首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Apoptosis is a critical process in tissue homeostasis and results in immediate removal of the dying cell by professional phagocytes such as macrophages and dendritic cells. Phagocytosis of apoptotic cells actively suppresses production of proinflammatory growth factors and cytokines. Impaired phagocytosis of apoptotic cells has been implicated in the pathogenesis of chronic inflammatory and autoimmune diseases. In this study we found that, in addition to suppressing lipopolysaccharide (LPS)-induced production of TNF-alpha and IL-6, phagocytosis of apoptotic cells by macrophages suppressed production of the chemokine CXCL10 that is activated by LPS-induced autocrine-acting type I IFNs. Inhibition of cytokine and chemokine production was not universally affected because LPS-induced production of IL-10 and IL-8 was not significantly affected. Apoptotic cells had minimal effects on LPS-induced activation of NF-kappaB and MAPKs, but induced expression of SOCS proteins and substantially suppressed induction of CXCL10 expression by IFN-alpha. In addition to suppressing LPS responses, apoptotic cells inhibited macrophage responses to another major macrophage activator IFN-gamma by attenuating IFN-gamma-induced STAT1 activation and downstream gene expression. These results identify suppressive effects of apoptotic cells on signal transduction, and extend our understanding of the anti-inflammatory effects of apoptotic cells to include suppression of Jak-STAT signaling.  相似文献   

2.
Research into the mechanisms by which apoptotic cells are phagocytosed has grown considerably over recent years, together with a growing appreciation of the importance of clearance of redundant cells for tissue homeostasis. However, studies addressing the efficacy of phagocytosis have been rare. The few studies reported to date were either attempts to determine apoptotic cell clearance from the circulation or were focused on clearance in inflammation. We now describe an in vitro assay which permits the quantitative measurement of phagocytosis of apoptotic cells by murine resident peritoneal macrophages. The apoptotic cells used in the assay were murine thymocytes incubated with dexamethasone for only 3 h. Most apoptotic thymocytes were annexin V positive and propidium iodide negative and therefore still in the earlier stages of apoptosis. The assay was completed 7 h after the isolation of both macrophages and thymocytes, while macrophage culture time was only 4 h. Because of this short-term culture it is likely that the resident peritoneal macrophages largely maintained their in vivo phenotype. Using BALB/c macrophages and thymocytes, the maximal in vitro phagocytosis exceeded five thymocytes per macrophage in 1 h and two of these thymocytes were taken up within 10 min. Therefore, in vitro phagocytosis by resident peritoneal macrophages was rapid and of high capacity, as it is postulated to be in vivo. Under selected conditions, the mean uptake was 4.45+/-0.70 (mean +/- SD, n = 31) thymocytes per macrophage in 1 h. The inter-assay coefficient of variation, also representing the biological variability, was found to be 15.7%. The average intra-assay coefficient of variation was 13.6%. This assay permits comparisons of phagocytic efficacy between different strains of mice in vitro. In addition, a method of preparation is described which allows long-term storage of experimental results. Finally, our data suggests that internalization, but not binding of apoptotic cells to short-term cultured resident peritoneal macrophages, is critically dependent on the presence of serum. This allows separate analysis of binding and internalization of apoptotic cells with the assay, without the necessity to use agents blocking internalization.  相似文献   

3.
The cellular prion protein (PrPc) is a glycoprotein anchored by glycosylphosphatidylinositol (GPI) to the cell surface and is abundantly expressed in the central nervous system. It is also expressed in a variety of cell types of the immune system. We investigated the role of PrPc in the phagocytosis of apoptotic cells and other particles. Macrophages from mice with deletion of the Prnp gene showed higher rates of phagocytosis than wild-type macrophages in in vitro assays. The elimination of GPI-anchored proteins from the cell surface of macrophages from wild-type mice rendered these cells as efficient as macrophages derived from knockout mice. In situ detection of phagocytosis of apoptotic bodies within the retina indicated augmented phagocytotic activity in knockout mice. In an in vivo assay of acute peritonitis, knockout mice showed more efficient phagocytosis of zymosan particles than wild-type mice. In addition, leukocyte recruitment was altered in knockout mice, as compared with wild type. The data show that PrPc modulates phagocytosis in vitro and in vivo. This activity is described for the first time and may be important for normal macrophage functions as well as for the pathogenesis of prion diseases.  相似文献   

