首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: Sodium-coupled transporters remove extracellular neurotransmitters and alterations in their function could enhance or suppress synaptic transmission and seizures. This study determined hippocampal gamma-aminobutyric acid (GABA) and glutamate transporter immunoreactivity (IR) in temporal lobe epilepsy (TLE) patients. METHODS: Hippocampal sclerosis (HS) patients (n = 25) and non-HS cases (mass lesion and cryptogenic; n = 20) were compared with nonseizure autopsies (n = 8). Hippocampal sections were studied for neuron densities along with IR for glutamate decarboxylase (GAD; presynaptic GABA terminals), GABA transporter-1 (GAT-1; presynaptic GABA transporter), GAT-3 (astrocytic GABA transporter), excitatory amino acid transporter 3 (EAAT3; postsynaptic glutamate transporter), and EAAT2-1 (glial glutamate transporters). RESULTS: Compared with autopsies, non-HS cases with similar neuron counts showed: 1) increased GAD IR gray values (GV) in the fascia dentata outer molecular layer (OML), hilus, and stratum radiatum; 2) increased GAT-1 OML GVs; 3) increased astrocytic GAT-3 GVs in the hilus and Ammon's horn; and 4) no IR differences for EAAT3-1. HS patients with decreased neuron densities demonstrated: 1) increased OML and inner molecular layer GAD puncta; 2) decreased GAT-1 puncta relative to GAD in the stratum granulosum and pyramidale; 3) increased GAT-1 OML GVs; 4) decreased GAT-3 GVs; 5) increased EAAT3 IR on remaining granule cells and pyramids; 6) decreased glial EAAT2 GVs in the hilus and CA1 stratum radiatum associated with neuron loss; and 7) increased glial EAAT1 GVs in CA2/3 stratum radiatum. CONCLUSIONS: Hippocampal GABA and glutamate transporter IR differ in TLE patients compared with autopsies. These data support the hypothesis that excitatory and inhibitory neurotransmission and seizure susceptibility could be altered by neuronal and glial transporters in TLE patients.  相似文献   

2.
Temporal lobe epilepsy (TLE) with hippocampal sclerosis is associated with high extracellular glutamate levels, which could trigger seizures. Down-regulation of glial glutamate transporters GLAST (EAAT1) and GLT-1 (EAAT2) in sclerotic hippocampi may account for such increases. Their distribution was compared immunohistochemically in non-sclerotic and sclerotic hippocampi and localized only in astrocytes, with weaker immunoreactivity for both transporters in areas associated with pronounced neuronal loss, especially in CA1, but no decrease or even an increase in areas with less neuronal loss, like CA2 and the subiculum in the sclerotic group. Such compensatory changes in immunoreactivity may account for the lack of differences between the groups in immunoblot studies as blots show the average concentrations in the samples. These data suggest that differences in glial glutamate transporter distribution between the two groups of hippocampi may be an insufficient explanation for the high levels of extracellular glutamate in sclerotic seizure foci observed through in vivo dialysis studies.  相似文献   

3.
Regulation of extracellular excitotoxins by glial and neuronal glutamate transporters is critical to maintain synaptic terminal integrity. Factors interfering with the normal functioning of these transporters might be involved in neurodegeneration. Among them, recent studies have shown that hypoxia alters glutamate transporter function; however, it is unclear if hypoxia has an effect on the expression of glutamate transporters and which intracellular signaling pathways are involved. The C6 rat glial and GT1--7 mouse neuronal cell lines were exposed to hypoxic conditions (5% CO(2), 95% N(2)) and levels of glutamate transporter mRNA were determined by ribonuclease protection assay. After 21 hr, there was a 100% increase in levels of rat excitatory amino acid transporter 3 (EAAT3) mRNA in C6 cells and a 600% increase in levels of murine EAAT2 mRNA in GT1--7 cells. There was a similar increase in mRNA levels after hypoxia in C6 cells transfected with human EAAT2, whereas reoxygenation normalized the expression levels of glutamate transporters. Although the expression of EAATs was associated with increased immunoreactivity by Western blot, functioning of the transporters was decreased as evidenced by D-aspartate uptake. Finally, although the protein kinase C stimulator phorbol-12-myristate-13-acetate enhanced EAAT2 mRNA levels after hypoxia, protein kinase C inhibitor bisindolylmaleimide I had the opposite effect. Taken together, this study suggests that the hypoxia is capable of upregulating levels of EAATs via a protein kinase C-dependent compensatory mechanism. This increased expression is not sufficient to overcome the decreased functioning of the EAATs associated with decreased ATP production and mitochondrial dysfunction.  相似文献   

