共查询到20条相似文献,搜索用时 14 毫秒
1.
Sintered silver paste is widely used as the die-attachment material for power semiconductors. However, sintered silver joints encounter problems, such as severe coarsening of sintered pores and oxidation issues, in harsh high-temperature environments. These lead to the deterioration of the die-attachment joints. In this paper, a novel method of sintering silver joints is demonstrated, where silver–indium alloy paste is used to improve the reliability of sintered Ag joints. The silver–indium (Ag–In) alloy paste was fabricated through mechanical alloying using the ball-milling technique. The well-bonded sintered Ag–In alloy joints inhibited pore coarsening better than pure sintered Ag joints and significantly enhanced the mechanical properties at high operating temperatures. Lastly, an oxidation mechanism for the sintered joint was proposed, and strategies to prevent such high-temperature oxidation were discussed. 相似文献
2.
Antonio Caadilla Ana Romero Gloria P. Rodríguez Miguel . Caminero
scar J. Dura 《Materials》2022,15(13)
Material Extrusion Additive Manufacturing (MEAM) is a novel technology to produce polymeric, metallic, and ceramic complex components. Filaments composed of a high-volume content of metal powder and a suitable binder system are needed to obtain metallic parts. Thermal and energetic controversies do not affect MEAM technology, although common in other additive manufacturing (AM) techniques. High thermal conductivity and reflectivity of copper to high-energy beams are the most challenging properties. A material extrusion technique to produce high density and quality copper parts is deeply studied in this research. Characterization of the filament, printed parts, brown parts and final sintered parts is provided. The sintering stage is evaluated through density analysis of the sintered copper parts, as well as their dimensional accuracy after part shrinkage inherent to the sintering process. The mechanical behavior of sintered parts is assessed through tensile, hardness and impact toughness tests. In addition, the measured electrical and thermal conductivities are compared to those obtained by other AM technologies. High-density components, with 95% of relative density, were successfully manufactured using MEAM technology. Similar or even superior mechanical, thermal and electrical properties than those achieved by other 3D printing processes such as Electron Beam Melting, Selective Laser Melting and Binder Jetting were obtained. 相似文献
3.
Ana Diana Anca Corneliu Munteanu Bogdan Istrate Mihai Profire Florin-Emilian
urcanu 《Materials》2021,14(12)
Glass-reinforced plastic (GRP) composite materials are mainly used in the construction of pipes due to the wide range of sizes, ease of installation, adaptability to the specific situation in the field and, last but not least, the more competitive price as the nominal diameter increases. Their wide range of applications: drinking and raw water transport, sewerage, industrial waters, desalination plants, mining, etc., has led to the need to tailor the behaviour of the composite material to different fields, with pH values that are not neutral. Based on the experimental data, we aimed to study the change in the structure of the composite material as influenced by the soil characteristics: neutral, basic and acidic. In addition, starting with the pH of the three types of soil—basic, acidic and neutral—which significantly affect GRP composite materials, we calculated the pipe damage index and the Pearson correlation coefficients for axial tension. The results highlight the significant influence of the soil pH on the behaviour over time of the buried GRP pipes. Thus, laying the pipe in acidic soil significantly reduces its life, which should be taken into consideration during the design phase. 相似文献
4.
Nguyen Thi Hoang Oanh Do Nam Binh Dung Dang Duc Quyen Hoang Thi Ngoc Nguyen Hoang Viet 《Materials》2021,14(14)
In the present study, the thermal stability and crystallization behavior of mechanical alloyed metallic glassy Al82Fe16Ti2, Al82Fe16Ni2, and Al82Fe16Cu2 were investigated. The microstructure of the milled powders was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The results showed remarkable distinction in thermal stability of the alloys by varying only two atomic percentages of transition elements. Among them, Al82Fe16Ti2 alloy shows the highest thermal stability compared to the others. In the crystallization process, exothermal peaks corresponding to precipitation of fcc-Al and intermetallic phases from amorphous matrix were observed. 相似文献
5.
