首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
1. The aim of the present study was to analyse the cardiovascular actions of the synthetic CB1/CB2 cannabinoid receptor agonist WIN55212-2, and specifically to determine its sites of action on sympathetic cardiovascular regulation. 2. Pithed rabbits in which the sympathetic outflow was continuously stimulated electrically or which received a pressor infusion of noradrenaline were used to study peripheral prejunctional and direct vascular effects, respectively. For studying effects on brain stem cardiovascular regulatory centres, drugs were administered into the cisterna cerebellomedullaris in conscious rabbits. Overall cardiovascular effects of the cannabinoid were studied in conscious rabbits with intravenous drug administration. 3. In pithed rabbits in which the sympathetic outflow was continuously electrically stimulated, intravenous injection of WIN55212-2 (5, 50 and 500 microg kg(-1)) markedly reduced blood pressure, the spillover of noradrenaline into plasma and the plasma noradrenaline concentration, and these effects were antagonized by the CB1 cannabinoid receptor-selective antagonist SR141716A. The hypotensive and the sympathoinhibitory effect of WIN55212-2 was shared by CP55940, another mixed CB1/CB2 cannabinoid receptor agonist, but not by WIN55212-3, the enantiomer of WIN55212-2, which lacks affinity for cannabinoid binding sites. WIN55212-2 had no effect on vascular tone established by infusion of noradrenaline in pithed rabbits. 4. Intracisternal application of WIN55212-2 (0.1, 1 and 10 microg kg(-1)) in conscious rabbits increased blood pressure and the plasma noradrenaline concentration and elicited bradycardia; this latter effect was antagonized by atropine. 5. In conscious animals, intravenous injection of WIN55212-2 (5 and 50 microg kg(-1)) caused bradycardia, slight hypotension, no change in the plasma noradrenaline concentration, and an increase in renal sympathetic nerve firing. The highest dose of WIN55212-2 (500 microg kg(-1)) elicited hypotension and tachycardia, and sympathetic nerve activity and the plasma noradrenaline concentration declined. 6. The results obtained in pithed rabbits indicate that activation of CB1 cannabinoid receptors leads to marked peripheral prejunctional inhibition of noradrenaline release from postganglionic sympathetic axons. Intracisternal application of WIN55212-2 uncovered two effects on brain stem cardiovascular centres: sympathoexcitation and activation of cardiac vagal fibres. The highest dose of systemically administered WIN55212-2 produced central sympathoinhibition; the primary site of this action is not known.  相似文献   

2.
1. The objective of the present study was to analyse the peripheral effects of cannabinoids on adrenaline release from adrenal chromaffin cells. 2. In pithed rabbits with electrically stimulated sympathetic outflow, intravenous injection of the cannabinoid receptor agonists WIN55212-2 and CP55940 (5, 50 and 500 microg x kg(-1)) markedly lowered the plasma adrenaline concentration. The effect of WIN55212-2 was attenuated by the selective CB1 cannabinoid receptor antagonist SR141716A (500 microg x kg(-1)). WIN55212-3 (same doses as WIN55212-2), the enantiomer of WIN55212-2 lacking affinity for cannabinoid receptors, had no effect on the plasma adrenaline concentration. 3. In rabbit isolated adrenal glands, the release of adrenaline elicited by electrical stimulation was measured by fast cyclic voltammetry. Electrically-evoked adrenaline release was inhibited by WIN55212-2 (0.3, 1, 3 and 10 microM) and this effect was antagonized by SR141716A (1 microM). The non-cholinergic component of adrenaline release observed after blockade of nicotinic (by hexamethonium 100 microM) and muscarinic (by atropine 0.5 microM) acetylcholine receptors was not depressed by WIN55212-2. WIN55212-3 (10 microM) had no effect on adrenaline release. 4. No detectable specific CB1 receptor binding and mRNA expression were found in rabbit adrenal glands with autoradiography and in situ hybridization. 5. The results show that cannabinoids inhibit adrenaline secretion in rabbit isolated adrenal glands; the likely mechanism is a presynaptic CB1 receptor-mediated inhibition of acetylcholine release from preganglionic sympathetic neurons. The inhibition of adrenaline secretion in adrenal glands most probably accounts for the decrease in the plasma adrenaline concentration observed after cannabinoid administration in pithed rabbits.  相似文献   

