首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CXC chemokine SDF-1 and its receptor CXCR4 mediate myelopoiesis, presumably by regulating the homing of hematopoietic progenitor cells. We used the inducible HL-60 cell line as a model system for comparative analysis of CXCR4 expression during differential maturation into the granulocytic or monocytic phenotypes. Five different measures of CXCR4 expression and functional coupling: mRNA and surface expression, SDF-1-mediated [(35)S]GTPgammaS binding, calcium flux, and chemotaxis were examined simultaneously. Granulocytic differentiation with dimethyl sulfoxide induced surface expression of CXCR4 as well as SDF-1-mediated [(35)S]GTPgammaS binding and chemotaxis, whereas calcium flux was attenuated by twofold to threefold in HL-60 cells. Conversely, monocytic differentiation with vitamin D(3) inhibited surface expression and SDF-1-mediated chemotaxis, even as it induced [(35)S]GTPgammaS binding and calcium flux by more than twofold. Sodium butyrate up-regulated all parameters of CXCR4 expression studied. Together, these results demonstrate that CXCR4 expression undergoes complex regulation at multiple checkpoints, with the likely involvement of different G-proteins for signal transduction during cellular differentiation and following activation with SDF-1.  相似文献   

2.
Several lines of evidence have suggested that a CXC chemokine receptor 4 (CXCR4)/stromal cell-derived factor-1 [SDF-1; CXC chemokine ligand 12 (CXCL12)] pair is involved in baseline trafficking of leukocytes into extravascular tissues and that modulation of surface CXCR4 expression may represent an alternative mechanism for control of cell-specific biological responses to SDF-1/CXCL12. We explored the regulation of CXCR4 expression by cytokines in polymorphonuclear neutrophils (PMNs). No significant surface expression of CXCR4 in freshly isolated PMNs was detected, but expression became apparent gradually during incubation. SDF-1alpha/CXCL12 initiated Ca2+ mobilization and migratory responses in 20 h cultured PMNs. The surface CXCR4 expression was suppressed most potently by interferon-gamma (IFN-gamma). IFN-alpha, granulocyte-macrophage colony-stimulating factor (GM-CSF), and G-CSF also inhibited spontaneous CXCR4 expression. Real-time, quantitative PCR experiments revealed that a spontaneous increase and an IFN-gamma-mediated decrease in surface CXCR4 paralleled changes in the CXCR4 mRNA level. These results on PMNs support the argument that the SDF-1 (CXCL12)/CXCR4 system is regulated by cell type-specific mechanisms.  相似文献   

3.

Background

Bone mesenchymal stem cells (BMSCs) are attractive candidates for cell based therapies to cardiovascular disease such as infarction and atherosclerosis; however, the mechanisms responsible for stem cell chemotaxis and homing remain unknown. Chemokine stromal cell-derived factor 1 (SDF-1α) is involved in the process of atherogenesis. This study was aimed at investigating whether the SDF-1α of human umbilical vein endothelial cells (HUVECs) plays a role in migration of BM-derived CXCR4+(receptor for SDF-1α) stem cells.

Methods

HUVECs were cultured from human umbilical cords and was treated with ox-LDL. The mRNA and protein expression of SDF-1α was detected in HUVECs. CXCR4+BMSCs from bone marrow were isolated and were tested by migration and adhesion assays.

Results

It was found that ox-LDL induced HUVECs to increase the mRNA and protein expression of SDF-1α. Ox-LDL increased the migratory and adhesion response of CXCR4+BMSCs. When the neutralizing SDF-1α antibody abrogated the secreted SDF-1α, the migration and adhesion response of CXCR4+BMSCs markedly decreased.

Conclusions

Our data indicated that the endothelial cells (ECs) stimulated by ox-LDL could increase the BMSCs migratory response via SDF-1α/CXCR4 signaling axis. These findings provide a new paradigm for biological effects of ox-LDL and have implications for novel stem cell therapeutic strategies for atherosclerosis.  相似文献   