This is a bridge between circular economy issues and wood-based panels technology, especially particleboards. Because these composites contain a significant amount of non-wood raw material (10–12% thermoset resin, high hardness laminates, among others), their mechanical recycling leads to an uncontrollable reduction in produced particle size. This problem can be especially significant since the particleboards can be intended for multiple recycling due to the shortening of their service life. This research aimed to produce particles in the cycle of multiple re-milling particleboards and evaluate the selected properties of the produced particles and particleboards. Thus, the response to the following scientific problem can be given: what factors qualitatively and quantitatively influence the properties of the particleboards produced by multi-re-milled particles? The novelty of this research is the approach to recycling the raw materials from particleboards in fully controlled conditions, providing the characterization of produced particles and producing particleboards with close-to-industrial parameters, and, finally, evaluating the features of produced particleboards in the light of raw materials used. The results confirmed that subsequent mechanical recycling of particleboards, where the other panels are made entirely of second-milling particles, leads to an unprofitable and unacceptable reduction in the mechanical properties of the panels. The physical parameters, such as thickness swelling and water absorption, are improved, but this can be the result of increased content of chemical ingredients, which negatively influence the hygienic features of panels (emission of formaldehyde and total volatile organic compounds—TVOC). Further research should be directed towards estimating the optimal addition of mechanically recycled particles to particleboard production. 相似文献
6.
Paulina Kozera Anna Boczkowska Krzysztof Perkowski Marcin Maek Janusz Kluczyski 《Materials》2022,15(21)
The paper presents experimental results of the work conducted to improve the adhesion between alumina ceramics and urea-urethane elastomer in the interpenetrating phase composites (IPCs), in which these two phases are interpenetrating three-dimensionally and topologically throughout the microstructure. Measurements of the contact angle, surface roughness, and shear tests were used to evaluate the effectivity and select the quantity of a silane coupling agent and the ceramic fabrication method. The tests were conducted using samples of dense alumina ceramic obtained by three- or four-step methods. In the four-step process, hot isostatic pressing (HIP) was applied additionally. As a result of the coupling agent coat and HIP application, the ceramic substrate wettability by the elastomer was improved. The water contact angle was reduced from 80 to 60%. In the next step, porous ceramic preforms were fabricated using HIP sintering and a solution of silane coupling agent treated their surface. The composites were produced using vacuum-pressure infiltration of porous alumina ceramics by urea-urethane elastomer in liquid form. The influence of the coupling agent application on the microstructure and mechanical properties of the composites was estimated. The microstructure of the composites was identified using SEM microscopy and X-ray tomography. As a result of using the coupling agent, residual porosity decreased from 7 to 2%, and compressive strength, as well as stress at a plateau, increased by more than 20%, from 25 to 33 MPa and from 15 to 24 MPa, respectively, for the composites fabricated by infiltration ceramic preforms with 40% of porosity. 相似文献
7.
(1) Background: The aim of the study was to determine the effect of modification with sintered hydroxyapatite (HAp) on selected mechanical and tribological properties of a flow-type composite. (2) Methods: Samples in the shapes of cuboidal beams (n = 120) and cylinders (n = 120) with the proper dimensions were prepared from a standard flow-type composite and others with the addition of 2% wt., 5% wt., and 8% wt. sintered hydroxyapatite. The bending strength, compression strength, diametral compression strength, impact resistance, hardness, and tribological properties were compared. (3) Results: In all cases, it was established that an increase in the amount of HAp caused a reduction in the bending, compression, and diametral compression strength. Increasing the amount of added HAp also reduced the impact strength, hardness, and wear resistance. However, the differences were statistically insignificant. (4) Conclusions: The addition of hydroxyapatite to a flow-type composite material worsened its mechanical and tribological properties; however, the obtained values were acceptable with 2% wt. and 5% wt. HAp. 相似文献
8.
Marta Orowska Ewa Ura-Biczyk Lucjan
nieek Pawe Skudniewski Mariusz Kulczyk Bogusawa Adamczyk-Cielak Kamil Majchrowicz 《Materials》2022,15(12)
In this paper, the corrosion resistance and mechanical properties of the 7075 aluminum alloy are studied. The alloy was deformed by hydrostatic extrusion and then aged both naturally and artificially. Results are compared with those of coarse-grained material subjected to T6 heat treatment. The aim of the research is to find the optimal correlation between the mechanical properties and the corrosion resistance of the alloy. To this end, static tensile tests with subsequent fractography, open circuit potential, and potentiodynamic polarization tests in 0.05 M NaCl were conducted. Obtained results show that a combination of precipitate hardening and a deformed microstructure leads to increased mechanical strength with high anisotropy due to the presence of fibrous grains. Plastic deformation increases susceptibility to corrosion due to the increased number of grain boundaries, which act as paths along that corrosion propagates. However, further artificial aging incurs a positive effect on corrosion resistance due to changes in the chemical composition of the matrix as a result of the precipitation process. 相似文献
9.