4.
Tight coupling between gamma‐aminobutyric acid (GABA) synthesis and vesicle filling suggests that the presynaptic supply of precursor glutamate could dynamically regulate inhibitory synapses. Although the neuronal glutamate transporter excitatory amino acid transporter 3 (EAAT3) has been proposed to mediate such a metabolic role, highly efficient astrocytic uptake of synaptically released glutamate normally maintains low‐extracellular glutamate levels. We examined whether axodendritic inhibitory synapses in stratum radiatum of hippocampal area CA1, which are closely positioned among excitatory glutamatergic synapses, are regulated by synaptic glutamate release via presynaptic uptake. Under conditions of spatially and temporally coordinated release of glutamate and GABA within pyramidal cell dendrites, blocking glial glutamate uptake enhanced quantal release of GABA in a transporter‐dependent manner. These physiological findings correlated with immunohistochemical studies revealing expression of EAAT3 by interneurons and uptake of D‐asparate into putative axodendritic inhibitory terminals only when glial uptake was blocked. These results indicate that spillover of glutamate between adjacent excitatory and inhibitory synapses can occur under conditions when glial uptake incompletely clears synaptically released glutamate. Our anatomical studies also suggest that perisomatic inhibitory synapses, unlike synapses within dendritic layers of hippocampus, are not capable of glutamate uptake and therefore transporter‐mediated dynamic regulation of inhibition is a unique feature of axodendritic synapses that may play a role in maintaining a homeostatic balance of inhibition and excitation. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
In the CNS, excitatory amino acid transporters (EAATs) localized to neurons and glia terminate the actions of synaptically released glutamate. Whereas glial transporters are primarily responsible for maintaining low ambient levels of extracellular glutamate, neuronal transporters have additional roles in shaping excitatory synaptic transmission. Here we test the hypothesis that the expression level of the Purkinje cell (PC)-specific transporter, EAAT4, near parallel fiber (PF) release sites controls the extrasynaptic glutamate concentration transient following synaptic stimulation. Expression of EAAT4 follows a parasagittal banding pattern that allows us to compare regions of high and low EAAT4-expressing PCs. Using EAAT4 promoter-driven eGFP reporter mice together with pharmacology and genetic deletion, we show that the level of neuronal transporter expression influences extrasynaptic transmission from PFs to adjacent Bergmann glia (BG). Surprisingly, a twofold difference in functional EAAT4 levels is sufficient to alter signaling to BG, although EAAT4 may only be responsible for removing a fraction of released glutamate. These results demonstrate that physiological regulation of neuronal transporter expression can alter extrasynaptic neuroglial signaling.  相似文献   