3.
Cannabinoids exert complex effects on blood pressure related to their interference with cardiovascular centres in the central nervous system and to their direct influence on vascular muscle, vascular endothelium and heart. In view of the relative lack of information on the occurrence of CB1 receptors on the vascular postganglionic sympathetic nerve fibres, the aim of the present study was to examine whether cannabinoid receptor ligands affect the electrically evoked tritium overflow in superfused vessels (tissue pieces) from the guinea-pig, the rat and the mouse preincubated with 3H-noradrenaline. The cannabinoid receptor agonist WIN 55,212-2 (R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]-pyrrolo[1,2,3-de]1,4-benzoxazinyl](1-naphthalenyl) methanone) inhibited the evoked tritium overflow in the guinea-pig aorta, but not in that of the rat or mouse. The concentration–response curve of WIN 55,212-2 was shifted to the right by the CB1 receptor antagonist rimonabant, yielding an apparent pA2 value of 7.9. The most pronounced (near-maximum) inhibition obtained at the highest WIN 55,212-2 concentration applied (3.2 μM) amounted to 40%. WIN 55,212-2 also inhibited the evoked overflow in guinea-pig pulmonary artery, basilar artery and portal vein, again in a manner sensitive to antagonism by rimonabant. The latter did not affect the evoked overflow by itself in the four vessels, but did increase the electrically evoked tritium overflow from superfused guinea-pig hippocampal slices preincubated with 3H-choline and from superfused guinea-pig retina discs preincubated with 3H-noradrenaline (labelling dopaminergic cells in this tissue). The inhibitory effect of 3.2 μM WIN 55,212-2 on the evoked overflow from the guineapig aorta was comparable in size to that obtained with agonists at the histamine H3, κ opioid (KOP) and ORL1 (NOP) receptor (1 or 10 μM, producing the respective near-maximum effects) whereas prostaglandin E2 1 μM caused a higher near-maximum inhibition of 70%. Prostaglandin E2 also induced an inhibition by 65 and 80% in the rat and mouse aorta respectively, indicating that the present conditions are basically suitable for detecting presynaptic receptor-mediated inhibition of noradrenaline release. The results show that the postganglionic sympathetic nerve fibres in the guineapig aorta, but not in the rat or mouse aorta, are endowed with presynaptic inhibitory cannabinoid CB1 receptors; such receptors also occur in guineapig pulmonary artery, basilar artery and portal vein. These CB1 receptors are not subject to an endogenous tone and the extent of inhibition obtainable via these receptors is within the same range as that of several other presynaptic heteroreceptors, but markedly lower than that obtainable via receptors for prostaglandin E2.  相似文献   

4.
Our objective was to identify the sites of interaction of cannabinoids with cardiovascular sympathetic regulation in the rat. Effects on sympathetic tone were first determined in anaesthetised animals following i.v. administration of the drugs. Central effects were evaluated in anaesthetised rats receiving microinjections of cannabinoids into brain stem nuclei. Peripheral effects were identified in pithed rats with electrically stimulated sympathetic outflow.In anaesthetised and artificially ventilated rats, i.v. injection of the cannabinoid agonists WIN55212-2 and CP55940 decreased mean arterial pressure, heart rate and the plasma noradrenaline concentration. These effects were antagonized by the CB(1) cannabinoid receptor antagonist SR141716A. The bradycardia was abolished by the muscarinic acetylcholine receptor antagonist methylatropine. The decreases in mean arterial pressure and heart rate caused by cannabinoids in ventilated rats were much less pronounced than in spontaneously breathing rats. Microinjection of WIN55212-2 into the nucleus tractus solitarii had no effect. Microinjected into the rostral ventrolateral medulla oblongata, WIN55212-2 lowered mean arterial pressure slightly without changing other parameters. In pithed rats, WIN55212-2 inhibited the increases in mean arterial pressure, heart rate and the plasma noradrenaline concentration evoked by electrical stimulation of the sympathetic outflow.Our results show that activation of CB(1) cannabinoid receptors induces sympathoinhibition and enhancement of cardiac vagal tone, leading to hypotension and bradycardia. Presynaptic inhibition of noradrenaline release from terminals of postganglionic sympathetic neurons is the major component of the sympathoinhibition, but an effect in the rostral ventrolateral medulla oblongata may also contribute. The cannabinoid-evoked cardiovascular depression depends strongly on the respiratory state of the animals.  相似文献   

