首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The 'mirror technique' was applied in immunoelectron microscopy to demonstrate the synaptic relationship between neuronal structures containing catecholamines and substance P in the caudal part of nucleus of the solitary tract in the rat, using antisera against tyrosine hydroxylase and substance P. Substance P-immunoreactive axon terminals were shown to make two types of synaptic contacts (asymmetrical and symmetrical) with catecholaminergic neurons. It is concluded that substance P afferents can directly affect catecholaminergic neurons in this nucleus via synapses.  相似文献   

2.
Methionine (Met5)-enkephalin has been implicated in autonomic functions involving vagal reflexes within the nucleus of the solitary tract (NTS). We examined the light and electron microscopic relationships between neurons containing methionine (Met5)-enkephalin-like immunoreactivity (MELI) and vagal afferents and motor dendrites in the rat NTS. A polyclonal antibody raised against Met5-enkephalin and showing maximal cross-reactivity with this peptide was localized by immunoautoradiography. In the same sections, vagal afferents and motor neurons were identified by histochemical detection of anterogradely and retrogradely transported horseradish peroxidase (HRP). By light microscopy, the MELI was detected in perikarya distributed principally in the dorsomedial, intermediate and parasolitary subdivisions of the NTS. These subnuclei as well as medial and commissural divisions of the NTS also showed: (1) aggregates of silver grains thought to overlie terminals containing MELI, and (2) anterogradely transported HRP in varicose processes. Electron microscopic analysis of the dorsomedial NTS at the level of the area postrema established that MELI was detectable in perikarya, dendrites, and axon terminals. Most of the MELI was associated with large dense core vesicles (dcvs). These opioid terminals formed primarily symmetric synapses on proximal and asymmetric synapses on distal dendrites. Analysis of the dendritic targets of terminals containing MELI revealed that 13/222 were in synaptic contact with dendrites also containing MELI. The remainder of the terminals containing MELI either lacked recognized junctions or formed synapses with unlabeled dendrites. In comparison to the terminals containing MELI in the same series of sections, anterogradely labeled vagal terminals extensively formed asymmetric junctions with distal dendrites and spines. Of the observed anterogradely labeled terminals 6/84 formed synapses with dendrites containing MELI and 3/84 with dendrites containing retrogradely transported HRP. The remainder of the junctions were with dendrites lacking detectable immunoautoradiographic or HRP-labeling. The majority of the recognized synapses on labeled dendrites were at more proximal sites possibly reflecting more limited detection of both MELI and retrogradely transported HRP in smaller dendrites. However, the presence of even a few junctions at proximal sites on dendrites where synaptic transmission is known to be more effective suggests a potentially strong modulation of both opioid and vagal motor neurons by visceral afferents in the NTS. In addition to forming synapses on dendrites, both vagal afferents and terminals containing MELI showed frequent synaptic associations with unlabeled terminals, but not with each other. This finding suggests that the previously demonstrated opiate binding sites on vagal afferents is most likely attributed to other endogenous opiates.  相似文献   

3.
Combined radioautography and immunocytochemistry were used to define the ultrastructure and synaptic relations between vagal sensory afferents and catecholaminergic (CA) neurons of the A2 group located within the nucleus tractus solitarius (NTS) of rat brain. The vagal afferents were radioautographically labeled by tritiated amino acids anterogradely transported from the nodose ganglion. Immunocytochemical labeling for tyrosine hydroxylase (TH) served for the identification of catecholaminergic neurons. The radiographically labeled axons seen by light microscopy were widely distributed throughout the more caudal NTS. The reduced silver grains were more densely distributed within the NTS located homolateral to the injected nodose ganglion. The radioautographically labeled processes were localized in regions containing catecholaminergic neurons as indicated by immunoreactivity for TH. Electron microscopic analysis of the medial NTS at the level of the obex demonstrated that the reduced silver grains were localized within axon terminals. The radioautographically labeled terminals were 2-3 microns in diameter, contained numerous small, clear and a few large, dense vesicles, and formed predominately axodendritic synapses. Many of the recipient dendrites contained immunoreactivity for TH. In rare instances, vagal afferents formed synaptic appositions with both TH-labeled and unlabeled axon terminals and neuronal soma. This study provides the first ultrastructural evidence that the catecholaminergic neurons within the NTS receive direct synapses from sensory neurons in the nodose ganglion.  相似文献   

