首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The autosomal dominant mutation causing myotonic dystrophy (DM1) is a CTG repeat expansion in the 3'-UTR of the DM protein kinase (DMPK) gene. This multisystemic disorder includes myotonia, progressive weakness and wasting of skeletal muscle and extramuscular symptoms such as cataracts, testicular atrophy, endocrine and cognitive dysfunction. The mechanisms underlying its pathogenesis are complex. Recent reports have revealed that DMPK gene haploinsufficiency may account for cardiac conduction defects whereas cataracts may be due to haploinsufficiency of the neighboring gene, the DM-associated homeobox protein (DMAHP or SIX5) gene. Furthermore, mice expressing the CUG expansion in an unrelated mRNA develop myotonia and myopathy, consistent with an RNA gain of function. We demonstrated that transgenic mice carrying the CTG expansion in its human DM1 context (>45 kb) and producing abnormal DMPK mRNA with at least 300 CUG repeats, displayed clinical, histological, molecular and electrophysiological abnormalities in skeletal muscle consistent with those observed in DM1 patients. Like DM1 patients, these transgenic mice show abnormal tau expression in the brain. These results provide further evidence for the RNA trans-dominant effect of the CUG expansion, not only in muscle, but also in brain.  相似文献   

5.
6.
Myotonic dystrophy (DM) is a multisystemic disorder caused by an inherited CTG repeat expansion which affects three genes encoding the DM protein kinase (DMPK), a homeobox protein Six5 and a protein containing WD repeats. Using a panel of 16 monoclonal antibodies against several different DMPK epitopes we detected DMPK, as a single protein of approximately 80 kDa, only in skeletal muscle, cardiac muscle and, to a lesser extent, smooth muscle. Many earlier reports of DMPK with different sizes and tissue distributions appear to be due to antibody cross-reactions with more abundant proteins. One such antibody, MANDM1, was used to isolate two related protein kinases, MRCK alpha and beta, from a human brain cDNA library and the shared epitope was located at the catalytic site of DMPK using a phage-displayed random peptide library. The peptide library also identified an epitope shared between DMPK and a 55 kDa muscle-specific protein. The results suggest that effects of the repeat expansion on the DMPK gene may be responsible for muscle and heart features of DM, whereas clinical changes in other tissues may be due to effects on the other two genes.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Myotonic dystrophy type 1 (DM1) is a debilitating multisystemic disorder caused by a CTG repeat expansion in the DMPK gene. Aberrant splicing of several genes has been reported to contribute to some symptoms of DM1, but the cause of muscle weakness in DM1 and elevated Ca2+ concentrations in cultured DM muscle cells is unknown. Here, we investigated the alternative splicing of mRNAs of two major proteins of the sarcoplasmic reticulum, the ryanodine receptor 1 (RyR1) and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) 1 or 2. The fetal variants, ASI(-) of RyR1 which lacks residue 3481-3485, and SERCA1b which differs at the C-terminal were significantly increased in skeletal muscles from DM1 patients and the transgenic mouse model of DM1 (HSA(LR)). In addition, a novel variant of SERCA2 was significantly decreased in DM1 patients. The total amount of mRNA for RyR1, SERCA1 and SERCA2 in DM1 and the expression levels of their proteins in HSA(LR) mice were not significantly different. However, heterologous expression of ASI(-) in cultured cells showed decreased affinity for [3H]ryanodine but similar Ca2+ dependency, and decreased channel activity in single-channel recording when compared with wild-type (WT) RyR1. In support of this, RyR1-knockout myotubes expressing ASI(-) exhibited a decreased incidence of Ca2+ oscillations during caffeine exposure compared with that observed for myotubes expressing WT-RyR1. We suggest that aberrant splicing of RyR1 and SERCA1 mRNAs might contribute to impaired Ca2+ homeostasis in DM1 muscle.  相似文献   