4.
目的:探讨基质细胞衍生因子-1(stromalcell-derivedfactor-1,SDF-1)/CXC趋化因子受体4(CXCchemokinereceptor4,CXCR4)轴调控间充质干细胞定向分化、修复缺氧缺血性脑损伤的作用。方法:大鼠间充质干细胞(ratmesenchymalstemcells,rMSCs)经缺氧培养不同时点(0h、6h、12h、24h、48h、72h)或SDF-1α(10μg/L)孵育后,采用RT-PCR、Westernblotting和流式细胞术检测其表面CXCR4表达的变化;建立大鼠缺氧缺血性脑损伤模型,运用RT-PCR和Westernblotting检测造模后不同时点(1d、3d、5d、7d、14d、21d)大鼠脑部海马组织中SDF-1αmRNA转录和蛋白表达的改变情况;用AMD3100(CXCR4拮抗剂)拮抗rMSCs表面CXCR4后,免疫细胞化学和Westernblotting检测rMSCs诱导向神经细胞分化中神经元特异性烯醇化酶(neuron-specificenolase,NSE)和胶质纤维酸性蛋白(glialfibrillaryacidicprotein,GFAP)等神经细胞特异性标志物的阳性率及表达变化情况。结果:低氧培养6h及12h的rMSCsCXCR4mRNA及蛋白表达水平均较常氧培养组明显增加(P<0.01),10μg/LSDF-1α孵育后rMSCs的CXCR4表达水平明显增加(P<0.01);缺氧缺血性脑损伤模型的大鼠脑内SDF-1α蛋白表达显著增加(P<0.01);5mg/LAMD3100处理后的rMSCs在向神经细胞诱导分化中NSE和GFAP蛋白的表达明显减少。结论:微小剂量的SDF-1α可诱导低氧培养的rMSCs表面CXCR4的表达,而在缺氧缺血性脑损伤模型的大鼠脑内SDF-1α表达增加,从而使SDF-1/CXCR4轴的生物学效应得以增强;CXCR4拮抗的rMSCs在分化中神经细胞特异性标志物NSE和GFAP的表达降低,表明SDF-1/CXCR4轴在rMSCs定向神经分化修复缺血缺氧脑损伤中具有重要的调控作用。  相似文献   

5.
BACKGROUND: The CXC chemokine receptor 4 (CXCR4) is predominantly expressed on inactivated naive T lymphocytes, B lymphocytes, dendritic cells, and endothelial cells. CXC chemokine stromal cell-derived factor 1alpha (SDF-1alpha) is the only known ligand for CXCR4. To date, the CXCR4 expression and function of SDF-1alpha in basophils are unknown. OBJECTIVE: The purpose of this study was to investigate the expression of CXCR4 and functions of SDF-1alpha in basophils and to characterize the role of the CXCR4-SDF-1alpha receptor ligand pair in the allergic inflammation. METHODS: Basophil purification, flow cytometry, real-time quantitative RT-PCR assay, Northern blotting, intracellular free Ca(2+) change, chemotaxis assay, and histamine release assay were used. RESULTS: CXCR4 is abundantly expressed on peripheral blood resting basophils (91%). Likewise, CXCR4 messenger (m)RNA is expressed in resting basophils (3.2 x 10(3) copies per 2 x 10(2) cells). The existence of CXCR4 mRNA was also confirmed in basophils by means of Northern blot analysis. SDF-1alpha induces an increase in intracellular free Ca(2+) in basophils. SDF-1alpha activates basophils to chemotaxis (chemotactic index = 3.8) and histamine release (36% of total content) through CXCR4 on the cells. The chemokines SDF-1alpha, eotaxin, RANTES, monocyte chemoattractant protein (MCP) 1, and macrophage inflammatory protein (MIP) 1alpha have been demonstrated at different potencies in induction of chemotaxis (eotaxin > SDF-1alpha > RANTES congruent with MCP-1 > MIP-1alpha) and histamine release (MCP-1 congruent with SDF-1alpha > eotaxin > RANTES > MIP-1alpha). The optimal concentration seen for SDF-1alpha effects (chemotaxis and histamine release) on basophils was 100 ng/mL. CONCLUSION: These results indicate that the CXCR4-SDF-1alpha receptor ligand pair may be important for the recruitment and activation of the basophils, which is a characteristic effector cell of the allergic inflammation.  相似文献   

6.
7.
C Murdoch  P N Monk    A Finn 《Immunology》1999,98(1):36-41
Chemokines and their receptors play an important role in the process of leucocyte recruitment at sites of inflammation. However, recent evidence suggests that these proteins can also regulate non-leucocyte cell functions such as angiogenesis, migration and proliferation. We have investigated the expression of the CXC chemokine receptor 4 (CXCR4) on primary cultures of type II alveolar epithelial cells, their transformed counterpart, the A549 cell line and also on other epithelial cell lines from various tissues. We found that all epithelial cell types tested express mRNA for CXCR4. Flow cytometric analysis and immunocytochemical staining shows that CXCR4 chemokine receptor is abundantly expressed on the surface of A549 epithelial cells. Furthermore, A549 cells responded to the CXCR4 ligand, stromal-derived factor-1alpha (SDF-1alpha) with a rapid and robust calcium mobilization and not to other CXC chemokines, suggesting that CXCR4 is functionally active and is able to couple to G-protein signalling mechanisms. A549 cells did not proliferate in response to either SDF-1alpha or interleukin-8 (IL-8) CXC chemokines. These findings may have important implications for epithelial physiology and pathology.  相似文献   