4.
The catecholaminergic and peptidergic neurons in the area postrema and adjacent portion of the medial nucleus tractus solitarii (mNTS) were characterized by the immunocytochemical localization of the catecholamine synthesizing enzymes tyrosine hydroxylase (TH), dopamine-beta-hydroxylase (DBH) and phenylethanolamine-N-methyltransferase (PNMT) and two neuropeptides, substance P and (Leu5)-enkephalin. The catecholamine synthesizing enzymes TH and DBH, found jointly only in noradrenergic and adrenergic neurons, were localized in cells having a similar morphology and topographical distribution. These cells were located throughout the rostrocaudal and dorsoventral extent of the area postrema, as well as in neurons within the mNTS. The processes showing TH and DBH immunoreactivity appear to form reciprocal connections between the area postrema and mNTS. Phenylethanolamine-N-methyltransferase, the enzymatic marker found only in adrenergic neurons, was detected immunocytochemically in terminals distributed throughout the area postrema and in neuronal perikarya and varicosities within the adjacent mNTS. Like the catecholamine synthesizing enzymes TH and DBH, enkephalin-like immunoreactivity was localized to perikarya, proximal processes and varicose axon terminals within the area postrema and the adjacent mNTS. However, in contrast to the widespread distribution of the enzymes, the enkephalin-like immunoreactivity was localized predominantly along the dorsal and ventrolateral margins of the area postrema. The distribution of substance P immunoreactivity, which was detected only in varicose processes, paralleled the distribution of enkephalin-like immunoreactivity, being predominantly located along the dorsal and ventrolateral margins of the area postrema. Within the mNTS adjacent to the area postrema, substance P immunoreactivity was localized to neuronal perikarya, proximal processes and varicose axon terminals. Based upon the presence of appropriate biosynthetic enzyme markers and neuropeptide localization, these findings suggest that neurons within the area postrema contain noradrenalin and enkephalin and that the afferent axons contain substance P, adrenalin and, probably, noradrenalin.  相似文献   

5.
Selective, highly efficient uptake of [125I]NGF by nerve terminals followed by retrograde axonal transport, and specific induction of tyrosine hydroxylase by NGF are well known phenomena in peripheral adrenergic neurons of adult rats. In the present study these parameters were used in order to detect possible interactions of NGF with central catecholaminergic neurons. No selective retrograde transport of [125I]NGF could be detected by light microscopic autoradiography from the caudate nucleus to the dopaminergic neurons in the substantia nigra or from the hippocampus to the noradrenergic nerve cells of the locus coeruleus. Biochemically, no change in tyrosine hydroxylase activity could be observed for up to 3 days after injection of either NGF, anti-NGF antibodies, or control proteins close to the nerve cell bodies in the substantia nigra or the locus coeruleus. These data suggest a fundamental difference between central and peripheral adrenergic neurons with regard to their responsiveness of NGF.  相似文献   

6.
Somatostatin (SS14) binding sites within locus coeruleus (LC) were localized at the light microscope level by [125I][Tyr0,d-Trp8]SS14 radioautography combined with an immunohistochemical/neurotoxic lesioning approach. In intact rats, the dense accumulation of SS14 binding sites of LC conspicuously overlapped with the cluster of tyrosine hydroxylase (TH) immunoreactive neurons; SS14 specific binding was directly proportional to the number of TH immunostained (TH+) cell bodies per mg of tissue throughout LC. Complete lesion of catecholaminergic nerve cell bodies of LC by intracerebroventricular injection of 6-hydroxydopamine (6-OHDA) resulted in the total abolition of SS14 specific binding in the structure. In addition, specifically bound [125I][Tyr0,d-Trp8]SS14 and TH+ cell density were quantified serially in a set of rats bearing various partial neurotoxic lesions; a highly significant correlation was found between the two parameters at each of the 16 coronal levels of LC examined. The coefficient of proportionality was identical at all levels. These results strongly suggest that somatostatin binding sites are uniformly localized on all noradrenergic neurons of LC.  相似文献   

