共查询到20条相似文献,搜索用时 15 毫秒
1.
Angiotensin II (Ang II) dysregulation has been determined in many diseases. The CX3CL1/CX3CR1 axis, which has a key role in cardiovascular diseases, is involved in the proliferation and inflammatory cytokine production of vascular smooth muscle cells (VSMCs). In this study, we aim to explore whether Ang II has a role in the expression of CX3CL1/CX3CR1, thus contributing to the proliferation and pro-inflammatory status of VSMCs. Cultured mouse aortic VSMCs were stimulated with 100 nmol/L of Ang II, and the expression of CX3CR1 was assessed by western blot. The results demonstrated that Ang II significantly up-regulated CX3CR1 expression in VSMCs and induced the production of reactive oxygen species (ROS) and the phosphorylation of p38 MAPK. Inhibitors of NADPH oxidase, ROS, and AT1 receptor significantly reduced Ang II-induced CX3CR1 expression. Targeted disruption of CX3CR1 by transfection with siRNA significantly attenuated Ang II-induced VSMC proliferation as well as down-regulated the expression of proliferating cell nuclear antigen (PCNA). Furthermore, CX3CR1-siRNA suppressed the effect of Ang II on stimulating Akt phosphorylation. Besides, the use of CX3CR1-siRNA decreased inflammatory cytokine production induced by Ang II treatment. Our results indicate that Ang II up-regulates CX3CR1 expression in VSMCs via NADPH oxidase/ROS/p38 MAPK pathway and that CX3CL1/CX3CR1 axis contributes to the proliferative and pro-inflammatory effects of Ang II in VSMCs. 相似文献
2.
Piotr Wojdasiewicz Łukasz A. Poniatowski Andrzej Kotela Jarosław Deszczyński Ireneusz Kotela Dariusz Szukiewicz 《Archivum immunologiae et therapiae experimentalis》2014,62(5):395-403
Chemokines are molecules able to induce chemotaxis of monocytes, neutrophils, eosinophils, lymphocytes and fibroblasts. The complex chemokine acts in many physiological and pathological phenomena, including those occurring in the articular cartilage. To date, chemokine CX3CL1 (fractalkine) is the only member of the CX3C class of chemokines with well-documented roles in endothelial cells. CX3CL1 is a unique chemokine that combines properties of chemoattractant and adhesion molecule. The main roles of CX3CL1 include promotion of leukocyte binding and adhesion as well as activation of the target cells. The soluble chemokine domain of CX3CL1 is chemotactic for T cells and monocytes. CX3CL1 acts via its receptor, CX3CR1, which belongs to a family of G protein-coupled receptors. Stimulation of CX3CR1 activates both CX3CL1-dependent and integrin-dependent migrations of cells with synergistically augmented adhesion. Genetic polymorphisms of CX3CR1 may significantly modify the biological roles of CX3CL1, especially in pathologic conditions. Osteoarthritis (OA) is the most common joint disease, affecting approximately 7–8 % of the general population. Development of OA is largely driven by low-grade local background inflammation involving chemokines. The importance of CX3CL1/CX3CR1 signalling in the pathophysiology of OA is still under investigation. This paper, based on a review of the literature, updates and summarises the current knowledge about CX3CL1/CX3CR1 in OA and indicates possible interactions with a potential for therapeutic targeting. 相似文献
3.
4.
5.
6.
7.
8.
Fevang B Yndestad A Damås JK Bjerkeli V Ueland T Holm AM Beiske K Aukrust P Frøland SS 《Clinical immunology (Orlando, Fla.)》2009,130(2):151-161
Common variable immunodeficiency (CVID) is a heterogeneous syndrome characterized by defective immunoglobulin production and high frequency of bacterial infections, autoimmunity and manifestations of chronic inflammation. The chemokine Fractalkine (CX3CL1) and its receptor CX3CR1 is suggested to play an important role in the pathogenesis of several inflammatory disorders. We hypothesized that enhanced CX3CL1/CX3CR1 interaction could be involved in the chronic inflammation characterising subgroups of CVID. CVID patients were characterized by raised plasma levels of CX3CLl and enhanced expression of its corresponding receptor CX3CR1 on CD4(+) and CD8(+) T cells, including both CD45RA(+) and CD45RA(-) subsets. CX3CR1 expression was particularly enhanced in patients characterized by chronic inflammation in vivo. The high expression of the receptor in CVID patients was accompanied by enhanced chemotactic, adhesive, and other inflammatory cell responses to stimulation with CX3CL1. Our findings suggest that increased CX3CL1/CX3CR1 interaction could contribute to the inflammatory phenotype seen in subgroups of CVID patients. 相似文献
9.