8.
背景:心脏干细胞移植后心肌基质细胞衍生因子1-CXCR4轴表达及其作用越来越受到人们的关注。 目的:观察经心外膜注骨髓单个核细胞对心衰犬心脏基质细胞衍生因子1-CXCR4轴 mRNA表达的影响。 方法:16只杂种犬随机数字表法均分为移植组和对照组,植入永久起搏器。右室快速起搏三四周后建立心衰模型。移植组犬经心外膜多点注射骨髓单个核细胞悬液,对照组注射等量生理盐水。 结果与结论:快速起搏三四周后,各项超声参数及血流动力学参数较起搏前改变明显,差异有显著性意义。定量PCR检测细胞移植组基质细胞衍生因子1 mRNA及CXCR4 mRNA表达水平高于对照组(P < 0.01)。说明经心外膜注射的骨髓单个核细胞可提高心肌基质细胞衍生因子1 mRNA及CXCR4 mRNA表达水平。  相似文献   

9.
Stromal derived factor-1 alpha (SDF-1 alpha), the high-affinity ligand of CXC-chemokine receptor 4 (CXCR4), was added to human CD34(+) hematopoietic progenitor cells that can be induced to differentiate along the monocytic or megakaryocytic lineages. In control liquid cell cultures supplemented with two different cytokine cocktails: stem cell factor (SCF), interleukin-3 (IL-3), macrophage-colony stimulating factor (M-CSF), and 10% fetal calf serum (FCS), or, SCF and thrombopoietin (TPO), the expression of surface CXCR4 progressively increased in both the CD14(+) monocytic and CD41(+) megakaryocytic lineages. While SDF-1 alpha caused only modest effects on cells of the monocytic lineage, it induced profound down-regulation of CXCR4 in megakaryocytic cells at all stages of differentiation. Moreover, while SDF-1 alpha initially up-regulated the early megakaryocytic antigen CD41, at later time points (days 12-16) it induced down-regulation of the late megakaryocytic antigen CD42b. Consistently, at day 16, the number of mature megakaryocytes was significantly decreased in cultures supplemented with SDF-1 alpha. These findings indicate that, besides its primary role in regulating the retention of precursor cells in hematopoietic tissues, the SDF-1 alpha/CXCR4 system participates in the regulation of megakaryocytic development by stimulating the formation of immature megakaryoblasts and inhibiting the formation of mature megakaryocytes.  相似文献   

10.
The contribution of chemokines toward angiogenesis is currently a focus of intensive investigation. Certain members of the CXC chemokine family can induce bovine capillary endothelial cell migration in vitro and corneal angiogenesis in vivo, and apparently act via binding to their receptors CXCR1 and CXCR2. We used an RNAse protection assay that permitted the simultaneous detection of mRNA for various CXC chemokine receptors in resting human umbilical vein endothelial cells (HUVECs) and detected low levels of only CXCR4 mRNA. Stimulation of HUVECs with vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) up-regulated levels of only CXCR4 mRNA. CXCR4 specifically binds the chemokine stromal-derived factor-1alpha (SDF-1alpha). Competitive binding studies using 125I-labeled SDF-1alpha with Scatchard analysis indicated that VEGF or bFGF induced an average number of approximately 16,600 CXCR4 molecules per endothelial cell, with a Kd = 1.23 x 10(-9) mol/L. These receptors were functional as HUVECs and human aorta endothelial cells (HAECs) migrated toward SDF-1alpha. Although SDF-1alpha-induced chemotaxis was inhibited by the addition of a neutralizing monoclonal CXCR4 antibody, endothelial chemotaxis toward VEGF was not altered; therefore, the angiogenic effect of VEGF is independent of SDF-1alpha. Furthermore, subcutaneous SDF-1alpha injections into mice induced formation of local small blood vessels that was accompanied by leukocytic infiltrates. To test whether these effects were dependent on circulating leukocytes, we successfully obtained SDF-1alpha-induced neovascularization from cross sections of leukocyte-free rat aorta. Taken together, our data indicate that SDF-1alpha acts as a potent chemoattractant for endothelial cells of different origins bearing CXCR4 and is a participant in angiogenesis that is regulated at the receptor level by VEGF and bFGF.  相似文献   