4.
Macrophages eliminate apoptotic granulocytes before their secondary necrosis during resolution of inflammation. A well-known glucocorticoid, the anti-inflammatory dexamethasone augments phagocytosis capacity of macrophages with a so far not fully clarified mechanism. We have found that sialylation of cell-surface proteins on human macrophages is markedly altered by dexamethasone. Compared to non-treated cells, dexamethasone-treated macrophages can bind significantly less Sambucus nigra lectin specific for sialic acids on their surfaces as a result of undersialylation of annexin-II and an HLA-II protein. Non-treated macrophages covered by S. nigra lectin had increased uptake of apoptotic cells; however, the significantly higher phagocytosis capacity of dexamethasone-treated macrophages could not be stimulated further this way. Our results suggest that dexamethasone treatment leads to decreased number of sialic acids on the surfaces of human macrophages promoting recognition and uptake of apoptotic cells.  相似文献   

5.
Resident macrophages are mainly responsible for the clearance of apoptotic cells from tissue by phagocytosis. Phagocytosis of apoptotic cells is not accompanied by activation of inflammatory mechanisms, unlike what happens when necrotic phenomena occur. We analyzed the effect of phagocytosis of apoptotic bodies on macrophage cell functions. After phagocytosis of apoptotic cells macrophages were unable to present an exogenous antigen to autologous antigen-specific T-cell lines. The inhibition was mediated by different mechanisms including binding of apoptotic DNA to human leukocyte antigen (HLA) class II molecules of macrophages, decreased expression of co-stimulatory molecules and increased secretion of tumor growth factor beta (TGFbeta). When dendritic cells were cultured with macrophages phagocytosing apoptotic cells, or with their supernatant, impaired dendritic cell antigen presenting activity and reduced tumor necrosis factor alpha (TNFalpha) secretion were found. Our results suggest that: (1) the phagocytosis of apoptotic bodies inhibits macrophage antigen presentation; (2) such inhibition is mediated by the binding of apoptotic DNA to macrophage HLA class II molecules as well as by the activation of biological mechanisms that induce an anti-inflammatory functional behavior in macrophages; and (3) macrophages phagocytosing apoptotic cells inhibit antigen presentation of neighboring dendritic cells via TGFbeta secretion. These events are likely related to the preservation of healthy tissues from the onset of inflammation.  相似文献   

6.
Transglutaminase 2 (TG2) is a protein crosslinking enzyme with several additional biochemical functions. Loss of TG2 in vivo results in impaired phagocytosis of apoptotic cells and altered proinflammatory cytokine production by macrophages engulfing apoptotic cells leading to autoimmunity. It has been proposed that TG2 acts as an integrin β(3) coreceptor in the engulfment process, while altered proinflammatory cytokine production is related to the lack of latent TGFβ activation by TG2 null macrophages. Here we report that TG2 null macrophages respond to lipopolysaccharide treatment by elevated IL-6 and TNFα production. Though TGFβ has been proposed to act as a feed back regulator of proinflammatory cytokine production in LPS-stimulated macrophages, this phenomenon is not related to the lack of active TGFβ production. Instead, in the absence of TG2 integrin β(3) maintains an elevated basal Src family kinase activity in macrophages, which leads to enhanced phosphorylation and degradation of the IκBα. Low basal levels of IκBα explain the enhanced sensitivity of TG2 null macrophages to signals that regulate NF-κB. Our data suggest that TG2 null macrophages bear a proinflammatory phenotype, which might contribute to the enhanced susceptibility of these mice to develop autoimmunity and atherosclerosis.  相似文献   

