terminus of peptides is essential for class I stabilizing properties. The ability to stabilize newly synthesized "empty" class I molecules with peptide argues against an involvement of beta 2 microglobulin exchange in the experiments described here.  相似文献   

16.
Peptides antigens of 8 to 24 amino acid residues in length that are derived from processing of foreign proteins by antigen presenting cells (APC), and then presented to T cells in the context of major histocompatibility complex molecules (MHC) expressed by APC, are the only physiological ligands for T cell receptor (TCR). Co-ligation of TCR and CD4 co-receptor on T cells by MHC II-peptide complexes (signal 1) leads to various T cell functions depending on the nature of TCR and CD4 co-ligation, and whether costimulatory receptors (signal 2) such as CD28, CTLA-4, CD40L are involved in this interaction. Recently, the advance of genetic engineering led to the generation of a new class of antigen-specific ligands for TCR, i.e., soluble MHC class I-, and MHC class II-peptide chimeras. In principle, these chimeric molecules consist of an antigenic peptide which is covalently linked to the amino terminus of alpha-chain in the case of MHC I, or beta-chains in the case of MHC II molecules. Conceptually, such TCR/CD4 ligands shall provide the signal 1 to T cells. Since soluble MHC-peptide chimeras showed remarkable regulatory effects on peptide-specific T cells in vitro and in vivo, they may represent a new generation of immunospecific T cell modulators with potential therapeutic applicability in autoimmune and infectious diseases. This review is focused on the immunomodulatory effects of soluble, MHC class II-peptide chimeras, and discuss these effects in the context of the most accepted theories on T cell regulation.  相似文献   

17.
Most T-cell epitopes are recognized in the context of a single or limited number of major histocompatibility complex (MHC) class II molecules. We have shown previously, however, that the immunodominant p61-80 epitope from the Mycobacterium tuberculosis 19,000 MW protein is recognized in a genetically permissive manner. In this study, permissive recognition of p61-80 was analysed in three murine MHC haplotypes (H-2b,d and k) with respect to: (i) T-cell-epitope core structure; (ii) I-A/I-E class II MHC restriction; and (iii) the identification of critical amino acid residues within the core region. Overlapping epitope core sequences composed of 6 to 8 amino acids were identified for each of the three H-2 haplotypes by T-cell epitope scanning (PEPSCAN) using peptide-specific T-cell lines. The epitope core sequences recognized by peptide and 19,000 MW protein-specific T cells were similar. In all three haplotypes, responses to p61-80 were restricted by class II MHC I-A molecules. To identify residues within the epitope core critically required for recognition, single substitution (alanine or leucine) analogue peptides were tested for their capacity to stimulate p61-80-specific T-cell hybridomas. A heterogeneous pattern of reactivity was observed, even among individual hybridomas derived from the same H-2 haplotype. Although every core residue could be defined as critical for at least one hybridoma, only one critical substitution (74Val-->Ala) was common to all hybridomas. The identification and structural analysis of genetically permissive epitopes of mycobacteria may be a useful strategy for the rational design of peptide-based vaccines for tuberculosis.  相似文献   

18.
T lymphocytes expressing the CD4 coreceptor can be activated by two classes of major histocompatibility complex (MHC) class II-bound ligands. The elaboration of a conventional T-cell mediated immune response involves recognition of an antigenic peptide bound to the MHC class II molecules by a T-cell receptor (TCR) specific to that particular antigen. Conversely, superantigens (SAgs) also bind to MHC class II molecules and activate T cells, leading to a completely different functional outcome; indeed, SAg-responsive T cells die through apoptosis following stimulation. Superantigens are proteins that are secreted by various bacteria. They interact with the TCR using molecular determinants that are distinct from the residues involved in the recognition of nominal antigenic peptides. Despite the similarities between the recognition of the two classes of ligands by the TCR, considerable structural difference is observed. Here, we discuss the current knowledge on the presentation of SAgs to T cells and compare the different aspects of the SAg response with the recognition of antigenic peptide/MHC complexes.  相似文献   

19.
Alloreactivity, the capacity of a large number of T lymphocytes to react with foreign MHC molecules, represents the cellular basis for the rejection of tissue grafts. Although it was originally assumed that the TCR of alloreactive T cells focus their recognition on the polymorphic residues that differ between the MHC molecules of responder and stimulator cells, studies in the MHC class I system have clearly demonstrated that MHC-bound peptides can influence this interaction. It remains unclear, however, whether peptides play an equally important role for the recognition of MHC class II molecules by alloreactive CD4+ T cells. Another issue that remains unresolved is the overall frequency of peptide-dependent versus peptide-independent alloreactive T cells. We have addressed these questions with antigen-presenting cells (APC) from H2-M mutant mice that predominantly express a single MHC class II-peptide complex, H2-Ab bound by a peptide (CLIP) derived from the class II-associated invariant chain. APC from these mice were used as targets and stimulators for alloreactive CD4+ T cells. Results demonstrated that the vast majority of CD4+ alloreactive T cells recognize MHC class II molecules in a peptide-dependent fashion.  相似文献   

20.
Mycoplasma arthritidis-derived mitogen (MAM) is considered to be a member of the super-antigen family despite the fact that there is no evidence until now indicating its binding to MHC class II molecules. To demonstrate its direct binding and to determine the regions involved in MHC class II and TCR interactions, we generated a recombinant wild-type and two truncated forms of the MAM protein. Data obtained in the course of the present investigation show that MAM binds specifically and significantly to human MHC class II molecules. Evidence is also provided that MAM bears two distinct binding regions: one is located within its N terminus and interacts with MHC class II molecules, while the second region which is located in its C terminus mediates its recognition by the TCR. Association of the MHC class II-associated invariant chain peptide with the peptide binding groove on the cell surface completely abolished MAM binding and presentation. This inhibitory effect is restored by the expression of HLA-DM molecules, suggesting that the nature of the peptide within the binding groove and/or the stability of the MHC class II molecules on the cell surface may modulate MAM/MHC class II interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号