5.
This study examined the effect of intrathecal (i.t.) injection of the endocannabinoid anandamide in urethane-anesthetized rats. The tip of the i.t. cannula was positioned at the T12–L1 level of the spinal cord. Either anandamide or its metabolically stable analogue methanandamide (25 to 100 nmol) produced dose-dependent decreases in the blood pressure that persisted at least for up to 30 min. The hypotensive responses to 100 nmol anandamide and to 100 nmol methanandamide were –17.7±1.6 mmHg (n=5) and –17.9±2.0 mmHg (n=4), respectively. Hypotensive effects were also obtained with the CB1 cannabinoid receptor agonist WIN 55212-2 (20 nmol; i.t.) as well as with the vanilloid VR1 receptor agonist capsaicin (3 nmol; i.t.). Nicotinic ganglionic blockade with hexamethonium bromide [10 mg/kg; intravenous(i.v.)] abolished the responses to both anandamide and capsaicin. The i.t. administration of the CB1 receptor antagonist, 20 nmol SR 141716A, as well as the VR1 receptor antagonist, 20 nmol capsazepine, prevented almost completely the hypotensive responses to both anandamide and methanandamide. SR 141716A prevented the hypotension caused by WIN 55212-2 but did not modify the response to the vanilloid receptor agonist capsaicin. On the contrary, capsazepine antagonized the hypotension caused by capsaicin but failed to affect the decrease in blood pressure caused by the CB1 cannabinoid receptor agonist WIN 55212-2. These results suggest that anandamide could modulate the blood pressure through the activation of cannabinoid CB1 receptors and vanilloid VR1 receptors localized at the spinal cord.  相似文献   

6.
Activation of CB1 receptors on axon terminals by exogenous cannabinoids (eg, Δ9-tetrahydrocannabinol) and by endogenous cannabinoids (endocannabinoids) released by postsynaptic neurons leads to presynaptic inhibition of neurotransmission. The aim of this study was to characterize the effect of cannabinoids on GABAergic synaptic transmission in the human neocortex. Brain slices were prepared from neocortical tissues surgically removed to eliminate epileptogenic foci. Spontaneous GABAergic inhibitory postsynaptic currents (sIPSCs) were recorded in putative pyramidal neurons using patch-clamp techniques. To enhance the activity of cannabinoid-sensitive presynaptic axons, muscarinic receptors were continuously stimulated by carbachol. The synthetic cannabinoid receptor agonist WIN55212-2 decreased the cumulative amplitude of sIPSCs. The CB1 antagonist rimonabant prevented this effect, verifying the involvement of CB1 receptors. WIN55212-2 decreased the frequency of miniature IPSCs (mIPSCs) recorded in the presence of tetrodotoxin, but did not change their amplitude, indicating that the neurotransmission was inhibited presynaptically. Depolarization of postsynaptic pyramidal neurons induced a suppression of sIPSCs. As rimonabant prevented this suppression, it is very likely that it was due to endocannabinods acting on CB1 receptors. This is the first demonstration that an exogenous cannabinoid inhibits synaptic transmission in the human neocortex and that endocannabinoids released by postsynaptic neurons suppress synaptic transmission in the human brain. Interferences of cannabinoid agonists and antagonists with synaptic transmission in the cortex may explain the cognitive and memory deficits elicited by these drugs.  相似文献   

7.
The acute effects of cannabinoid drugs on the synthesis of noradrenaline, dopamine, and serotonin (5-HT) were assessed, simultaneously, using the accumulation of 3,4-dihydroxyphenylalanine (dopa) and 5-hydroxytryptophan (5-HTP) after decarboxylase inhibition as a measure of the rate of tyrosine and tryptophan hydroxylation in the rat brain in vivo. Treatment (1 h, i.p.) with 9-tetrahydrocannabinol (THC, 5, 10, and 20 mg/kg) and the cannabinoid receptor agonist WIN 55,212–2 (WIN, 2 and 4 mg/kg) increased dopa/noradrenaline synthesis (40–70%) in various brain regions enriched in this neurotransmitter (e.g., cerebral cortex, hippocampus, hypothalamus). In most brain regions, the content of noradrenaline was reduced by cannabinoid drugs (27–66%). For the effects of WIN (2 and 4 mg/kg), an inverse correlation (r=–0.61, P=0.036) was obtained between the accumulation of dopa and the content of noradrenaline in the hypothalamus. The stimulatory effect on dopa accumulation induced by THC was antagonized by the selective CB1 receptor antagonists SR141716A and AM 281 (10 mg/kg). In contrast, THC and WIN decreased the synthesis of dopa/dopamine in the corpus striatum (16–37%) and that of 5-HTP/5-HT (20–35%) in brain regions enriched in 5-HT (e.g., cerebral cortex and hippocampus). These inhibitory effects of THC and WIN were also antagonized by AM 281 and/or SR141716A. THC did not alter the content of 5-HT or dopamine in the brain. The effects may be related to the activation of presynaptic inhibitory cannabinoid CB1 receptors located on the neurones themselves (serotonin) and on facilitatory (dopamine) and inhibitory interneurones (noradrenaline).  相似文献   

8.