7.
Phagocyte integrins, by binding "bridging" molecules, mediate the ingestion of late apoptotic cells and apoptotic bodies by mechanisms that remain obscure. We recently reported that human monocyte-derived macrophages capture viable and apoptotic human leukocytes through homophilic interactions involving CD31 and that CD31 then promotes the engulfment of apoptotic cells or the detachment of viable cells. We now report that CD31 homophilic interactions between phagocyte and target cells lead to activation of phagocyte alpha5beta1 integrin and the engulfment of apoptotic Jurkat T lymphocytes via a fibronectin (Fn) "bridge." Although Fn and serum served as an opsonin for beta1 integrin-dependent phagocytosis of apoptotic leukemic T cells, they failed to do so for neutrophils. Given the complexities and inherent variability of working with primary cells, we have refined our model to show that ligation of CD31 on THP-1 macrophages also regulates beta1 integrin-dependent phagocytosis of Fn-coated Latex beads. Thus, selective "tethering" of apoptotic leukocytes by phagocyte CD31 not only discriminates dying from viable cells but also selectively activates phagocyte integrins for the engulfment of apoptotic cells.  相似文献   

8.
Features of phagocytosis have been observed in human tumors, but the phagocytic apparatus of tumor cells and the mechanism(s) underlying this phenomenon have yet to be defined. To address the phenomenon of phagocytosis, its underlying mechanism(s), and its possible role in tumor biology, we used human melanoma cells as a prototypic model. Our results showed that a process of phagocytosis of apoptotic cells occurs in vivo in human melanoma. This finding was consistent with evidence that human melanoma cells in vitro express all of the known lysosomal and phagocytic markers on their cytoplasmic vesicles and that a process of phagocytosis occurs in these vesicles. However, exclusively human melanoma cells deriving from metastatic lesions possess an efficient phagocytic machinery responsible for a macrophage-like activity against latex beads, yeast, and apoptotic cells of different origins, which was comparable to that of human primary macrophages. Moreover, the actin-binding protein ezrin was expressed on phagocytic vacuoles of melanoma cells and of cells deriving from a human adenocarcinoma; both treatment with cytochalasin B and specific inhibition of ezrin synthesis strongly affected the phagocytic activity of melanoma cells. This suggests that the association with the actin cytoskeleton is a crucial requirement for the development of this phenomenon. Hence our data provide evidence for a potent phagocytic activity exerted by metastatic melanoma cells possibly involved in determining the level of aggressiveness of human melanoma. This suggests that the assessment of phagocytic activity may be exploited as a new tool to evaluate the malignancy of human melanoma. Moreover, our data suggest that gene therapy or drug treatments aimed at inhibiting actin assembly to the phagosomal membranes may be proposed as a new strategy for the control of tumor aggressiveness.  相似文献   

9.
The T cell immunoglobulin mucin (TIM) proteins regulate T cell activation and tolerance. Here we showed that TIM-4 is expressed on human and mouse macrophages and dendritic cells, and both TIM-4 and TIM-1 specifically bound phosphatidylserine (PS) on the surface of apoptotic cells but not any other phospholipid tested. TIM-4(+) peritoneal macrophages, TIM-1(+) kidney cells, and TIM-4- or TIM-1-transfected cells efficiently phagocytosed apoptotic cells, and phagocytosis could be blocked by TIM-4 or TIM-1 monoclonal antibodies. Mutations in the unique cavity of TIM-4 eliminated PS binding and phagocytosis. TIM-4 mAbs that blocked PS binding and phagocytosis mapped to epitopes in this binding cavity. These results show that TIM-4 and TIM-1 are immunologically restricted members of the group of receptors whose recognition of PS is critical for the efficient clearance of apoptotic cells and prevention of autoimmunity.  相似文献   