7.
A preembedding double immunostaining technique using antibodies against methionine-enkephalin and tyrosine hydroxylase was used to study synaptic relations between enkephalinergic and catecholaminergic neurons in the area postrema of the rat at the electron microscopic level. The large nuclei-containing cell bodies of the catecholaminergic neurons displayed well-developed Golgi apparatus. The catecholaminergic somata and dendrites received synapses from ankephalinergic axon terminals, and most of the synapses were symmetrical. Occasionally, the catecholaminergic axon terminals were also found to be presynaptic to the enkephalinergic dendrites. Because the enkephalinergic neurons have been reported to be involved in cardiovascular function and the catecholaminergic neurons involved in the vomiting behavior, the synapses observed in this study may provide morphological evidence of the relationship between the vomiting and cardiovascular functions that are triggered in the area postrema.  相似文献   

8.
V M Pickel  T H Joh  D J Reis 《Brain research》1977,131(2):197-214
Immunocytochemical localization of the neurotransmitter synthesizing enzymes, tyrosine and tryptophan hydroxylase, was used to determine whether the noradrenergic neurons in the nucleus locus coeruleus of the rat are innervated by serotonergic (5-HT) neurons. Specific antibodies were prepared to tyrosine hydroxylase, purified from the bovine adrenal medulla, and tryptophan hydroxylase, purified from rat midbrain. These were localized by both light and electron microscopy by the use of the peroxidase-antiperoxidase method. In the nucleus locus coeruleus, tyrosine hydroxylase was contained in the cytoplasm, proximal axons, and dendrites of intrinsic neurons. Tryptophan hydroxylase, on the other hand, was only contained within processes surrounding the perikarya and dendrites of the catecholaminergic neurons. The processes labeled with tryptophan hydroxylase were unmyelinated, ranged in size from 0.1 to 1.4 micron, and consisted of terminal varicosities separated by intervaricose segments. Although in close approximation to noradrenergic neurons, these processes, presumably axons, rarely formed synatic contacts with thickened membrane specializations. In processes, tryptophan hydroxylase was associated with subcellular organelles which had size and distribution of microtubules, and small and large synaptic vesicles. These observations provide a morphological basis to support the hypothesis that the activity of noradrenergic neurons may be modulated by a direct action of 5-HT neurons.  相似文献   

9.
The ultrastructure of enkephalin-containing neurons and their capacity to take-up [3H]serotonin were examined in the area postrema. Untreated adult rats and rats with intraventricular infusions of 10−4 M tritiated serotonin, 5-hydroxytryptamine ([3H]5-HT) were perfused with 4% paraformaldehyde and 0.2–0.5% glutaraldehyde. Coronal Vibratome sections through the area postrema from both groups of animals were immunocytochemically labeled with an antiserum to leucine Leu5-enkephalin. The sections from the animals infused with the isotope subsequently were processed for autoradiography. Enkephalin-like immunoreactivity (ELI) was detected in perikarya, dendrites, axons and axon terminals most frequently located along the ventricular and ventrolateral portions of the area postrema. The labeled perikarya were few in number and were characterized by a thin rim of cytoplasm containing peroxidase immunoreactivity. Dendrites and terminals containing ELI formed synapses primarily with unlabeled axon terminals and dendrites, respectively. However, terminals containing ELI also formed synaptic junctions with other unlabeled axon terminals. Appositions between enkephalin-containing processes and modified glia were occasionally seen near the ventricular surface. In sections processed for both immunocytochemistry and autoradiography, approximately 5% of the terminals containing ELI showed uptake of [3H]5-HT. We conclude that neurons containing ELI are primarily, but not exclusively, associated with other intrinsic neurons or afferents in the rat area postrema and that some of the enkephalin-labeled terminals have the capacity to take-up serotonin. Specificity of uptake of [3H]5-HT in neurons containing endogenous serotonin and factors which may contribute to the low probability of detecting both peroxidase and autoradiographic markers in single sections are discussed.  相似文献   

10.
H T Chang 《Brain research》1988,448(2):391-396
The synaptic relationships between substance P-containing terminals and dopaminergic neurons (immunoreactive for tyrosine hydroxylase) in the substantia nigra were studied at both light and electron microscopic levels using a pre-embedding double-labeling immunocytochemical method. Many substance P-containing terminals were found to form synapses directly with dendrites and somata of nigral dopaminergic neurons. Since most of the substance P-containing axon terminals arise from the striatum, this result suggests that striatal substance P neurons can have monosynaptic influence on nigral dopaminergic neurons.  相似文献   