BACKGROUND AND PURPOSE

The extent to which behavioural effects vary as a function of CB1 receptor agonist efficacy is not clear. These studies tested the hypothesis that cannabinoid tolerance and cross-tolerance depend upon the CB1 agonist efficacy of drugs to which tolerance/cross-tolerance develops.

EXPERIMENTAL APPROACH

Sensitivity to cannabinoids, including the cannabinoid antagonist rimonabant, low efficacy agonist Δ9-tetrahydrocannabinol (Δ9-THC), and high efficacy agonists CP 55940 and WIN 55212-2, was determined before and after chronic Δ9-THC treatment in rhesus monkeys. Two measures of behavioural effect were assessed: effects of drugs to decrease fixed ratio responding for food presentation and stimulus-shock termination and discriminative stimulus effects in monkeys discriminating Δ9-THC (0.1 mg·kg−1, i.v.).

KEY RESULTS

Δ9-THC decreased responding for both food presentation and stimulus-shock termination; these effects were antagonized by the CB1 antagonist rimonabant. Chronic Δ9-THC (1 mg·kg−1 per 12 h, s.c.) resulted in tolerance to the rate-decreasing effects of Δ9-THC and cross-tolerance to CP 55940 and WIN 55212-2; however, cross-tolerance was less than tolerance. Chronic Δ9-THC increased sensitivity to rimonabant without changing sensitivity to the non-cannabinoids midazolam and ketamine. In monkeys discriminating Δ9-THC (0.1 mg·kg−1, i.v.), both CP 55940 and WIN 55212-2 produced high levels of drug-lever responding. Chronic Δ9-THC (1 mg·kg−1 per day, s.c.) decreased sensitivity to Δ9-THC without producing cross-tolerance to CP 55940 or WIN 55212-2.

CONCLUSIONS AND IMPLICATIONS

In Δ9-THC-treated monkeys, the magnitude of tolerance and cross-tolerance to other CB1 receptor agonists varied inversely with agonist efficacy, suggesting that CB1 agonist efficacy is an important determinant of behavioural effects.  相似文献   

9.
The objective of the present study was to evaluate the respiratory effects of cannabinoids and their influence on cardiovascular homeostasis.In spontaneously breathing urethane-anaesthetised rats, intravenous injection of the two synthetic cannabinoid receptor agonists WIN55212-2 and CP55940 strongly and dose-dependently lowered mean arterial pressure, heart rate and the plasma noradrenaline concentration. The cardiovascular depressive effects were associated with a large decrease in respiratory rate, hypoxia, hypercapnia and blood acidosis. All depressor effects of WIN55212-2 were abolished by the selective CB1 cannabinoid receptor antagonist SR141716A. The bradycardia elicited by WIN55212-2 was inhibited by the muscarinic acetylcholine receptor antagonist methylatropine. The natural agonist 9-tetrahydrocannabinol also elicited cardiovascular and respiratory depression. In contrast, WIN55212-3, an enantiomer of WIN55212-2 lacking affinity for cannabinoid receptors, had no effect. The cannabinoid-evoked decreases in blood pressure and heart rate were much more pronounced in spontaneously breathing than in artificially ventilated urethane-anaesthetised rats. In contrast, the plasma noradrenaline concentration was lowered equally in both preparations.Our results show that activation of CB1 cannabinoid receptors not only induces cardiovascular depression, but also markedly impairs ventilation. The second major finding of the present study is that the respiratory depression evoked by cannabinoids largely amplifies the cardiovascular depression.  相似文献   

10.
The cannabinoid CB1 receptors on the noradrenergic neurons in guinea pig hippocampal slices show an endogenous endocannabinoid tone. This conclusion is based on rimonabant, the facilitatory effect of which on noradrenaline release might be due to its inverse CB1 receptor agonism and/or the interruption of a tonic inhibition elicited by endocannabinoids. To examine the latter mechanism, a neutral antagonist would be suitable. Therefore, we studied whether O-2050 is a neutral CB1 receptor antagonist in the guinea pig hippocampus and whether it mimics the facilitatory effect of rimonabant. CB1 receptor affinity of O-2050 was quantified in cerebrocortical membranes, using 3H-rimonabant binding. Its CB1 receptor potency and effect on 3H-noradrenaline release were determined in superfused hippocampal slices. Its intrinsic activity at CB1 receptors was studied in hippocampal membranes, using 35S-GTPγS binding. Endocannabinoid levels in hippocampus were determined by liquid chromatography-multiple reaction monitoring. O-2050 was about ten times less potent than rimonabant in its CB1 receptor affinity, potency and facilitatory effect on noradrenaline release. Although not affecting 35S-GTPγS binding by itself, O-2050 shifted the concentration-response curve of a CB1 receptor agonist to the right but that of rimonabant to the left. Levels of anandamide and 2-arachidonoyl glycerol in guinea pig hippocampus closely resembled those in mouse hippocampus. In conclusion, our results with O-2050 confirm that the CB1 receptors on noradrenergic neurons of the guinea pig hippocampus show an endogenous tone. To differentiate between the two mechanisms leading to an endogenous tone, O-2050 is not superior to rimonabant since O-2050 may increase the inverse agonistic effect of endocannabinoids.  相似文献   