CX(3)CL1, or fractalkine, the unique member of the CX(3)C chemokine family, exists as a transmembrane glycoprotein, as well as in soluble form, each mediating different biological activities, and is constitutively expressed in many hematopoietic and nonhematopoietic tissues. CX(3)CR1, the CX(3)CL1 exclusive receptor, is a classical GPCR, expressed on NK cells, CD14(+) monocytes, and some subpopulation of T cells, B cells, and mast cells. A recent paper by our group has demonstrated for the first time that highly purified human B cells from tonsil and peripheral blood expressed CX(3)CR1 at mRNA and protein levels. In particular, tonsil na?ve, GC, and memory B cells expressed CX(3)CR1, but only GC centrocytes were attracted by soluble CX(3)CL1, which with its receptor, are also involved in the pathogenesis of several inflammatory disorders, as well as of cancer. Previous studies have shown that CX(3)CR1 is up-regulated in different types of B cell lymphoma, as well as in B-CLL. Recently, we have demonstrated that the CX(3)CL1/CX(3)CR1 axis is involved in the interaction of B-CLL cells with their microenvironment. Taken together, our data delineate a novel role for the CX(3)CL1/CX(3)CR1 complex in the biology of normal B cells and B-CLL cells. These topics are the subject of this review article. 相似文献
10.
11.
Background: Early mesoderm can be classified into Flk‐1+ or PDGF receptor alpha (PDGFRα)+ population, grossly representing lateral and paraxial mesoderm, respectively. It has been demonstrated that all endothelial (EC) and hematopoietic (HPC) cells are derived from Flk‐1+ cells. Although PDGFRα+ cells give rise to ECs/HPCs in in vitro ES differentiation, whether PDGFRα+ population can become hemato‐endothelial lineages has not been proved in mouse embryos. Results: Using PDGFRαMerCreMer mice, PDGFRα+ early mesoderm was shown to contribute to endothelial cells including hemogenic ECs, fetal liver B lymphocytes, and Lin‐Kit+Sca‐1+ (KSL) cells. Contribution of PDGFRα+ mesoderm into ECs and HPCs was limited until E8.5, indicating that PDGFRα+/Flk‐1+ population that exists until E8.5 may be the source for hemato‐endothelial lineages from PDGFRα+ population. The functional significance of PDGFRα+ mesoderm in vascular development and hematopoiesis was confirmed by genetic deletion of Etv2 or restoration of Runx1 in PDGFRα+ cells. Etv2 deletion and Runx1 restoration in PDGFRα+ cells resulted in abnormal vascular remodeling and rescue of fetal liver CD45+ and Lin‐Kit+Sca‐1+ (KSL) cells, respectively. Conclusions: Endothelial and hematopoietic cells can be derived from PDGFRα+ early mesoderm in mice. PDGFRα+ mesoderm is functionally significant in vascular development and hematopoiesis from phenotype analysis of genetically modified embryos. Developmental Dynamics 242:254–268, 2013. © 2013 Wiley Periodicals, Inc. 相似文献
12.