6.
Shetty AK 《Hippocampus》2002,12(4):534-542
Intracerebroventricular kainic acid administration in rat, a model of temporal lobe epilepsy, results in CA3 pyramidal neuron degeneration leading to deafferentation of CA1 pyramidal neurons. Denervation in CA1 shows a near-complete recovery of synaptic density over 2-3 months, but the source of axons participating in the reinnervation is not clear. This study investigated the contribution of the entorhinal cortex in this reinnervation by comparing the distribution of the entorhinal axons in the CA1 subfield between the intact hippocampus and the CA3-lesioned hippocampus at 3 months after administration of kainic acid. Entorhinal axons were visualized by anterograde tracing using injections of the biotinylated dextran amine into the entorhinal cortex. In the CA1 subfield of the intact hippocampus, entorhinal axons were conspicuous in the alveus and the stratum lacunosum moleculare. The distribution in the strata oriens, pyramidale, and radiatum was sparse and was characterized by isolated entorhinal fibers of the alvear pathway crossing these strata to the stratum lacunosum moleculare. However, after kainic acid-induced CA3 lesion, the density of entorhinal axons increased significantly in the CA1 stratum radiatum (375% of the intact hippocampus), as a large number of axons emanating from the entorhinal fiber plexus in the stratum lacunosum moleculare invaded the stratum radiatum. The stratum radiatum also exhibited wavy entorhinal axons filled with boutons and oriented parallel to the stratum pyramidale, suggesting collateral sprouting from entorhinal axons traversing the stratum radiatum. Thus, a significant aberrant sprouting of entorhinal axons occurs into the CA1 stratum radiatum after CA3 lesion. The sprouted fibers appear to come from both entorhinal fiber plexus in the stratum lacunosum moleculare (translaminar sprouting) and entorhinal axons traversing the stratum radiatum (intralaminar sprouting). However, the major contribution appears to be from the entorhinal plexus in the stratum lacunosum moleculare. This aberrant sprouting may lead to altered afferent excitatory connectivity in the CA1 subfield and contribute to the persistent CA1 hyperexcitability that occurs after the CA3 lesion.  相似文献   

7.
8.
目的 :探讨脑室内注入神经肽 Y(Neuropeptide Y,NPY)对戊四氮 (PTZ)致痫大鼠海马结构内脑源性神经营养因子 (Brain- derived Neurotrophic Factor,BDNF)表达的影响。方法 :将 18只健康雄性 Wistar大鼠随机分为 NPY实验组 (n=10 )和对照组 (n=8)。 NPY实验组 ,于 PTZ造模前给予侧脑室注射 NPY(6 nmol/ 10μl) ,对照组给予等容量生理盐水。侧脑室注射后 5分钟 ,腹腔注射 PTZ(6 0 mg/ kg) ,观察痫性发作持续时间并于痫性发作后 2小时处死动物。用免疫组化方法观察海马齿状回 (DG)和 CA1区 BDNF的免疫反应性。结果 :NPY实验组痫性发作时间短于对照组 (P<0 .0 0 1)。实验组 DG颗粒细胞层、分子层的 BDNF免疫反应性高于对照组相应各层 ,各组比较有显著性差异。实验组CA1区锥体细胞层、放射层及腔隙层免疫反应性均高于对照组相应各层 ,各组比较有显著性差异。实验组 DG分子层和 CA1区放射层及腔隙层免疫反应性分别高于颗粒细胞层和锥体细胞层免疫反应性 ,各组比较有显著性差异。 CA1区分子层未见 BDNF免疫反应性表达。结论 :脑室内注射 NPY可缩短痫性发作时间 ,并促进致痫大鼠海马内 BDNF的表达。  相似文献   