11.
The aim of the present work was to determine if noradrenergic neurons of the anterior and the posterior subregions of the locus coeruleus exhibit a difference in reactivity in response to sodium nitroprusside-induced arterial hypotension, and if the pharmacological induction of tyrosine hydroxylase by RU24722 modifies the reactivity of locus coeruleus neurons to this hypotensive stimulus. Previous findings have demonstrated that administration of RU24722 increases the concentration of tyrosine hydroxylase in the rat locus coeruleus by two different mechanisms in the anterior and in the posterior locus coeruleus subregions. The goal of the present study was to measure in vivo the changes in catecholaminergic metabolism in the locus coeruleus after treatment with RU24722 using differential normal pulse voltammetry (DNPV). In vehicle-treated rats, arterial hypotension increased catecholaminergic metabolism with the same pattern in the two locus coeruleus subregions. However, the changes in the magnitude of the catechol oxidation current throughout the recording period were significantly smaller in the posterior subregion ( P < 0.001). In the RU24722-pretreated rats, there was a 39% increase in tyrosine hydroxylase and dihydroxyphenylacetic acid in the locus coeruleus. The functional reactivity to hypotension measured by DNPV was significantly decreased ( P < 0.001) in both the anterior and posterior locus coeruleus subregions with RU24722 treatment. Therefore, this study suggests that the response of locus coeruleus cells to a hypotensive stimulus depends upon the intracellular tyrosine hydroxylase concentration both in the basal condition and during pharmacological induction of tyrosine hydroxylase gene expression.  相似文献   

12.
Nerve fibers immunoreactive for enzymes synthesizing catecholamines were examined in the central autonomic nucleus, a column of sympathetic preganglionic neurons, in the filefish Stephanolepis cirrhifer. Varicose nerve fibers immunoreactive for tyrosine hydroxylase were densely distributed in the rostral part, sometimes in contact with perikarya but were sparse in the caudal part of this nucleus. Fluorescent double labeling distinguished noradrenergic nerve fibers immunoreactive for both tyrosine hydroxylase and dopamine beta hydroxylase, and dopaminergic fibers immunoreactive only for tyrosine hydroxylase. In the brainstem, catecholaminergic neurons were observed in the locus coeruleus, the caudal dorsomedial reticular zone of the medulla, and the area postrema. Double labeling of tyrosine hydroxylase and dopamine beta hydroxylase showed that the neurons in the locus coeruleus were all noradrenergic, and those in the caudal dorsomedial medulla were mostly noradrenergic, whereas the area postrema contained both noradrenergic and dopaminergic neurons. No catecholaminergic neurons were found in the ventral region of the brainstem. After application of DiI to the central autonomic nucleus, retrogradely labeled neurons were seen in the caudal dorsomedial medulla but not in the locus coeruleus or the area postrema. These findings suggest that the sympathetic preganglionic neurons of the filefish may receive noradrenergic axonal projections from neurons in the caudal dorsomedial medulla. In the light of previous studies, inputs of these catecholaminergic fibers to the central autonomic nucleus may be involved in regulation of sympathetic activity of peripheral organs, together with serotoninergic and peptidergic inputs to this nucleus.  相似文献   