Nukiwa M Andarini S Zaini J Xin H Kanehira M Suzuki T Fukuhara T Mizuguchi H Hayakawa T Saijo Y Nukiwa T Kikuchi T 《European journal of immunology》2006,36(4):1019-1027
Fractalkine (CX3CL1) is a unique membrane-bound CX3C chemokine that serves as a potent chemoattractant for lymphocytes. The hypothesis of this study is that dendritic cells (DC) genetically modified ex vivo to overexpress fractalkine would enhance the T cell-mediated cellular immune response with a consequent induction of anti-tumor immunity to suppress tumor growth. To prove this hypothesis, established tumors of different mouse cancer cells (B16-F10 melanoma, H-2b, and Colon-26 colon adenocarcinoma, H-2d) were treated with intratumoral injection of bone marrow-derived DC that had been modified in vitro with an RGD fiber-mutant adenovirus vector expressing mouse fractalkine (Ad-FKN). In both tumor models tested, treatment of tumor-bearing mice with Ad-FKN-transduced DC gave rise to a significant suppression of tumor growth along with survival advantages in the treated mice. Immunohistochemical analysis of tumors treated with direct injection of Ad-FKN-transduced DC demonstrated that the treatment prompted CD8+ T cells and CD4+ T cells to accumulate in the tumor milieu, leading to activation of immune-relevant processes. Consistent with the finding, the intratumoral administration of Ad-FKN-transduced DC evoked tumor-specific cytotoxic T lymphocytes, which ensued from in vivo priming of Th1 immune responses in the treated host. In addition, the anti-tumor effect provided by intratumoral injection of Ad-FKN-transduced DC was completely abrogated in CD4+ T cell-deficient mice as well as in CD8+ T cell-deficient mice. These results support the concept that genetic modification of DC with a recombinant fractalkine adenovirus vector may be a useful strategy for cancer immunotherapy protocols. 相似文献
13.
Xin H Kanehira M Mizuguchi H Hayakawa T Kikuchi T Nukiwa T Saijo Y 《Stem cells (Dayton, Ohio)》2007,25(7):1618-1626
MSCs are nonhematopoietic stem cells capable of differentiating into various mesoderm-type cells. MSCs have been considered to be a potential vehicle for cell-based gene therapy because MSCs are relatively easily expanded in vitro and have the propensity to migrate to and proliferate in the tumor tissue after systemic administration. Here, we demonstrated the tropism of mouse MSCs to tumor cells in vitro and multiple tumor tissues in the lung after i.v. injection of green fluorescent protein-positive MSCs in vivo. We transduced CX3CL1 (fractalkine), an immunostimulatory chemokine, to the mouse MSCs ex vivo using an adenoviral vector with the Arg-Gly-Asp-4C peptide in the fiber knob. Intravenous injection of CX3CL1-expressing MSCs to the mice bearing lung metastases of C26 and B16F10 cells strongly inhibited the development of lung metastases and thus prolonged the survival of these tumor-bearing mice. This antitumor effect depended on both innate and adaptive immunity. These results suggest that MSCs can be used as a vehicle for introducing biological agents into multiple lung tumor tissues. Disclosure of potential conflicts of interest is found at the end of this article. 相似文献
14.
ABSTRACT: BACKGROUND: Multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE) are debilitating neuroinflammatory diseases mediated by lymphocyte entry into the central nervous system (CNS). While it is not known what triggers lymphocyte entry into the CNS during neuroinflammation, blockade of lymphocyte migration has been shown to be effective in controlling neuroinflammatory diseases. Since we have previously shown that extracellular adenosine is a key mediator of lymphocyte migration into the CNS during EAE progression, we wanted to determine which factors are regulated by adenosine to modulate EAE development. Methods: We performed a genetic analysis of wild type and CD73-/- (that are unable to produce extracellular adenosine and are protected from EAE development) to identify factors that are both important for EAE development and controlled by extracellular adenosine signaling. Results: We show that extracellular adenosine triggered lymphocyte migration into the CNS by inducing the expression of the specialized chemokine/adhesion molecule CX3CL1 at the choroid plexus. In wild type mice, CX3CL1 is upregulated in the brain on Day 10 post EAE induction, which corresponds with initial CNS lymphocyte infiltration and the acute stage of EAE. Conversely, mice that cannot synthesize extracellular adenosine (CD73-/- mice) do not upregulate CX3CL1 in the brain following EAE induction and are protected from EAE development and its associated lymphocyte infiltration. Additionally, blockade of the A2A adenosine receptor following EAE induction prevents disease development and the induction of brain CX3CL1 expression. The CX3CL1 induced during EAE is found on the choroid plexus, which is the barrier between the blood and cerebral spinal fluid in the brain and is a prime entry point into the CNS for immune cells. Furthermore, CX3CL1 expression can be induced in the brains of mice and in choroid plexus cell line following A2A adenosine receptor agonist administration. Most importantly, we show that CX3CL1 blockade protects against EAE development and inhibits lymphocyte entry into the CNS. Conclusions: We conclude that extracellular adenosine is an endogenous modulator of neuroinflammation during EAE that induces CX3CL1 at the choroid plexus to trigger lymphocyte entry into the brain. 相似文献
15.