9.
Astrocytes express two sodium‐coupled transporters, glutamate–aspartate transporter (GLAST) and glutamate transporter‐1 (GLT‐1), which are essential for the maintenance of low extracellular glutamate levels. We performed a comparative analysis of the laminar and subcellular expression profile of GLAST and GLT‐1 in the developing postnatal mouse hippocampus by using immunohistochemistry and western blotting and employing high‐resolution fluorescence microscopy. Astrocytes were identified by costaining with glial fibrillary acidic protein (GFAP) or S100β. In CA1, the density of GFAP‐positive cells and GFAP expression rose during the first 2 weeks after birth, paralleled by a steady increase in GLAST immunoreactivity and protein content. Upregulation of GLT‐1 was completed only at postnatal days (P) P20–25 and was thus delayed by about 10 days. GLAST staining was highest along the stratum pyramidale and was especially prominent in astrocytes at P3–5. GLAST immunoreactivity indicated no preferential localization to a specific cellular compartment. GLT‐1 exhibited a laminar expression pattern from P10–15 on, with the highest immunoreactivity in the stratum lacunosum‐moleculare. At the cellular level, GLT‐1 immunoreactivity did not entirely cover astrocyte somata and exhibited clusters at processes. In neonatal and juvenile animals, discrete clusters of GLT‐1 were also detected at perivascular endfeet. From these results, we conclude there is a remarkable subcellular heterogeneity of GLAST and GLT‐1 expression in the developing hippocampus. The clustering of GLT‐1 at astrocyte endfeet indicates that it might serve a specialized functional role at the blood–brain barrier during formation of the hippocampal network. J. Comp. Neurol. 522:204–224, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Neurotransmitter spillover is a form of communication not readily predicted by anatomic structure. In the cerebellum, glutamate spillover from climbing fibers recruits molecular layer interneurons in the absence of conventional synaptic connections. Spillover-mediated signaling is typically limited by transporters that bind and reuptake glutamate. Here, we show that patterned expression of the excitatory amino acid transporter 4 (EAAT4) in Purkinje cells regulates glutamate spillover to molecular layer interneurons. Using male and female Aldolase C-Venus knock-in mice to visualize zebrin microzones, we find larger climbing fiber-evoked spillover EPSCs in regions with low levels of EAAT4 compared with regions with high EAAT4. This difference is not explained by presynaptic glutamate release properties or postsynaptic receptor density but rather by differences in the glutamate concentration reaching receptors on interneurons. Inhibiting glutamate transport normalizes the differences between microzones, suggesting that heterogeneity in EAAT4 expression is a primary determinant of differential spillover. These results show that neuronal glutamate transporters limit extrasynaptic transmission in a non–cell-autonomous manner and provide new insight into the functional specialization of cerebellar microzones.SIGNIFICANCE STATEMENT Excitatory amino acid transporters (EAATs) help maintain the fidelity and independence of point-to-point synaptic transmission. Whereas glial transporters are critical to maintain low ambient levels of extracellular glutamate to prevent excitotoxicity, neuronal transporters have more subtle roles in shaping excitatory synaptic transmission. Here we show that the patterned expression of neuronal EAAT4 in cerebellar microzones controls glutamate spillover from cerebellar climbing fibers to nearby interneurons. These results contribute to fundamental understanding of neuronal transporter functions and specialization of cerebellar microzones.  相似文献   

11.
The developing hippocampus is highly sensitive to chemotherapy and cranial radiation treatments for pediatric cancers, yet little is known about the effects that cancer treatents have on specific hippocampal subfields. Here, we examined hippocampal subfield volumes in 29 pediatric brain tumor survivors treated with cranial radiation and chemotherapy, and 30 healthy developing children and adolescents. We also examined associations between hippocampal subfield volumes and short‐term verbal memory. Hippocampal subfields (Cornus Ammonis (CA) 1, CA2‐3, dentate gyrus (DG)‐CA4, stratum radiatum—lacunosum—moleculare, and subiculum) were segmented using the Multiple Automatically Generated Templates for Different Brains automated segmentation algorithm. Neuropsychological assessment of short‐term verbal associative memory was performed in a subset of brain tumor survivors (N = 11) and typically developing children (N = 16), using the Children's Memory Scale or Wechsler's Memory Scale—third edition. Repeated measures analysis of variance showed that pediatric brain tumor survivors had significantly smaller DG‐CA4, CA1, CA2‐3, and stratum radiatum‐lacunosum‐moleculare volumes compared with typically developing children. Verbal memory performance was positively related to DG‐CA4, CA1, and stratum radiatum‐lacunosum‐moleculare volumes in pediatric brain tumor survivors. Unlike the brain tumor survivors, there were no associations between subfield volumes and memory in typically developing children and adolescents. These data suggest that specific subfields of the hippocampus may be vulnerable to brain cancer treatments, and may contribute to impaired episodic memory following brain cancer treatment in childhood.  相似文献   