Karina A. Krylova Liliya R. Safina Ramil T. Murzaev Julia A. Baimova Radik R. Mulyukov 《Materials》2021,14(11)
The effect of the size of nickel nanoparticles on the fabrication of a Ni–graphene composite by hydrostatic pressure at 0 K followed by annealing at 1000 and 2000 K is studied by molecular dynamics simulation. Crumpled graphene, consisting of crumpled graphene flakes interconnected by van der Waals forces is chosen as the matrix for the composite and filled with nickel nanoparticles composed of 21 and 47 atoms. It is found that the main factors that affect composite fabrication are nanoparticle size, the orientation of the structural units, and temperature of the fabrication process. The best stress–strain behavior is achieved for the Ni/graphene composite with Ni nanoparticle after annealing at 2000 K. However, all of the composites obtained had strength property anisotropy due to the inhomogeneous distribution of pores in the material volume. 相似文献
10.
A new type of steel–concrete–steel composite structure was adopted and widely used in the immersed tunnel of the Shenzhen–Zhongshan access. The research on the mechanical behavior of the new composite structure under a high temperature of fire is of great engineering significance to the fire protection design of the structure. Both the model test and a numerical simulation were adopted to study the mechanical behavior and damage characteristics of the new composite structure under fire. The RABT standard temperature rise curve was used to simulate the temperature rising law under fire (it reflects the characteristics of temperature rise in case of fire in an enclosed environment: rapidly raised to 1200 °C within 5 min, maintained at 1200 °C for 120 min, then it is cooled to normal temperature after 110 min). The temperature distribution law inside the structure, the deformation development law of the roof and the crack distribution were analyzed based on the thermal–mechanical coupling analysis method. The results showed that the internal part of the composite structure close to the fire surface was directly affected by the high temperature, and the temperature presented a step distribution law, while the part far from the fire surface was affected by the lag effect of the temperature transfer, and the temperature presented a continuous growth law. The roof deformation presented a three-stage model of “rapid growth-deformation stability-deformation recovery” with time. The overall cracks of the composite structure showed a symmetrical distribution under fire. The composite structure presented a shear failure mode as a whole. The results could provide a reference for the study of fire resistance for the new composite structure and support the structural fire protection design of the immersed tunnel of the Shenzhen–Zhongshan access. 相似文献
11.
Tungsten-copper (W–Cu) composites are widely used as electrical contact materials, resistance welding, electrical discharge machining (EDM), and plasma electrode materials due to their excellent arc erosion resistance, fusion welding resistance, high strength, and superior hardness. However, the traditional preparation methods pay little attention to the compactness and microstructural uniformity of W–Cu composites. Herein, W–Cu composite coatings are prepared by pulse electroplating using nano-W powder as raw material and the influence of forward-reverse duty cycle of pulse current on the structure and mechanical properties is systematically investigated. Moreover, the densification mechanism of the W–Cu composite coating is analyzed from the viewpoints of forward-pulse plating and reverse-pulse plating. At the current density (J) of 2 A/dm2, frequency (f) of 1500 Hz, forward duty cycle (df) of 40% and reverse duty cycle (dr) of 10%, the W–Cu composite coating rendered a uniform microstructure and compact structure, resulting in a hardness of 127 HV and electrical conductivity of 53.7 MS/m. 相似文献
12.