William Raoul Constance Auvynet Xavier Guillonneau Charles Feumi Christophe Combadière Florian Sennlaub 《Journal of neuroinflammation》2010,7(1):87
The causes of age-related macular degeneration (AMD) are not well understood. Due to demographic shifts in the industrialized
world a growing number of people will develop AMD in the coming decades. To develop treatments it is essential to characterize
the disease's pathogenic process. Over the past few years, numerous studies have focused on the role of chemotactic cytokines,
also known as chemokines. Certain chemokines, such as CCL2 and CX3CL1, appear to be crucial in subretinal microglia and macrophage
accumulation observed in AMD, and participate in the development of retinal degeneration as well as in choroidal neovascularization.
This paper reviews the possible implications of CCL2 and CX3CL1 signaling in AMD. Expression patterns, single nucleotide polymorphisms
(SNPs) association studies, chemokine and chemokine receptor knockout models are discussed. Future AMD treatments could target
chemokines and/or their receptors. 相似文献
16.
McComb JG Ranganathan M Liu XH Pilewski JM Ray P Watkins SC Choi AM Lee JS 《The American journal of pathology》2008,173(4):949-961
CX3CR1 is expressed on monocytes, dendritic cells, macrophages, subsets of T lymphocytes, and natural killer cells and functions in diverse capacities such as leukocyte adhesion, migration, and cell survival on ligand binding. Expression of the CX3CL1 gene, whose expression product is the sole ligand for CX3CR1, is up-regulated in human lungs with chronic cigarette smoke-induced obstructive lung disease. At present, it is unknown whether CX3CL1 up-regulation is associated with the recruitment and accumulation of immune cells that express CX3CR1. We show that mice chronically exposed to cigarette smoke up-regulate CX3CL1 gene expression, which is associated with an influx of CX3CR1+ cells in the lungs. The increase in CX3CR1+ cells is primarily comprised of macrophages and T lymphocytes and is associated with the development of emphysema. In alveolar macrophages, cigarette smoke exposure increased the expression of both CX3CR1 and CX3CL1 genes. The inducibility of CX3CR1 expression was not solely dependent on a chronic stimulus because lipopolysaccharide up-regulated CX3CR1 in RAW264.7 cells in vitro and in mononuclear phagocytes in vivo. Our findings suggest a mechanism by which macrophages amplify and promote CX3CR1+ cell accumulation within the lungs during both acute and chronic inflammatory stress. We suggest that one function of the CX3CR1-CX3CL1 pathway is to recruit and sustain divergent immune cell populations implicated in the pathogenesis of cigarette smoke-induced emphysema. 相似文献
17.
《Connective tissue research》2013,54(6):380-385
AbstractFractalkine (CX3CL1) and its receptor (CX3CR1) comprise a chemokine system involved in leukocyte recruitment and adhesion in chronic inflammatory disease, but its role in spinal diseases is unknown. The purpose of this study is to investigate the role of CX3CL1/CX3CR1 chemokine on hypertrophy of the ligamentum flavum (LF) in degenerative lumbar stenosis (DLS) compared with that of non-degenerative spinal condition (NDS) of the lumbar spine and correlation between expression of CX3CL1/CX3CR1 chemokine and thickness of LF. The mRNA concentrations of CX3CL1/CX3CR1 chemokine were analyzed in the surgically obtained LF specimens from DLS (n?=?10) and NDS (n?=?11) by real-time PCR. The localization of CX3CL1/CX3CR1 chemokine within the LF was determined using immunohistochemical study. Plasma levels of soluble FKN (sFKN) were measured by enzyme-linked immunosorbent assay, respectively. The thickness of the LF was measured with axial T1-weighted MRI. The cells that express CX3CL1/CX3CR1 chemokine ratio in the LF observed in DLS group were substantially higher than in NDS group. In ELISA, the plasma levels of sFKN was significantly increased in DLS compared with patients in the other groups (p?=?0.006). There was greater CX3CL1/CX3CR1 expression in DLS as quantified by RT-PCR (p?=?0.004, 0.010). Thickness of LF in patients was significantly correlated with serum CX3CL1 level (R2?=?0.824, p?=?0.003) and with mRNA expression of CX3CL1/CX3CR1 (R2?=?0.671, p?=?0.000) (R2?=?0.514, p?=?0.001). This study identified for the first time that increases in CX3CL1 and CX3CR1-expressing cells are significantly related to LF hypertrophy. 相似文献
18.