12.
Kainic acid-induced limbic seizures enhance expression of tenascin-C (TN) in the hippocampus of adult rats. TN mRNA was detectable by in situ hybridization in many granule cells in the dentate gyrus 4.5 hr after kainic acid injection but not in saline-injected animals (controls) or in animals killed 2 or 24 hr after injection. Thirty days after kainic acid injection, TN mRNA was detectable only in pyramidal cells of CA3 and CA1. At the protein level, TN was detectable by immunocytochemistry in control animals in the strata oriens and lacunosum moleculare of CA1, in the molecular layer, and within a narrow area at the inner surface of the granule cell layer in the dentate gyrus. Twenty-four hours after kainic acid injection, TN immunoreactivity was enhanced in these areas and throughout the granule cell layer. Thirty days after kainic acid injection, TN immunoreactivity was downregulated in these areas, while it was prominent in the stratum oriens and in clusters of immunoreactivity in the stratum lucidum of CA3. Western blot analysis of the hippocampus showed a peak of TN expression 24 hr after kainic acid injection. These observations show that TN expression is upregulated in predominantly neuronal cells already by 4.5 hr after kainic acid injection, coincident with activation of granule cells and sprouting of axon terminals, whereas the remaining TN expression 30 days after injection relates to pyramidal cells in CA1 and CA3, coincident with an astroglial response, as marked by a strong expression of glial fibrillary acidic protein. © 1996 Wiley-Liss, Inc.  相似文献   

13.
The expression of glial and neuronal glutamate transporter proteins was investigated in the hippocampal region at different time points after electrically induced status epilepticus (SE) in the rat. This experimental rat model for mesial temporal lobe epilepsy is characterized by cell loss, gliosis, synaptic reorganization, and chronic seizures after a latent period. Despite extensive gliosis, immunocytochemistry revealed only an up-regulation of both glial transporters localized at the outer aspect of the inner molecular layer (iml) in chronic epileptic rats. The neuronal EAAC1 transporter was increased in many somata of individual CA1-3 neurons and granule cells that had survived after SE; this up-regulation was still present in the chronic epileptic phase. In contrast, a permanent decrease of EAAC1 immunoreactivity was observed in the iml of the dentate gyrus. This permanent decrease in EAAC1 expression, which was only observed in rats that experienced progressive spontaneous seizure activity, could lead to abnormal glutamate levels in the iml once new abnormal glutamatergic synaptic contacts are formed by means of sprouted mossy fibers. Considering the steady growth of reorganizing mossy fibers in the iml, the absence of a glutamate reuptake mechanism in this region could contribute to progression of spontaneous seizure activity, which occurs with a similar time course.  相似文献   

14.
Electroconvulsive seizure has a proven therapeutic application in the treatment of severe depression and treatment-resistant depression. Despite the efficacy of electroconvulsive seizure as a non-chemical antidepressant treatment, the mechanism of action is unclear. Elevation in hippocampal trophic factor expression and concomitant cellular proliferation are thought to play a role in its action. We examined whether the reported induction of angiogenic factors and endothelial cell proliferation leads to an increase in vascular density. Two hippocampal regions, the dentate gyrus and the stratum lacunosum moleculare (SLM), were examined employing a combination of vascular density quantification, angiogenic gene expression analysis and immunohistochemistry. A 6% increase in vascular density was observed in the dentate gyrus but this did not achieve statistical significance. The SLM of the hippocampus exhibited a robust 20-30% increase in vascular density and was accompanied by an increase in expression of inhibitor of differentiation-3. There was also an induction of the angiogenesis markers alphaVbeta3 integrin and Del1. Increases in the vascular density of the SLM could be in response to enhanced metabolic activity in this region. This is supported by the induction of glutamine synthetase and the glutamate transporter GLT1.  相似文献   