10.
We have demonstrated that phagocytosis of late apoptotic cells by mouse macrophages leads to the production of proinflammatory cytokines, notably macrophage-inflammatory protein (MIP-2), and therefore, a yet-unknown mechanism(s) should keep our body free of inflammation. In this study, we examined the effect of the addition of immature dendritic cells (iDCs) to a coculture of macrophages and apoptotic cells on MIP-2 production and phagocytosis by macrophages. The addition of iDCs to the coculture reduced MIP-2 production significantly but unexpectedly enhanced the phagocytosis by macrophages. Further study revealed that the reduction of MIP-2 production was dependent on cell-to-cell contact partly involving the beta(2) integrin family Mac-1. In addition, anti-inflammatory cytokines, interleukin-10 and transforming growth factor-beta, were involved in the reduction of MIP-2 production, as antibodies against these cytokines recovered MIP-2 production. Both cytokines were expressed by iDCs more significantly than macrophages at the mRNA levels, although they were hardly detected in the supernatant at the protein levels, suggesting that minute amounts of these anti-inflammatory cytokines were produced mainly by iDCs to block MIP-2 production in a cell-to-cell contact-dependent manner. Thus, this study reveals a new mechanism by which MIP-2 production by macrophages phagocytosing apoptotic cells is prevented.  相似文献   

11.
An increased number of apoptotic bodies have been detected in glomeruli of non-nephritic kidneys of C1q-deficient mice. In these mice an in vivo impaired uptake of apoptotic cells by peritoneal macrophages was also demonstrated. Here we investigated whether C1q plays a role in the in vitro clearance of apoptotic cells by glomerular mesangial cells. Phagocytosis was assessed using a novel flow cytometric assay that was validated by immunofluorescence studies. The uptake of apoptotic cells by mesangial cells, measured as percentage of mesangial cells ingesting apoptotic cells, was approximately 25%, 10% and 10% for a T cell lymphoma line (RMA), thymocytes and neutrophils, respectively. The uptake reached a plateau phase after 3 h, was specific for apoptotic cells and was mediated by serum but not by complement components C1q or C3. The phagocytosis of apoptotic cells was significantly inhibited by Arg-Gly-Asp-Ser (RGDS), a peptide capable of blocking the interaction of thrombospondin with CD36 or the vitronectin receptor. Pretreatment of the mesangial cells with dexamethasone (200 nm) but not with LPS increased the uptake markedly. These findings indicate that murine mesangial cells are capable of taking up syngeneic apoptotic cells, although much less efficiently than professional phagocytic cells. They also show that serum proteins other than complement components mediate the removal of apoptotic cells by murine mesangial cells in vitro.  相似文献   

12.
13.
Feng X  Deng T  Zhang Y  Su S  Wei C  Han D 《Immunology》2011,132(2):287-295
Removal of apoptotic cells from inflammatory sites by macrophages is an important step in the resolution of inflammation. However, the effect of inflammatory modulators on phagocytic clearance of apoptotic cells remains to be clarified. In this paper, we demonstrate that lipopolysaccharide (LPS), a potent inflammatory agent, inhibits the phagocytosis of apoptotic neutrophils by mouse peritoneal macrophages. This inhibition can be attributed to both LPS-mediated induction of tumour necrosis factor (TNF-α) and suppression of growth arrest-specific gene 6 (Gas6) in macrophages. We found that LPS-induced TNF-α production inhibited phagocytic ability of macrophages in an autocrine manner. In contrast, Gas6 expression in macrophages was blocked by LPS, which also contributes to the inhibition of macrophage phagocytosis by LPS. Our data suggest that phagocytic clearance of apoptotic neutrophils by macrophages can be regulated by local pro- and anti-inflammatory factors in two opposite states.  相似文献   