19.
Xu Y Zeng K Han Y Wang L Chen D Xi Z Wang H Wang X Chen G 《The American journal of pathology》2012,180(5):1950-1962
Chemokine C-X3-C motif ligand 1 (CX3CL1, alias fractalkine), is highly expressed in the central nervous system and participates in inflammatory responses. Recent studies indicated that inflammatory processes within the brain constitute a common and crucial mechanism in the pathophysiological characteristics of epilepsy. This study investigated the expression pattern of CX3CL1 in epilepsy and its relationship with neuronal loss. Double immunolabeling, IHC, and immunoblotting results showed that CX3CL1 expression was up-regulated in the temporal neocortex of patients with temporal lobe epilepsy. In a rat model of epilepsy, CX3CL1 up-regulation began 6 hours after epilepsy, with relatively high expression for 60 days. In addition, ELISA revealed that the concentrations of CX3CL1 in cerebrospinal fluid and serum were higher in epileptic patients than in patients with neurosis but lower than in patients with inflammatory neurological diseases. Moreover, H&E staining demonstrated significant neuronal loss in the brains of epileptic patients and in the rat model. Finally, the expression of tumor necrosis factor-related apoptosis-inducing ligand was significantly increased in both patients and the animal model, suggesting that tumor necrosis factor-related apoptosis-inducing ligand may play a role in CX3CL1-induced cell death. Thus, our results indicate that CX3CL1 may serve as a possible biomarker of brain inflammation in epileptic patients. 相似文献
20.
D Giunti B Parodi C Usai L Vergani S Casazza S Bruzzone G Mancardi A Uccelli 《Stem cells (Dayton, Ohio)》2012,30(9):2044-2053
Mesenchymal stem cells (MSC) display a remarkable ability to modulate the immune response and protect the central nervous system mainly through the release of soluble factors in a paracrine fashion, affecting the functional behavior of cells in the tissues. Here we investigated the effect of the interaction between MSC and microglia in vitro, and we dissected the molecular and cellular mechanisms of this crosstalk. We demonstrated that MSC impair microglia activation by inflammatory cues through the inhibition of the expression and release of inflammatory molecules and stress-associated proteins. We showed that MSC significantly increase microglial expression and release of molecules associated with a neuroprotective phenotype such as CX3CR1, nuclear receptor 4 family, CD200 receptor, and insulin growth factor 1. Interestingly, MSC can enhance functional changes on microglia as depicted by the increase of intracellular calcium concentration and phagocytic activity. This last event is associated with an increased expression of triggering receptor expressed on myeloid cells-2, an innate immune receptor involved in phagocytosis in the absence of inflammation. The observed effects on CX3CR1-expressing microglia are due to the release of CX3CL1 by MSC, driven by inflammatory signals, as demonstrated by the reversal of the observed results when CX3CL1 expression was silenced in MSC or its release was blocked. Finally, we showed that exogenous CX3CL1 induce phenotypic and functional changes of microglia similar to those induced by MSC. These findings demonstrate that MSC instruct, through the release of CX3CL1, microglia responsiveness to proinflammatory signals by modulating constitutive "calming" receptors, typically expressed by "steady-state microglia" thus switching microglia from a detrimental phenotype to a neuroprotective one. Stem Cells2012;30:2044-2053. 相似文献