11.
The effects of two cannabinoid receptor agonists, R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]-pyrrolo[1, 2, 3-de]-1,4-benzoxazin-yl]-(1-naphthalenyl)methanone (WIN 55,212-2) and (-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol (CP-55,940), were studied on (i) the vasopressor response elicited in pithed rats by electrical stimulation of the sympathetic outflow and (ii) the release of 3H-noradrenaline and the vasoconstriction elicited in isolated rat tail arteries by transmural electrical stimulation. In pithed rats, the electrical (1Hz for 10s) stimulation of the preganglionic sympathetic nerve fibres increased diastolic blood pressure by about 30mmHg. This neurogenic vasopressor response (which under the conditions of our study was almost exclusively due to the release of catecholamines) was decreased by WIN 55-212,2 and CP-55,940 in a dose-dependent manner (inhibition by WIN 55,212-2 and CP-55,940, 0.1μmol/kg each, about 25–30%). The inhibition was identical in adrenalectomized rats and in animals with intact adrenals. The inhibitory action of WIN 55,212-2 and CP-55,940 was abolished by a dose of 0.03μmol/kg of the CB1 receptor antagonist N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlo- rophenyl)-4-methyl-3-pyrazole-carboxamide (SR 141716), which, by itself, had no effect. WIN 55,212-2, CP-55,940 and SR 141716 failed to affect the vasopressor response to exogenous noradrenaline (1nmol/kg), which also increased diastolic blood pressure by about 30mmHg. In isolated rat tail arteries, the electrically (0.4Hz) evoked tritium overflow and vasoconstriction were not modified by WIN 55,212-2 and CP-55,940 (1μmol/l each). In conclusion, the neurogenic vasopressor response in the pithed rat can be modulated via cannabinoid CB1 receptors probably located presynaptically on the postganglionic sympathetic nerve fibres innervating resistance vessels. Received: 4 April 1997 / Accepted: 10 May 1997  相似文献   

12.

Background and purpose:

In vitro studies demonstrate that cannabinoid CB1 receptors subserve activity-dependent suppression of inhibition in the neocortex. To examine this mechanism in vivo, we assessed the effects of local changes in CB1 receptor activity on somatosensory cortex neuronal activation by whisker movement in rats.

Experimental approach:

Laser Doppler flowmetry and c-Fos immunohistochemistry were used to measure changes in local blood flow and neuronal activation, respectively. All drugs were applied directly to the cranium above the whisker barrel fields of the primary somatosensory cortex.

Key results:

The CB1 receptor agonist WIN55212-2 potentiated the hyperaemia induced by whisker movement and this potentiation was occluded by bicuculline. The CB1 receptor antagonists, rimonabant and AM251, inhibited hyperaemic responses to whisker movement; indicating that activation of endogenous CB1 receptors increased during whisker movement. Whisker movement-induced expression of c-Fos protein in neurons of the whisker barrel cortex was inhibited by rimonabant. Movement of the whiskers increased the 2-arachidonoylglycerol content in the contralateral, compared to the ipsilateral, sensory cortex.

Conclusions and implications:

These results support the hypothesis that endocannabinoid signalling is recruited during physiologically relevant activation of the sensory cortex. These data support the hypothesis that the primary effect of CB1 receptor activation within the activated whisker barrel cortex is to inhibit GABA release, resulting in disinhibition of neuronal activation. These studies provide physiological data involving endocannabinoid signalling in activity-dependent regulation of neuronal activation and provide a mechanistic basis for the effects of cannabis use on sensory processing in humans.This article is part of a themed issue on Cannabinoids. To view the editorial for this themed issue visit http://dx.doi.org/10.1111/j.1476-5381.2010.00831.x  相似文献   

13.

Background and purpose:

We examined whether cannabinoid CB1 and histamine H3 receptors resemble α2-adrenoceptors in that their presynaptically mediated cardiovascular effects are less marked in urethane- than in pentobarbitone-anaesthetized pithed rats.