13.
We sought to determine the ultrastructural localization and the extrinsic sources of the catecholamine-synthesizing enzyme, tyrosine hydroxylase (TH), in the lateral parabrachial region (PBR) of adult male rats. In the first portion of the study, a rabbit antiserum to TH was immunocytochemically localized in coronal sections through the lateral PBR from acrolein-fixed brains using the peroxidase-antiperoxidase method. Electron-microscopic analysis revealed that perikarya and dendrites with peroxidase immunoreactivity for TH constituted only 17% of the total labeled profiles. Afferents to the TH-labeled perikarya and dendrites usually failed to exhibit immunoreactivity and were thus considered noncatecholaminergic. Somatic synapses were most commonly detected on small immunoreactive perikarya in the central lateral nucleus of the PBR. Other labeled perikarya located in the dorsal lateral or ventral lateral nuclei received few somatic synapses and were morphologically distinct in terms of their larger size, infolded nuclear membrane, and abundance of cytoplasmic organelles. Axons and axon terminals with peroxidase immunoreactivity constituted the remaining labeled profiles in the lateral PBR. These terminals primarily formed symmetric synapses with unlabeled and a few labeled dendrites. The labeled axon terminals were categorized into 2 types: Type I was small (0.3-0.6 micron), contained many small clear vesicles, and exhibited few well-defined synaptic densities. The second type was large (0.8-1.4 micron), contained both small clear and large dense core vesicles, and exhibited well-defined synaptic densities. The 2 types of terminals were morphologically similar to dopaminergic terminals. The location of catecholaminergic neurons contributing to the TH-labeled terminals was determined by combining peroxidase-antiperoxidase immunocytochemistry for TH with retrograde transport of wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP). The tracer was unilaterally injected into the PBR of anesthetized adult rats. Immunocytochemical labeling for TH was seen as a brown reaction product within neurons in known catecholaminergic cell groups. A black granular reaction product formed by a cobalt-intensified and diaminobenzidine-stabilized tetramethyl benzidine reaction for WGA-HRP was evident within many TH-labeled and unlabeled neurons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Tyrosine hydroxylase activity was measured in the region of locus coeruleus, cerebellum, cervical spinal cord, lumbar sympathetic ganglia, and iris throughout most of the life span of the chicken (8 days of incubation to 5 years) to compare developmental trends in tyrosine hydroxylase activity in noradrenergic cell bodies and in axon terminals in both the central and peripheral nervous system. Fluorescence histochemistry and retrograde transport of horseradish peroxidase were used to characterize further the coeruleo-cerebellar projections. Tyrosine hydroxylase activity was detected in the cerebellum as early as 8 days of incubation, which is the earliest stage so far reported. The greatest increase in total tyrosine hydroxylase activity in the region of the locus coeruleus and cerebellum occurred during the embryonic period. There was a more pronounced increase in the cerebellum than in the locus coeruleus region. This is in contrast to the cervical spinal cord where tyrosine hydroxylase activity increased at approximately the same rate during the embryonic and post-hatching periods. Moreover, the cerebellum and cervical spinal cord, two locus coeruleus target sites, displayed different trends in tyrosine hydroxylase activity throughout development and aging. In both structures examined in the peripheral nervous system, the greatest increase in total tyrosine hydroxylase activity occurred during the post-hatching period, with a greater rise in the cell bodies of the lumbar sympathetic ganglia than in the noradrenergic terminals of the iris. In both the central and peripheral nervous system, total tyrosine hydroxylase activity continued to increase in noradrenergic terminals long after hatching reaching the highest levels at 7 months when the chicken is considered fully mature. During aging, 16 months to 5 years, there was a greater decrease in total tyrosine hydroxylase activity in the terminals of noradrenergic neurons than in the cell bodies in both the central and peripheral nervous system, a phenomenon that was more marked in the peripheral nervous system than in the brain.  相似文献   

15.
The ‘mirror technique’ was used in immuno-electron microscopy to examine the synaptic relationships between neuronal structures containing catecholamines and cholecystokinin (CCK) in the caudal part of the dorsomedial medulla oblongata in the rat, using antisera against tyrosine hydroxylase and CCK. CCK-immunoreactive axon terminals made synaptic contacts with catecholaminergic neurons. Some of these catecholaminergic neurons contained CCK.  相似文献   