14.
15.
16.
17.
18.
Myotonic dystrophy (DM1) is a multi-systemic disease caused by a triplet nucleotide repeat expansion in the 3' untranslated region of the gene coding for myotonic dystrophy protein kinase (DMPK). The primary pathophysiology of DM1 is thought to result from RNA transport and processing defects. The function of DMPK in development or any potential role in DM1 remains unknown. Here we report a novel role for DMPK in myogenesis. We have discovered a specific expression pattern of DMPK in mouse and chick embryonic development. DMPK is expressed in postmitotic cardiac and skeletal myocytes and developmental signaling centers. During cardiac myocyte maturation, DMPK migrates from perinuclear to cellular membrane localization. Manipulating DMPK levels in cultured cardiac and skeletal myocytes has revealed a key role for DMPK in myocyte differentiation. Overexpression of DMPK induces cell rounding and apoptosis in myocytes. In addition, DMPK is necessary for myogenin expression in differentiating C2C12 myoblasts.  相似文献   

19.
Among genes abnormally expressed in myotonic dystrophy type1 (DM1), the myotubularin-related 1 gene (MTMR1) was related to impaired muscle differentiation. Therefore, we analyzed MTMR1 expression in correlation with CUG-binding protein1 (CUG-BP1) and muscleblind-like1 protein (MBNL1) steady-state levels and with morphological features in muscle tissues from DM1 and myotonic dystrophy type 2 (DM2) patients.Semi-quantitative RT-PCR for MTMR1 was done on muscle biopsies and primary muscle cultures. The presence of impaired muscle fiber maturation was evaluated using immunochemistry for neural cell adhesion molecule (NCAM), Vimentin and neonatal myosin heavy chain. CUG-BP1 and MBNL1 steady-state levels were estimated by Western blot. RNA-fluorescence in situ hybridization combined with immunochemistry for CUG-BP1, MBNL1 and NCAM were performed on serial muscle sections.An aberrant splicing of MTMR1 and a significant amount of NCAM-positive myofibers were detected in DM1 and DM2 muscle biopsies; these alterations correlated with DNA repeat expansion size only in DM1. CUG-BP1 levels were increased only in DM1 muscles, while MBNL1 levels were similar among DM1, DM2 and controls. Normal and NCAM-positive myofibers displayed no differences either in the amount of ribonuclear foci and the intracellular distribution of MBNL1 and CUG-BP1.In conclusion, an aberrant MTMR1 expression and signs of altered myofiber maturation were documented in both DM1 and in DM2 muscle tissues. The more severe dysregulation of MTMR1 expression in DM1 versus DM2, along with increased CUG-BP1 levels only in DM1 tissues, suggests that the mutual antagonism between MBNL1 and CUG-BP1 on alternative splicing is more unbalanced in DM1.  相似文献   

20.
Sineoculis homeobox homolog 1 (SIX1) is a member of the SIX gene family. It is highly expressed in cancers derived from tissues that play a fundamental role during embryogenesis. Recent studies suggest that inappropriate expression of SIX1 can both initiate tumorigenesis and promote metastasis. To investigate the clinicopathological significance of SIX1 expression in pancreatic ductal adenocarcinoma (PDAC), and to further identify its role as a potential biomarker and therapeutic target in PDAC, 103 PDAC tissue samples and 45 normal pancreatic tissue samples were immunohistochemically stained for SIX1 protein. The localization of SIX1 protein was detected in Panc-1 cancer cells using immunofluorescence staining. Correlations between SIX1 overexpression and the clinicopathological features of pancreatic cancer were evaluated using Chi-square (χ2) tests, differences in survival curves were analyzed using log-rank tests, and multivariate survival analysis was performed using the Cox proportional hazard regression model. In results, SIX1 protein showed mainly cytoplasmic/perinuclear staining pattern in PDAC with immunohistochemistry. The strongly positive rate of SIX1 protein was 60.2% (62/103) in PDAC, which was significantly higher than normal pancreatic tissue (6.7%, 3/45). SIX1 overexpression was positively correlated with tumor size, TNM stage, lymph node metastasis, and grade of PDAC (P < 0.001). SIX1 high expression levels influenced overall survival rates in G1, G2, stage I–II and stage III–IV groups of PDAC; and high expression levels had significantly lower overall survival rates than SIX1 low expression levels. In conclusion, SIX1 emerged as a significant independent prognostic factor in PDAC. SIX1 overexpression appears to be associated with PDAC, and may be a potential biomarker for early diagnosis and prognostic evaluation of PDAC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号