In order to accurately and effectively obtain the contact performance of the mating surface under the material surface topography characteristics, a numerical simulation method of rough surface based on the real topography characteristics and a multi-scale hierarchical algorithm of contact performance is studied in this paper. Firstly, the surface topography information of materials processed by different methods was obtained and characterized by a measuring equipment; Secondly, a non-Gaussian model considering kurtosis and skewness was established by Johnson transform based on Gaussian theory, and a rough surface digital simulation method based on real surface topography was formed; Thirdly, a multi-scale hierarchical algorithm is given to calculate the contact performance of different mating surfaces; Finally, taking the aeroengine rotor as the object, the non-Gaussian simulation method was used to simulate the mating surfaces with different topographies, and the multi-scale hierarchical algorithm was used to calculate the contact performance of different mating surfaces. Analysis results showed that the normal contact stiffness and elastic–plastic contact area between the mating surfaces of assembly 1 and assembly 2 are quite different, which further verifies the feasibility of the method. The contents of this paper allow to perform the fast and effective calculation of the mechanical properties of the mating surface, and provide a certain analysis basis for improving the surface microtopography characteristics of materials and the product performance. 相似文献
13.
Mekala Chinababu Nandivelegu Naga Krishna Katakam Sivaprasad Konda Gokuldoss Prashanth Eluri Bhaskara Rao 《Materials》2022,15(1)
Aluminum matrix composites reinforced by CoCrFeMnNi high entropy alloy (HEA) particulates were fabricated using the stir casting process. The as-cast specimens were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The results indicated that flake-like silicon particles and HEA particles were distributed uniformly in the aluminum matrix. TEM micrographs revealed the presence of both the matrix and reinforcement phases, and no intermetallic phases were formed at the interface of the matrix and reinforcement phases. The mechanical properties of hardness and tensile strength increased with an increase in the HEA content. The Al 6063–5 wt.% HEA composite had a ultimate tensile strength (UTS) of approximately 197 MPa with a reasonable ductility (around 4.05%). The LM25–5 wt.% HEA composite had a UTS of approximately 195 Mpa. However, the percent elongation decreased to roughly 3.80%. When the reinforcement content increased to 10 wt.% in the LM25 composite, the UTS reached 210 MPpa, and the elongation was confined to roughly 3.40%. The fracture morphology changed from dimple structures to cleavage planes on the fracture surface with HEA weight percentage enhancement. The LM25 alloy reinforced with HEA particles showed enhanced mechanical strength without a significant loss of ductility; this composite may find application in marine and ship building industries. 相似文献
14.
Phosphogypsum (PG) is a waste (or by-product) of the production of phosphoric acid, a basic constituent in the manufacturing of modern fertilizers. The annual production of phosphogypsum in Tunisia is currently estimated to be 10 million tons. Its storage in slag in close proximity to production plants generates pollution problems; however, valorization may be a solution. The present paper proposes a simple process for the valorization of this by-product into a construction material. Several physicochemical characterizations are used to prove the characteristics of samples. The chemical composition shows that PG is a gypsum compound with several impurities. The morphological analyses show that the powder materials are mesoporous with a lower specific area. The structural characterizations show that these solids play the role of a water pump as the degree of hydration changes from 2 to 0 and vice versa, depending on the temperature. Mechanical and thermal analyses show that the prepared formulation is brittle and insulating, which presents opportunities for it to be used as a decoration material. 相似文献
15.
Senthilnathan Natarajan Venkatachalam Gopalan Raja Annamalai Arunjunai Rajan Chun-Ping Jen 《Materials》2021,14(7)
Tungsten heavy alloys are two-phase metal matrix composites that include W–Ni–Fe and W–Ni–Cu. The significant feature of these alloys is their ability to acquire both strength and ductility. In order to improve the mechanical properties of the basic alloy and to limit or avoid the need for post-processing techniques, other elements are doped with the alloy and performance studies are carried out. This work focuses on the developments through the years in improving the performance of the classical tungsten heavy alloy of W–Ni–Fe through doping of other elements. The influence of the percentage addition of rare earth elements of yttrium, lanthanum, and their oxides and refractory metals such as rhenium, tantalum, and molybdenum on the mechanical properties of the heavy alloy is critically analyzed. Based on the microstructural and property evaluation, the effects of adding the elements at various proportions are discussed. The addition of molybdenum and rhenium to the heavy alloy gives good strength and ductility. The oxides of yttrium, when added in a small quantity, help to reduce the tungsten’s grain size and obtain good tensile and compressive strengths at high temperatures. 相似文献
16.