Experimental approach:

Effects of the cannabinoid agonist CP-55,940 and the H3 receptor agonist imetit on electrically induced tachycardic and vasopressor responses, respectively, was compared in pithed rats anaesthetized with urethane or pentobarbitone. The affinity of urethane for the three receptors was measured by radioligand binding studies in rat brain cortex membranes and its potency assessed in superfused mouse tissues preincubated with 3H-noradrenaline.

Key results:

The neurogenic tachycardic response was less markedly inhibited by CP-55,940 in urethane- than in pentobarbitone-anaesthetized pithed rats. Imetit inhibited the neurogenic vasopressor response after pentobarbitone but not after urethane. The catecholamine-induced tachycardic and vasopressor response did not differ between rats anaesthetized with either compound. Urethane 10 mM (plasma concentration reached under anaesthesia) did not affect binding to CB1 or H3 receptors and α2 adrenoceptors, nor did it alter the inhibitory effect of agonists at the three receptors on electrically evoked 3H-noradrenaline release.

Conclusions and implications:

Urethane, but not pentobarbitone, abolished the H3 receptor-mediated vascular response in pithed rats and attenuated the CB1 receptor-mediated cardiac response much more than pentobarbitone. The weaker effects of CB1, H3 and α2 receptor agonists cannot be explained by antagonism by urethane at the three receptors in vitro. Pentobarbitone, but not urethane, is suitable as an anaesthetic for investigations of inhibitory presynaptic receptor function in pithed and anaesthetized rats.  相似文献   

14.

Background and purpose:

The endocannabinoid virodhamine is a partial agonist at the cannabinoid CB1 receptor and a full agonist at the CB2 receptor, and relaxes rat mesenteric arteries through endothelial cannabinoid receptors. Its concentration in the periphery exceeds that of the endocannabinoid anandamide. Here, we examined the influence of virodhamine on the human pulmonary artery.

Experimental approach:

Isolated human pulmonary arteries were obtained during resections for lung carcinoma. Vasorelaxant effects of virodhamine were examined on endothelium-intact vessels precontracted with 5-HT or KCl.

Key results:

Virodhamine, unlike WIN 55,212-2, relaxed 5-HT-precontracted vessels concentration dependently. The effect of virodhamine was reduced by endothelium denudation, two antagonists of the endothelial cannabinoid receptor, cannabidiol and O-1918, and a high concentration of the CB1 receptor antagonist rimonabant (5 μM), but only slightly attenuated by the NOS inhibitor L-NAME and not affected by a lower concentration of rimonabant (100 nM) or by the CB2 and vanilloid receptor antagonists SR 144528 and capsazepine, respectively. The COX inhibitor indomethacin and the fatty acid amide hydrolase inhibitor URB597 and combined administration of selective blockers of small (apamin) and intermediate and large (charybdotoxin) conductance Ca2+-activated K+ channels attenuated virodhamine-induced relaxation. The vasorelaxant potency of virodhamine was lower in KCl- than in 5-HT-precontracted preparations.

Conclusions and implications:

Virodhamine relaxes the human pulmonary artery through the putative endothelial cannabinoid receptor and indirectly through a COX-derived vasorelaxant prostanoid formed from the virodhamine metabolite, arachidonic acid. One or both of these mechanisms may stimulate vasorelaxant Ca2+-activated K+ channels.  相似文献   

15.

BACKGROUND AND PURPOSE

Cannabinoids and opioids produce antinociception by modulating GABAergic synaptic transmission in a descending analgesic pathway from the midbrain periaqueductal grey (PAG). While chronic opioid treatment produces opioid tolerance, it has recently been shown to enhance cannabinoid-induced antinociception within the PAG. This study examined the effect of repeated opioid treatment on opioid and cannabinoid presynaptic modulation of GABAergic synaptic transmission in PAG.

EXPERIMENTAL APPROACH

Midbrain PAG slices were prepared from untreated rats, and rats that had undergone repeated morphine or saline pretreatment. Whole-cell voltage-clamp recordings were made from neurons within the ventrolateral PAG.

KEY RESULTS

In slices from untreated animals, the cannabinoid receptor agonist WIN55212 and the μ receptor agonist DAMGO inhibited electrically evoked GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) IPSCs in PAG neurons, with IC50s of 30 and 100 nM respectively. The inhibition of evoked IPSCs produced by WIN55212 (30 nM) and DAMGO (100 nM) was similar in PAG neurons from morphine- and saline-treated animals. The cannabinoid CB1 receptor antagonist AM251 increased the frequency of spontaneous miniature IPSCs in PAG neurons from repeated morphine-, but not saline-treated animals. DAMGO inhibition of evoked IPSCs was enhanced in the presence of AM251 in morphine-, but not saline-treated animals.