16.
The distribution of mu opioid receptors was examined by light and electron microscopic autoradiography in the locus coeruleus of the rat following in vitro labelling with the iodinated agonist [125I]FK-33824. At the light microscopic level, specific mu opioid binding sites were concentrated over the perikarya and dendrites of neurons that were tyrosine hydroxylase-immunopositive in adjacent sections. Accordingly, both the number of tyrosine hydroxylase-immunoreactive neurons and the density of labelled mu receptors decreased markedly throughout the rostrocaudal extent of the nucleus following treatment with the catecholaminergic neurotoxin 6-hydroxydopamine. By electron microscopy, specifically labelled receptors were detected both inside and on the surface of locus coeruleus neurons. Intracellular sites were found by resolution circle analysis to be highly concentrated within the endoplasmic reticulum and Golgi apparatus, suggesting that the ligand recognizes both glycosylated and preglycosylated forms of receptor. The remainder were found mainly over the cytoplasmic matrix or intracytoplasmic vesicles, and were attributed to newly synthesized or recycled receptors in transit. Cell surface receptors were present over both dendritic and perikaryal membranes of noradrenergic cells. These were most highly concentrated opposite abutting axon terminals, suggesting the existence of receptor 'hot spots' at sites of putative endogenous ligand release. However, only a small proportion of these sites was associated with synaptic specializations. Furthermore, an important contingent was detected opposite non-axonal elements, such as dendrites and glial cells, suggesting that mu opioid ligands act mainly parasynaptically on locus coeruleus neurons. Finally, ˜5% of labelled receptors were associated with axoglial interfaces, indicating that a minor action of mu opioids in the locus may be presynaptic and/or glial.  相似文献   

17.
The ultrastructural morphology of serotoninergic terminals and their synaptic relation with catecholaminergic neurons were examined in the medial nuclei of the solitary tracts (m-NTS) using combined autoradiographic and immunocytochemical methods. Adult rats were pretreated with a monoamine oxidase inhibitor and subjected to a 2-hour intraventricular infusion of 50 nM tritiated 5-hydroxytryptamine (3H-5HT). At the termination of the infusion, the brains were fixed by aortic arch perfusion with a mixture of 4% paraformaldehyde and 0.5% glutaraldehyde. Coronal Vibratome sections through the NTS and more rostral raphe nuclei were immunocytochemically labeled with specific antiserum to serotonin or tyrosine hydroxylase and then processed for autoradiography. By light microscopy, concentrations of reduced silver grains indicating uptake of 3H-5HT usually paralleled the localization of peroxidase immunoreactivity for serotonin in neuronal perikarya of the rostral raphe nuclei and in varicosities in the brainstem. The 3H-5HT-containing varicosities were found throughout the medial and commissural portions of the NTS, where they were frequently associated with processes showing immunoreactivity for the catecholamine-synthesizing enzyme tyrosine hydroxylase. Ultrastructural examination of the m-NTS revealed that the silver grains for 3H-5HT were accumulated over axon terminals. The 5HT-labeled terminals contained a heterogeneous population of vesicles and formed both symmetric and asymmetric synapses with dendrites. The recipient dendrites were either unlabeled or showed immunoreactivity for tyrosine hydroxylase. These findings support a direct serotoninergic modulation of catecholaminergic neurons within the rat m-NTS.  相似文献   

18.
We recently described ultrastructural evidence for morphologically heterogeneous axon terminals containing the endogenous opioid peptide, methionine5-enkephalin (ENK), that formed synapses with neurons containing the catecholamine synthesizing enzyme, tyrosine hydroxylase, in the locus coeruleus (LC) of the rat brain. The morphological characteristics of these terminals suggested that ENK may be co-localized with either an excitatory or inhibitory amino acid. To further test this hypothesis, we combined immunogold-silver localization of γ-aminobutyric acid (GABA) and immunoperoxidase labeling for ENK in single sections through the LC, in the present study, to determine whether ENK and GABA were contained within single axon terminals. Light microscopic analysis of ENK and GABA immunoreactivities in the LC indicated that both transmitters were enriched in the dorsal pons. Although electron microscopy revealed that ENK and GABA were located primarily in axon terminals, some dendrites also contained immunolabeling for GABA. The dense core vesicles were consistently the most immunoreactive in ENK containing axon terminals and were identified toward the periphery of the axon terminal distal to the synaptic specialization. Axon terminals containing either ENK or GABA immunoreactivities contained pleomorphic vesicles as well as large dense core vesicles, varied in size and formed heterogeneous types of synaptic specializations (i.e. asymmetric vs. symmetric). Approximately 38% (n=76) of the axon terminals containing ENK immunoreactivity (n=200) also contained GABA. Some axon terminals containing peroxidase labeling for ENK (22%; n=44) converged on common targets with GABA-labeled axon terminals. Finally, a few ENK-labeled axon terminals (14%; n=28) formed asymmetric (excitatory-type) synapses with dendrites containing gold-silver labeling for GABA. The results, therefore, indicate that the opioid peptide, ENK, and the inhibitory amino acid, GABA, may influence LC neurons by concerted actions via (1) release from a common axon terminal, and (2) via separate sets of afferents converging on similar portions of the plasmalemma of target neurons. Furthermore, these studies also suggest a cellular substrate for opioid inhibition of LC neurons via activation (i.e. asymmetric synapses) of inhibitory GABAergic neurons. Future studies are required to determine whether the receptive sites for ENK and GABA are located at similar sites on the plasma membranes of LC neurons pre- or postsynaptically and whether there is differential release of either transmitter from single terminals in the LC.  相似文献   