14.
15.
Dysfunction of neutrophils (polymorphonuclear leukocytes [PMNL]) and macrophagic cells occurs as a consequence of human immunodeficiency virus type 1 (HIV-1) infection. Macrophages contribute to the resolution of early inflammation ingesting PMNL apoptotic bodies. This study investigated macrophage ability to phagocytose PMNL apoptotic bodies in patients with HIV-1 infection in comparison with uninfected individuals and the effect of HIV Nef protein on apoptotic body phagocytosis to determine if phagocytic activity is impaired by HIV infection. Monocytes/macrophages were isolated from 10 HIV-1-infected patients and from five healthy volunteers, whereas PMNL were isolated from healthy volunteers. Macrophage phagocytosis of apoptotic PMNL was determined by staining of apoptotic bodies with fluorescein-conjugated concanavalin A or with fluorescein-labeled phalloidin. Our data show significant impairment of PMNL apoptotic body macrophage phagocytosis in subjects with HIV-1 infection presenting a concentration of CD4(+) T lymphocytes of >200/mm(3) and in particular in those with <200 CD4(+) T lymphocyte cells/mm(3). In addition, HIV-1 recombinant Nef protein is able to decrease phagocytosis of apoptotic PMNL from normal human macrophages in a dose-dependent manner. The results of our study suggest that impaired macrophage phagocytosis of PMNL apoptotic bodies may contribute to the persistence of the inflammatory state in HIV-infected subjects, especially during opportunistic infections that are often favored by defective phagocytic activity.  相似文献   

16.
Apoptotic cells can be recognized and taken up by both macrophages and dendritic cells. Phagocytosis of apoptotic cells generally leads to active suppression of cytokine production by professional phagocytes. This is different from the response towards cells that die by necrosis, which induce a pro-inflammatory cytokine profile. Uptake of apoptotic cells involves a large number of receptors and opsonins, which bind to cellular ligands exposed during the various stages of apoptotic cell death. Among the opsonins of apoptotic cells, complement factors, including C1q, and complement-activating members of the pentraxin family play an important role. This is indicated by in vitro phagocytosis studies and supported by the susceptibility to systemic autoimmunity of carriers of genetic deficiencies for early complement proteins. The present review summarizes the role of molecules of innate immunity in the handling of apoptotic cells by macrophages and dendritic cells. It is proposed that C1q and other opsonins prevent autoimmunity and maintain self-tolerance by supporting the efficient clearance of apoptotic material, as well as by actively modulating phagocyte function.  相似文献   

17.
Senescent human neutrophils undergo programmed cell death (apoptosis), leading to their recognition and phagocytosis by mature macrophages. At inflamed sites in vivo these processes may represent a neutrophil removal mechanism with the potential to limit the histotoxic capacity of these cells. Phagocytosis can provoke marked proinflammatory responses by macrophages. A macrophage proinflammatory response to the ingestion of apoptotic neutrophils would limit the efficacy of this neutrophil removal mechanism as a component of inflammatory resolution. In the present study we examined two macrophage proinflammatory responses; secretion of the granule enzyme N-acetyl-beta-D-glucosaminidase (NAG) and release of the membrane lipid-derived inflammatory mediator thromboxane A2 (TxA2, measured as TxB2). By contrast with the marked release of NAG and TxB2 elicited by phagocytosis of control particles (opsonised zymosan and immunoglobulin G-coated erythrocytes), macrophage ingestion of apoptotic neutrophils resulted in minimal release of NAG and no release of TxB2; indeed, there was a small depression of TxB2 release that was not due to a toxic effect of neutrophil uptake because macrophages ingesting apoptotic neutrophils retained marked TxB2 responses to subsequent stimulation with opsonised zymosan. Furthermore, there was significant TxB2 release in response to macrophage phagocytosis of apoptotic neutrophils that had been coated with opsonic serum, demonstrating that the lack of macrophage response was determined by the mechanism of recognition rather than the properties of the apoptotic particle itself. These observations are consistent with the hypothesis that macrophage clearance of senscent neutrophils undergoing apoptosis is an injury-limiting mechanism that favors resolution rather than persistence of the inflammatory response and are consistent with observations that the waves of apoptotic cell removal seen in embryological removal and thymic involution do not trigger an inflammatory response.  相似文献   