CONCLUSIONS AND IMPLICATIONS

These results indicate that the efficiency of agonist-induced inhibition of GABAergic synaptic transmission is enhanced by morphine treatment, although this is dampened by endocannabinoid-mediated tonic inhibition. Thus, endocannabinoid modulation of synaptic transmission could provide an alternative analgesic approach in a morphine-tolerant state.

LINKED ARTICLES

This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2  相似文献   

16.
We investigated the effect of the cannabinoid agonist (+)WIN-55212-2 on human ileum longitudinal smooth muscle preparations, either electrically stimulated or contracted by carbachol. Electrical field stimulation mostly activated cholinergic neurons, since atropine and tetrodotoxin (TTX), alone or co-incubated, reduced twitch responses to a similar degree (85%). (+)WIN-55212-2 concentration-dependently inhibited twitch responses (IC50 73 nM), but had no additive effect with atropine or TTX. The cannabinoid CB1 receptor antagonist SR 141716 (pA2 8.2), but not the CB2 receptor antagonist, SR 144528, competitively antagonized twitch inhibition by (+)WIN-55212-2. Atropine but not (+)WIN-55212-2 or TTX prevented carbachol-induced tonic contraction.  These results provide functional evidence of the existence of prejunctional cannabinoid CB1-receptors in the human ileum longitudinal smooth muscle. Agonist activation of these receptors prevents responses to electrical field stimulation, presumably by inhibiting acetylcholine release. SR 141716 is a potent and competitive antagonist of cannabinoid CB1 receptors naturally expressed in the human gut.  相似文献   

17.

Background and purpose:

Natural and synthetic cannabinoids (CBs) induce deleterious or beneficial actions on neuronal survival. The Fas-associated protein with death domain (FADD) promotes apoptosis, and its phosphorylated form (p-FADD) mediates non-apoptotic actions. The regulation of Fas/FADD, mitochondrial apoptotic proteins and other pathways by CB receptors was investigated in the mouse brain.

Experimental approach:

Wild-type, CB1 and CB2 receptor knock-out (KO) mice were used to assess differences in receptor genotypes. CD1 mice were used to evaluate the effects of CB drugs on canonical apoptotic pathways and associated signalling systems. Target proteins were quantified by Western blot analysis.

Key results:

In brain regions of CB1 receptor KO mice, Fas/FADD was reduced, but p-Ser191 FADD and the p-FADD/FADD ratio were increased. In CB2 receptor KO mice, Fas/FADD was increased, but the p-FADD/FADD ratio was not modified. In mutant mice, cleavage of poly(ADP-ribose)-polymerase (PARP) did not indicate alterations in brain cell death. In CD1 mice, acute WIN55212-2 (CB1 receptor agonist), but not JWH133 (CB2 receptor agonist), inversely modulated brain FADD and p-FADD. Chronic WIN55212-2 induced FADD down-regulation and p-FADD up-regulation. Acute and chronic WIN55212-2 did not alter mitochondrial proteins or PARP cleavage. Acute, but not chronic, WIN55212-2 stimulated activation of anti-apoptotic (ERK, Akt) and pro-apoptotic (JNK, p38 kinase) pathways.

Conclusions and implications:

CB1 receptors appear to exert a modest tonic activation of Fas/FADD complexes in brain. However, chronic CB1 receptor stimulation decreased pro-apoptotic FADD and increased non-apoptotic p-FADD. The multifunctional protein FADD could participate in the mechanisms of neuroprotection induced by CBs.This article is part of a themed issue on Cannabinoids. To view the editorial for this themed issue visit http://dx.doi.org/10.1111/j.1476-5381.2010.00831.x  相似文献   

18.

BACKGROUND AND PURPOSE

Opioids and cannabinoids interact in drug addiction and relapse. We investigated the effect of the opioid receptor antagonist naloxone and/or the cannabinoid CB1 receptor antagonist rimonabant on cannabinoid-induced reinstatement of heroin seeking and on cannabinoid substitution in heroin-abstinent rats.

EXPERIMENTAL APPROACH

Rats were trained to self-administer heroin (30 µg·kg−1 per infusion) under a fixed-ratio 1 reinforcement schedule. After extinction of self-administration (SA) behaviour, we confirmed the effect of naloxone (0.1–1 mg·kg−1) and rimonabant (0.3–3 mg·kg−1) on the reinstatement of heroin seeking induced by priming with the CB1 receptor agonist WIN55,212-2 (WIN, 0.15–0.3 mg·kg−1). Then, in a parallel set of heroin-trained rats, we evaluated whether WIN (12.5 µg·kg−1 per infusion) SA substituted for heroin SA after different periods of extinction. In groups of rats in which substitution occurred, we studied the effect of both antagonists on cannabinoid intake.