11.
Adhesion molecules and stromal cell-derived factor-1 (SDF-1)/CXCR4 signaling play key roles in homing and mobilization of hematopoietic stem cells (HSC). Active signaling through SDF-1/CXCR4 and upregulation of adhesion molecules are required for homing, whereas downregulation of adhesion molecules and disruption of SDF-1/CXCR4 signaling are required for mobilization of HSC. We studied the surface expression of CXCR4 very late activation antigen (VLA)-4 and VLA-5 on myeloma cells mobilized with cyclophosphamide and GM-CSF in 12 multiple myeloma patients undergoing HSC mobilization for autologous transplantation. We also studied the plasma levels of SDF-1 in apheresis collection of these patients. We observed a statistically significant decrease in the levels of SDF-1 and surface expression of CXCR4 on myeloma cells in four consecutive apheresis collections compared with premobilization bone marrow specimens. We also observed a statistically significant decrease in surface expression of VLA-4 in myeloma cells in the apheresis collections compared with premobilization bone marrow samples. Furthermore, myeloma cells derived from apheresis collections had decreased adhesion and trans-stromal migration in response to SDF-1, which could be reversed by short incubation with interleukin-6. Hence, mobilization of myeloma cells involves SDF-1/CXCR4 signaling and downregulation of VLA-4.  相似文献   

12.
Malignant pleural effusion (PE) is one of the poor prognostic factors in non-small cell lung cancer (NSCLC), and the detailed mechanism of the malignant PE formation is not fully elucidated. Recently, CXCR4, a receptor for chemokine stromal-derived factor-1alpha (SDF-1alpha) that can induce chemotaxis of cells, was reported to be expressed on NSCLC. In this study, we hypothesized that the SDF-1alpha/CXCR4 axis may be involved in the dissemination of malignant cells into pleural space, and investigated its expression, function, and signaling pathway using NSCLC cell lines and clinical samples from 43 patients with NSCLC with malignant PE. We found functional expression of CXCR4 on NSCLC cell lines, and also found that SDF-1alpha could induce migration via phosphatidylinositol 3 (PI-3) kinase- and p44/42 mitogen-activated protein kinase-dependent manner. The SDF-1alpha levels in malignant PE were significantly higher than those in transudate PE and showed a significant positive correlation with PE volumes. The sensitivity and specificity for prediction of recurrence of malignant PE was 61.5% and 83.3%, respectively (cutoff SDF-1alpha = 2,500 ng/ml), and better than those using pH of PE. Cancer cells in malignant PE expressed CXCR4, and mesothelial cells of the pleura stained positive for SDF-1alpha. The SDF-1alpha/CXCR4 axis is involved in the dissemination of NSCLC cells into pleural space.  相似文献   

13.
Pulmonary tuberculosis, a granulomatous disease, has few serological markers for its activity. Recently, an increased plasma level of stromal derived factor 1 alpha (SDF-1alpha), which can induce strong chemotaxis of cells through its receptor CXCR4, was detected in patients with tuberculosis. In this study we investigated serum SDF-1alpha levels and CXCR4 expression on peripheral blood mononuclear cells (PBMCs). Fifty-five active tuberculosis patients, 30 resolved tuberculosis patients, 27 acute bronchitis patients and 8 healthy volunteers were examined. Histological expression of SDF-1alpha in the tuberculosis lesion and CXCR4 expression of PBMCs were also analysed. Serum SDF-1alpha levels in active tuberculosis patients were significantly higher than other groups. The sensitivity and specificity for the diagnosis of active tuberculosis was 88.5% and 85.3% (cutoff value = 650 pg/ml), respectively. CXCR4 expression levels on PBMCs showed a significant negative correlation with serum SDF-1alpha levels. Inflammatory cells including multinuclear giant cells in the lesion expressed SDF-1alpha. Measurement of serum SDF-1alpha could be a useful screening marker for the identification of active pulmonary tuberuculosis. We propose that interaction of SDF-1alpha and CXCR4 might be involved in the pathogenesis of pulmonary tuberculosis.  相似文献   