18.
Decreased phagocytosis of apoptotic cells in diseased SLE mice   总被引:9,自引:0,他引:9  
Antibodies against nucleosomes are a serological hallmark of systemic lupus erythematosus (SLE). Apoptotic cells are the unique source of nucleosomes, which are formed through cleavage of chromatin by nucleases. These nucleosomes and other autoantigens targeted in SLE are expressed in apoptotic blebs or at the surface of apoptotic cells. Therefore, it is conceivable that circulating antibodies can influence apoptotic cell clearance. Using an in vitro phagocytosis assay, we analysed the phagocytic efficacy for apoptotic cells of resident peritoneal macrophages from pre-morbid and diseased lupus mice. The assay was carried out in the presence of autologous serum, using autologous apoptotic thymocytes as targets. Under these conditions macrophages from diseased MRL/lpr and NZBxNZW(F1) lupus mice, and from age-matched NZB mice showed a decreased phagocytic efficacy (decrease 47%, 48% and 37%, respectively compared to measurements in pre-morbid mice). The cause of this decrease resides in the serum, and is not due to an acquired defect of macrophages. In conclusion, during disease progression in murine SLE, apoptotic cell clearance becomes impaired, which might amplify further disease progression.  相似文献   

19.
In the process of ovary sexual maturation, most immature ovarian follicles degrade into atretic follicles accompanied by apoptosis in granulosa cells. Macrophages can recognize apoptotic cells through specific binding with phosphatidylserine (PS), exposed on the surface of apoptotic cells, which is mediated by milk-fat globule-EGF factor 8 (MFG-E8). In the present research, we examined the involvement of the MFG-E8-dependent phagocytosis system in the atretic follicles of developing mouse ovaries. The number of atretic follicles and DNA-fragmented granulosa cells significantly increased in B6C3F1 mice during 2 to 6 weeks. Chromatin-condensed granulosa cells were engulfed by macrophages, which existed in the stroma or atretic follicles, or by neighboring normal granulosa cells. MFG-E8 mRNA increased in ovaries during 2 to 6 weeks, and immunoreactivity of MFG-E8 was detected at the surface of apoptotic cells existing around the antrum. Immunoelectron microscopic study revealed MFG-E8-positive signals on the membrane of apoptotic cells near macrophages, but apoptotic cells engulfed by neighboring granulosa cells showed few signals. Anti-Fas antibody elevated the annexin-V-positive reaction in isolated granulosa cells from 3-week-old mouse ovaries. MFG-E8 seems to act on the phagocytosis of apoptotic granulosa cells via macrophages and contribute to the regression process of atretic follicles.  相似文献   

20.
Various types of phagocytes mediate the clearance of apoptotic cells. We previously reported that human and murine high endothelial venule (HEV) cells ingest apoptotic cells. In this report, we examined endothelial cell fucoidin receptor-mediated phagocytosis using a murine endothelial cell model mHEV. mHEV cell recognition of apoptotic leukocytes was blocked by fucoidin but not by other phagocytic receptor inhibitors such as mannose, fucose, N-acetylglucosamine, phosphatidylserine (PS), or blocking anti-PS receptor antibodies. Thus, the mHEV cells used fucoidin receptors for recognition and phagocytosis of apoptotic leukocytes. The fucoidin receptor-mediated endothelial cell phagocytosis was specific for apoptotic leukocytes, as necrotic cells were not ingested. This is in contrast to macrophages, which ingest apoptotic and necrotic cells. Endothelial cell phagocytosis of apoptotic cells did not alter viable lymphocyte migration across these endothelial cells. Antibody blocking of CD44 and alpha4 integrin on the apoptotic leukocyte inhibited this endothelial cell phagocytosis, suggesting a novel function for these adhesion molecules in the removal of apoptotic targets. The removal of apoptotic leukocytes by endothelial cells may protect the microvasculature, thus ensuring that viable lymphocytes can successfully migrate into tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号