15.
Pharmacological depolarization by KCl or veratrine reduced [3H]diprenorphine binding to opioid receptors in the hippocampal slice in a transient, calcium-dependent, and peptide-sensitive manner. These results suggest that endogenous opioid peptides were released from synaptic terminals and competitively displaced [3H]diprenorphine binding to opioid receptors. [3H]diprenorphine binding was significantly reduced by calcium-dependent depolarization throughout the hippocampus as determined by subsequent receptor autoradiography and quantitative densitometry. Displacement of binding was evident at sites in the CA1 and CA3 regions, the dentate gyrus, and the subiculum. The most dramatic reduction was evident in stratum lacunosum moleculare of CA3. Correlating the sites of maximal [3H]diprenorphine displacement with the previously described distribution of the opioid peptides suggests that the perforant path fibers release enkephalins in stratum lacunosum moleculare of CA3 and stratum moleculare of the dentate gyrus, and that mossy fibers may release both dynorphins and enkephalins near stratum pyramidale of CA3 and stratum granulosum. The lack of complete overlap between the distribution of opioid terminals and the sites of displacement indicates that these peptides may diffuse a moderate distance to their sites of action. Radioligand displacement defines the sites of endogenous opioid binding, suggests the likely sources of peptide release, and thus predicts the sites of endogenous opioid action within the hippocampus.  相似文献   

16.
Glutamate transporter expression and function in human glial progenitors   总被引:1,自引:0,他引:1  
Glutamate is the major neurotransmitter of the brain, whose extracellular levels are tightly controlled by glutamate transporters. Five glutamate transporters in the human brain (EAAT1-5) are present on both astroglia and neurons. We characterize the profile of three different human astroglial progenitors in vitro: human glial restricted precursors (HGRP), human astrocyte precursors (HAPC), and early-differentiated astrocytes. EAAT 1, EAAT3, and EAAT4 are all expressed in GRPs with a subsequent upregulation of EAAT1 following differentiation of GRPs into GRP-derived astrocytes in the presence of bone morphogenic protein (BMP-4). This corresponds to a significant increase in the glutamate transport capacity of these cells. EAAT2, the transporter responsible for the bulk of glutamate transport in the adult brain, is not expressed as a full-length protein, nor does it appear to have functional significance (as determined by the EAAT2 inhibitor dihydrokainate) in these precursors. A splice variant of EAAT2, termed EAAT2b, does appear to be present in low levels, however. EAAT3 and EAAT4 expression is reduced as glial maturation progresses both in astrocyte precursors and early-differentiated astrocytes and is consistent with their role in adult tissues as primarily neuronal glutamate transporters. These human glial precursors offer several advantages as tools for understanding glial biology because they can be passaged extensively in the presence of mitogens, afford the potential to study the temporal changes in glutamate transporter expression in a tightly controlled fashion, and are cultured in the absence of neuronal coculture, allowing for the independent study of astroglial biology.  相似文献   

17.
Summary. Cysteine uptake is the rate-limiting process in glutathione synthesis. Previously we have shown that the inhibitors of excitatory amino acid transporters (EAATs) significantly enhance glutamate toxicity via depletion of intracellular glutathione. In this study we show evidence that the neuronal glutamate transporter EAAT3 is directly enrolled in cysteine uptake in cultured neurons. Neuronal cysteine uptake was dependent on the extracellular sodium, and was suppressed by EAAT inhibitors. Cysteine uptake was suppressed by extracellular glutamate and aspartate, substrates of EAATs, and not by substrates of cysteine transporters. Intracellular glutathione levels were reduced by EAAT inhibitors, and not by inhibitors of cysteine transporters. Knock down of EAAT3 expression using antisense oligonucleotide significantly reduced cysteine uptake, intracellular glutathione level, and neuronal viability against oxidative stress. These facts indicate that EAAT3 functions as a cysteine transporter, and this function seems to be unique and distinct from cysteine transporters that have been reported.  相似文献   