14.
This study investigated the production of stromal cell-derived factor-1 (SDF-1) and the expression of CXCR4 in human bone marrow endothelial cells (BMECs). Human BMEC cell line BMEC-1 cells expressed SDF-1 mRNA, and conditioned medium induced chemoattraction of CD34+ cells. Migration was not inhibited by pretreating the input cells with pertussis toxin, indicating that the chemoattractive activity was not dependent on SDF-1. Three-day culture of BMEC-1 and primary human BMEC cells produced 1,710+/-204 and 1,050+/-153 pg/mL SDF-1alpha, respectively, which was much less than primary human BM stromal cells (29,536+/-532 pg/ mL). By immuno-histochemistry, CXCR4 was detected in the endothelial cells lining sinusoids, arterioles, and venules in the bone marrow. However, cultured BMECs and BMEC-1 cells did not express CXCR4 on their surfaces. These results indicate that BMECs produce and release small amounts of SDF-1 and express CXCR4 in vivo only.  相似文献   

15.
目的:探讨SDF-1α/CXCR4轴对胰腺癌细胞迁移和侵袭能力的影响及其作用机制。方法:应用RT-qPCR检测4种胰腺癌细胞株CXCR4 mRNA的表达。Transwell实验检测外源性SDF-1α及其受体CXCR4靶向抑制剂AMD3100对胰腺癌细胞迁移和侵袭能力的影响。MTS法检测外源性SDF-1α及AMD3100对胰腺癌细胞活力的影响。Western blot法检测外源性SDF-1α及AMD3100对胰腺癌细胞上皮-间充质转化(EMT)相关标志物表达的影响。结果:(1) 4种胰腺癌细胞株均不同程度地表达CXCR4 mRNA,其中PANC-1细胞株表达量最高。(2)外源性SDF-1α可增强PANC-1细胞的迁移和侵袭能力,该作用可被AMD3100所阻断。(3)外源性SDF-1α处理PANC-1细胞72 h可增强细胞活力,该作用可被AMD3100阻断。(4)外源性SDF-1α通过上调SNAIL和TWIST促使PANC-1细胞发生EMT,该作用可被AMD3100所阻断。结论:SDF-1/CXCR4轴通过促进胰腺癌细胞发生EMT而促进肿瘤迁移和侵袭。  相似文献   

16.
We compared the chemotactic responsiveness of different subsets of human B lineage cells to stromal derived factor-1 (SDF-1). High percentages (30-40% of input) of purified bone marrow progenitors including non-B lineage progenitors, pro-B cells, and pre-B cells migrated to SDF-1alpha, demonstrating that SDF-1 is an efficacious chemoattractant of these cells. Pro-B cells responded optimally to a lower concentration of SDF-1 than other subsets, demonstrating that SDF-1 is a more potent chemoattractant of this subset. A lower percentage (10-15% of input) of mature B lymphocytes migrated to SDF-1alpha than pro-B cells, demonstrating that responsiveness of B lineage cells to SDF-1 decreases during differentiation. Inhibition by anti-CXCR4 mAb demonstrated that migration of B lineage cells to SDF-1 was completely dependent on CXC chemokine receptor-4 (CXCR4). Mature B cells expressed higher levels of CXCR4 receptors than uncommitted progenitors and pro-B cells, despite differences in responsiveness to SDF-1. CXCR4 receptors expressed by unresponsive and SDF-1-responsive B cells bound SDF-1alpha with similar affinities (K(D) = 1.7-3.3 x 10(-9) M). Therefore, elements downstream from CXCR4 appear to regulate responsiveness of B cells to SDF-1. We speculate that SDF-1 and CXCR4 direct migration of progenitor cells in microenvironments that promote B lymphopoiesis.  相似文献   

17.
Alterations in the expression of CXCR4 and CCR5, the co-receptors for HIV entry, may be associated with susceptibility of monocytic cells to HIV infection. Interferon (IFN)-gamma has been shown to inhibit HIV replication in monocytic cells, but the molecular mechanism involved is not well understood. To determine if IFN-gamma regulates HIV replication by altering CXCR-4/CCR-5 expression and hence virus entry into monocytic cells, we investigated the effects of IFN-gamma on CXCR-4 and CCR-5 expression and its biological implications with respect to HIV entry, replication and chemotaxis towards the CXCR-4 and CCR-5 ligands SDF-1 and MIP-1alpha, respectively. IFN-gamma decreased CXCR-4 and CCR-5 expression on monocytes derived from HIV-negative adults, HIV-positive adults and HIV-negative cord blood. This down-regulation of chemokine receptor expression did not result in a corresponding change in mRNA expression but was associated with elevated levels of the endogenously produced chemokines SDF-1 and RANTES. Furthermore, IFN-gamma inhibited chemotaxis in response to SDF-1 and MIP-1alpha, inhibited HIV replication, but failed to inhibit virus entry in monocytic cells. These results suggest that although IFN-gamma-induced down-regulation of CXCR-4 and CCR-5 expression is associated with an inhibition of SDF-1-/MIP-1alpha-mediated chemotaxis, IFN-gamma-induced inhibition of HIV replication may be mediated at levels subsequent to the virus entry.  相似文献   