KEY RESULTS

Cannabinoid-induced reinstatement of heroin seeking was significantly attenuated by naloxone (1 mg·kg−1) and rimonabant (3 mg·kg−1) and fully blocked by co-administration of sub-threshold doses of the two antagonists. Moreover, contrary to immediate (1 day) or delayed (90 days) drug substitution, rats readily self-administered WIN when access was given after 7, 14 or 21 days of extinction from heroin, and showed a response rate that was positively correlated with the extinction period. In these animals, cannabinoid intake was increased by naloxone (1 mg·kg−1) and decreased by rimonabant (3 mg·kg−1).

CONCLUSIONS AND IMPLICATIONS

Our findings extend previous research on the crosstalk between cannabinoid and opioid receptors in relapse mechanisms, which suggests a differential role in heroin-seeking reinstatement and cannabinoid substitution in heroin-abstinent rats.

LINKED ARTICLES

This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-7  相似文献   

19.

Rationale

Salvinorin A, the primary psychoactive derivative of the hallucinogenic herb Salvia divinorum, is a potent and highly selective kappa-opioid receptor (KOR) agonist. Several recent studies, however, have suggested endocannabinoid system mediation of some of its effects.

Objectives

This study represents a systematic examination of this hypothesis.

Methods

Salvinorin A was isolated from S. divinorum and was evaluated in a battery of in vitro and in vivo procedures designed to detect cannabinoid activity, including CB1 receptor radioligand and [35S]GTPγS binding, calcium flux assay, in vivo cannabinoid screening tests, and drug discrimination.

Results

Salvinorin A did not bind to nor activate CB1 receptors. In vivo salvinorin A produced pronounced hypolocomotion and antinociception (and to a lesser extent, hypothermia). These effects were blocked by the selective KOR antagonist, JDTic, but not by the CB1 receptor antagonist rimonabant. Interestingly, however, rimonabant attenuated KOR activation stimulated by U69,593 in a [35S]GTPγS assay. Salvinorin A did not substitute for Δ9-tetrahydrocannabinol (THC) in mice trained to discriminate THC.

Conclusions

These findings suggest that similarities in the pharmacological effects of salvinorin A and those of cannabinoids are mediated by its activation of KOR rather than by any direct action of salvinorin A on the endocannabinoid system. Further, the results suggest that rimonabant reversal of salvinorin A effects in previous studies may be explained in part by rimonabant attenuation of KOR activation.  相似文献   

20.
Summary Cardiovascular and sympathetic nervous system effects of the mixed 2-adrenoceptor and imidazoline receptor agonist rilmenidine were studied in conscious rabbits chronically instrumented for the recording of the firing rate of renal sympathetic fibers. Separate experiments were carried out on pithed rabbits with electrically stimulated (2 Hz) sympathetic outflow. Drugs were administered intravenously in a cumulative manner.In conscious rabbits, rilmenidine 0.1, 0.3 and 1.0 mg kg–1 dose-dependently lowered blood pressure, renal sympathetic nerve activity, heart rate and the plasma concentration of noradrenaline and adrenaline. The effect on blood pressure and plasma catecholamines was maximal after 0.3 mg kg–1 whereas heart rate and renal sympathetic nerve activity decreased further after rilmenidine 1.0 mg kg–1. Yohimbine 0.1 and 0.5 mg kg–1, when injected subsequently, attenuated and at the higher dose abolished all effects of rilmenidine. The effects of rilmenidine were also antagonized by the 2-adrenoceptor antagonist 2-(2,3-dihydro-2-methoxy-1,4-benzodioxin-2-yl)-4,5-dihydro-1H-imidazole HCl (RX821002; 0.1 and 0.5 mg kg–1). Yohimbine 0.1 and 0.5 mg kg–1 did not attenuate or attenuated only slightly the decrease of heart rate and renal sympathetic nerve activity produced by infusion of vasopressin. In pithed rabbits with electrically-stimulated sympathetic outflow, yohimbine 0.1 submaximally and yohimbine 0.5 mg kg–1 maximally increased the plasma noradrenaline concentration.The experiments show by direct measurement of sympathetic nerve firing and plasma catecholamines that rilmenidine causes sympathoinhibition in conscious rabbits, presumably through central sites of action. The antagonism by yohimbine, at doses which are selective for 2-adrenoceptors (vs. imidazoline receptors), demonstrates the involvement of 2-adrenoceptors in the sympatho-inhibition.Correspondence to: B. Szabo at the above address  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号