19.
Physiological and pharmacological studies indicate that descending projections from the prefrontal cortex modulate dopaminergic transmission in the nucleus accumbens septi and ventral tegmental area. We investigated the ultrastructural bases for these interactions in rat by examining the synaptic associations between prefrontal cortical terminals labeled with anterograde markers (lesion-induced degeneration or transport of Phaseolus vulgaris leucoagglutinin; PHA-L) and neuronal processes containing immunoreactivity for the catecholamine synthesizing enzyme, tyrosine hydroxylase. Prefrontal cortical terminals in the nucleus accumbens and ventral tegmental area contained clear, round vesicles and formed primarily asymmetric synapses on spines or small dendrites. In the ventral tegmental area, these terminals also formed asymmetric synapses on large dendrites and a few symmetric axodendritic synapses. In the nucleus accumbens septi, degenerating prefrontal cortical terminals synapsed on spiny dendrites which received convergent input from terminals containing peroxidase immunoreactivity for tyrosine hydroxylase, or from unlabeled terminals. In single sections, some tyrosine hydroxylase-labeled terminals formed thin and punctate symmetric synapses with dendritic shafts, or the heads and necks of spines. Close appositions, but not axo-axonic synapses, were frequently observed between degenerating prefrontal cortical afferents and tyrosine hydroxylase-labeled or unlabeled terminals. In the ventral tegmental area, prefrontal cortical terminals labeled with immunoperoxidase for PHA-L were in synaptic contact with dendrites containing immunogold reaction product for tyrosine hydroxylase, or with unlabeled dendrites. These results suggest that: (1) catecholaminergic (mainly dopaminergic) and prefrontal cortical terminals in the nucleus accumbens septi dually synapse on common spiny neurons; and (2) dopaminergic neurons in the ventral tegmental area receive monosynaptic input from prefrontal cortical afferents. This study provides the first ultrastructural basis for multiple sites of cellular interaction between prefrontal cortical efferents and mesolimbic dopaminergic neurons.  相似文献   

20.
Alpha-2-adrenergic receptor (α2-AR) agonists potently inhibit the activity of noradrenergic neurons of the locus coeruleus (LC), an effect that may be mediated by the A- and/ or C-subtypes of α2-AR (α2A- and α2C-AR). To gain insight into the functional significance of these α2-AR subtypes in the LC, we have examined their ultrastructural localization by using subtype-specific antibodies. We recently demonstrated that α2A-ARs are localized prominently in axon terminals and catecholaminergic dendrites in the LC. In the present study, we sought to identify the subcellular substrates underlying α2C-AR actions in the LC by analyzing the ultrastructural distribution of α2C-AR immunoreactivity (α2C-AR-IR) in sections that were dually labeled for the catecholamine-synthesizing enzyme tyrosine hydroxylase (TH). Alpha-2C-AR-IR was predominantly localized in dendrites, most of which also contained immunolabeling for TH. Within such dendrites, α2C-AR-IR was associated with the plasma membrane and occasionally Golgi cisternae and tubulovesicles. The vast majority of dendrites containing α2C-AR-IR received asymmetric (excitatory) contacts from unlabeled axon terminals that often contained dense core vesicles. Alpha-2C-AR-IR was observed in some unmyelinated axons and astrocytic processes that were apposed to TH-immunoreactive dendrites but was rarely associated with axon terminals. These results provide the first ultrastructural evidence that α2C-ARs (1) are localized postsynaptically in catecholaminergic neurons of the LC and (2) may be strategically situated to modulate the activation of LC neurons by excitatory inputs. J. Comp. Neurol. 394:218–229, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号