18.
The morphological patterns of glioma cell invasion are known as the secondary structures of Scherer. In this report, we propose a biologically based mechanism for the nonrandom formation of Scherer's secondary structures based on the differential expression of stromal cell-derived factor (SDF)-1alpha and CXCR4 at the invading edge of glioblastomas. The chemokine SDF-1alpha was highly expressed in neurons, blood vessels, subpial regions, and white matter tracts that form the basis of Scherer's secondary structures. In contrast, the SDF-1alpha receptor, CXCR4, was highly expressed in invading glioma cells organized around neurons and blood vessels, in subpial regions, and along white matter tracts. Neuronal and endothelial cells exposed to vascular endothelial growth factor up-regulated the expression of SDF-1alpha. CXCR4-positive tumor cells migrated toward a SDF-1alpha gradient in vitro, whereas inhibition of CXCR4 expression decreased their migration. Similarly, inhibition of CXCR4 decreased levels of SDF-1alpha-induced phosphorylation of FAK, AKT, and ERK1/2, suggesting CXCR4 involvement in glioma invasion signaling. These studies offer one plausible molecular basis and explanation of the formation of Scherer's structures in glioma patients.  相似文献   

19.
In this study we provide evidence that the SDF-1alpha/CXCR4 chemokine axis is involved in both the retention of neutrophils within the bone marrow and the homing of senescent neutrophils back to the bone marrow. We show that the functional responses of freshly isolated human and murine neutrophils to CXCR2 chemokines are significantly attenuated by SDF-1alpha, acting via CXCR4. As a consequence, the mobilization of neutrophils from the bone marrow in vivo by the CXCR2-chemokine, KC, was dramatically enhanced by blocking the effects of endogenous SDF-1alpha using a specific CXCR4 antagonist. As neutrophils age, they upregulate expression of CXCR4 and acquire the ability to migrate toward SDF-1alpha. We show here that these senescent CXCR4(high) neutrophils preferentially home to the bone marrow in vivo in a CXCR4-dependent manner, suggesting a previously undefined mechanism for the clearance of senescent neutrophils from the circulation.  相似文献   

20.
Previous reports have shown that the Gi-protein-coupled CXC chemokine receptor 4 is activated by stromal cell-derived factor 1 (SDF-1). The receptor is present in many cell types and regulates a variety of cellular functions, including chemotaxis, adhesion, hematopoiesis, and organogenesis. To examine the role of CXCR4 as a regulator of organogenesis in the vertebrate embryo, we have isolated a cDNA encoding the Xenopus laevis homologue of CXCR4 (xCXCR4). The encoded polypeptide was functionally reconstituted with recombinant Gi2 in baculovirus-infected insect cells. Although xCXCR4 shares only 42% of its extracellular residues with mammalian CXCR4, it is indistinguishable from human CXCR4 in terms of its activation by human SDF-1alpha and SDF-1beta. The fact that only 19 of these residues are specifically present in the extracellular portions of CXCR4 suggests that these residues may be involved in recognizing SDF-1 and/or mediating CXCR4 activation by SDF-1. Xenopus CXCR4 mRNA expression was up-regulated during early neurula stages and remained high during early organogenesis. Whole mount in situ hybridization analysis showed abundant expression of xCXCR4 mRNA in the nervous system, including forebrain, hindbrain, and sensory organs, and in neural crest cells. xCXCR4 mRNA was also detected in the dorsal lateral plate, the first site of definitive hematopoiesis in the amphibian embryo corresponding to aorta-gonad-mesonephros or para-aortic splanchnopleura in mammals. This observation suggests that SDF-1 and CXCR4 are involved in regulating the migratory behavior of hematopoietic stem cells colonizing the larval or fetal liver. The hematopoietic defects observed in mice lacking SDF-1 or CXCR4 may, at least in part, be explained by a disturbance of this migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号