18.
The distributions of adenosine A1 receptors, as demonstrated by 3H-cyclohexyladenosine (3H-CHA) binding, and the adenosine-producing enzyme 5'-nucleotidase were examined in the hippocampal formation of the rat, mouse, gerbil, cat, hamster, rabbit, and guinea pig. The enzyme and binding sites were restricted to subregions and often individual layers of this structure. The distribution of 3H-CHA binding was consistent among the species with the strata radiatum and oriens of fields CA1 and CA3 exhibiting the highest levels of binding. A distinct band of 3H-CHA binding was observed in the stratum moleculare of the dentate gyrus; and in most species, this band was restricted to the inner one-third of the stratum moleculare (i.e., proximal to the stratum granulosum). The strata pyramidale, granulosum, and lucidum were in general only weakly positive for 3H-CHA binding. The binding to the stratum lacunosum/moleculare (or the distinct strata lacunosum and moleculare in the rabbit and cat) was moderate. In contrast to the relative consistency of the patterns of 3H-CHA binding in these species, 5'-nucleotidase exhibited wide variations in both the absolute amount of activity and its localization. In all species, the strata granulosum and pyramidale appeared devoid of 5'-nucleotidase activity. The only clear exception to this rule was the CA3 region of the cat where activity was seen between the cell bodies of stratum pyramidale. The strata radiatum and oriens of CA1 were strongly positive in the rat and hamster but only low to moderately stained in the other species examined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The spinal cord of 20 patients with amyotrophic lateral sclerosis (ALS) and 5 patients with lower motor neuron disease (LMND) were investigated immunohistochemically using anti-human excitatory amino acid transporter 1 (EAAT1) and EAAT2 antibodies which are the astrocytic transporters. The purpose of the study was to examine relationships between EAAT1 and EAAT2 immunoreactivity and degeneration of anterior horn neurons. Specimens from 20 patients without any neurological disease served as controls. In controls, spinal cord gray matter was densely immunostained by antibodies, whereas the white matter was generally not immunostained. In motor neuron disease (MND) patients, EAAT1 immunoreactivity was relatively well preserved in the gray matter despite neuronal loss of anterior horn cells. On the other hand, EAAT2 immunoreactivity in anterior horns correlated with the degree of neuronal loss of anterior horn cells: in the patients with mild neuronal depletion, anterior horns were densely immunostained by the antibody, whereas in the patients with severe neuronal loss, EAAT2 expression was markedly reduced. Degenerated anterior horn cells frequently showed a much denser EAAT1 and EAAT2 immunoreactivity around the surface of the neurons and their neuronal processes than that observed in normal-appearing neurons. There was no difference in the expression of EAAT1 and EAAT2 immunoreactivity between LMND and ALS patients. These findings suggest that in the early stage of degeneration of anterior horn cells, EAAT1 and EAAT2 immunoreactivity is preserved in the astrocytic foot directly attached to normal-appearing neurons, whereas levels of EAAT1 and EAAT2 protein rather increase in the astrocytic foot directly attached to degenerated anterior horn neurons; the latter effect most probably reduces the elevated glutamate level, compensates for the reduced function of astroglial glutamate transporters, or represents a condensation of EAAT1 and EAAT2 immunoreactivity secondary to loss of neurites and greater condensation of astrocytic processes. Thus, we demonstrate a difference in EAAT1 and EAAT2 immunoreactivity in different stages of progression in ALS, as a feature of the pathomechanism of this disease. Received: 8 September 1999 / Revised, accepted: 28 October 1999  相似文献   

20.
The distribution of antidiabetic sulfonylurea [( 3H]glibenclamide) binding sites is heterogeneous in rat brain. Pyramidal and extrapyramidal motor system contain the highest densities of sites, particularly in the substantia nigra and in the globus pallidus. Only low levels are present in the hypothalamic nuclei and the main medulla oblongata regions. In hippocampal formation the stratum lucidum and the stratum lacunosum moleculare of CA3 show an important density of glibenclamide binding sites. Electrophysiological studies with hippocampal slices show that glibenclamide blocks hyperpolarization induced by anoxia, suggesting the involvement of adenosine triphosphate-sensitive K+ channel in this early hyperpolarization event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号