Esperanza Díaz Joseba Len Alberto Murillo-Marrodn Sylvie Ribeiro Senentxu Lanceros-Mndez 《Materials》2022,15(21)
Biodegradable scaffolds of poly (L-lactide-co-ε-caprolactone) (PLCL) and reduced graphene oxide (rGO) were prepared by TIPS (thermally induced phase separation). The nonisothermal cold crystallization kinetics were investigated by differential scanning calorimetry (DSC) with various cooling rates. The experimental values indicate that nonisothermal crystallization improves with cooling rate, but the increasing rGO concentration delays crystallization at higher temperatures. The activation energies were calculated by the Kissinger equation; the values were very similar for PLCL and for its compounds with rGO. The electrical conductivity measurements show that the addition of rGO leads to a rapid transition from insulating to conductive scaffolds with a percolation value of ≈0.4 w/w. Mechanical compression tests show that the addition of rGO improves the mechanical properties of porous substrates. In addition, it is an anisotropic material, especially at compositions of 1% w/w of rGO. All of the samples with different rGO content up to 1% are cytotoxic for C2C12 myoblast cells. 相似文献
17.
Effects of SiC Fibers and Laminated Structure on Mechanical Properties of Ti–Al Laminated Composites
Ti/Ti–Al and SiCf-reinforced Ti/Ti–Al laminated composites were fabricated through vacuum hot-pressure using pure Ti foils, pure Al foils and SiC fibers as raw materials. The effects of SiC fiber and a laminated structure on the properties of Ti–Al laminated composites were studied. A novel method of fiber weaving was implemented to arrange the SiC fibers, which can guarantee the equal spacing of the fibers without introducing other elements. Results showed that with a higher exerted pressure, a more compact structure with fewer Kirkendall holes can be obtained in SiCf-reinforced Ti/Ti–Al laminated composites. The tensile strength along the longitudinal direction of fibers was about 400 ± 10 MPa, which was 60% higher compared with the fabricated Ti/Ti–Al laminated composites with the same volume fraction (60%) of the Ti layer. An in situ tensile test was adopted to observe the deformation behavior and fracture mechanisms of the SiCf-reinforced Ti/Ti–Al laminated composites. Results showed that microcracks first occurred in the Ti–Al intermetallic layer. 相似文献
18.
In the present study, the statistical design of experiments (DOE) method was applied to study and control the properties of near-eutectic Al-11%Si alloys. In this study, we developed regression equations between response variables, including hardness, yield stress, ultimate tensile stress, elongation, total cutting force, cutting power, and tool life, and varying factors which included the percentage of the alloying element in the composition and the modification level. These equations may be analyzed quantitatively to acquire an understating of the effects of the main variables and their interactions on the mechanical behavior and the machinability of the alloy under investigation. Analysis of variance (ANOVA) was performed to verify the fit and adequacy of the developed mathematical models. The results show that increasing the levels of Cu and Fe results in an increase in hardness, yield stress and ultimate tensile strength in both modified and non-modified alloys. On the other hand, both Cu and Fe appear to affect the elongation adversely, whereas the Sr level shows a positive effect on the elongation percentage. We found that the Sr level had the most significant effect on the cutting forces and cutting power, followed by Fe and Cu contents. 相似文献
19.
Polymer-modified concrete and fiber concrete are two excellent paving materials that improve the performance of some concrete, but the performance of single application material is still limited. In this paper, polymer-modified concrete with strong deformation and fiber concrete with obvious crack resistance and reinforcement effect were compounded by using the idea of composite material design so as to obtain a high-performance pavement material. The basic mechanical properties of high-content hybrid fiber–polymer-modified concrete, such as workability, compression, flexural resistance, and environmental durability (such as sulfate resistance) were studied by using the test regulations of cement concrete in China. The main results were as follows. (1) The hybrid fiber–polymer concrete displayed reliable working performance, high stiffness, and a modulus of elasticity as high as 35.93 GPa. (2) The hybrid fiber–polymer concrete had a compressive strength of 52.82 MPa, which was 31.2% higher than that of the plain C40 concrete (40.25 MPa); the strength of bending of the hybrid concrete was 11.51 MPa, 191.4% higher than that of the plain concrete (3.95 MPa). (3) The corrosion resistance value of the hybrid fiber–polymer concrete was 81.31%, indicating its adjustability to sulfate attack environments. (4) According to cross-sectional scanning electron microscope (SEM) images, the hybrid fiber–polymer concrete was seemingly more integrated with a dense layer of cementing substance on its surface along with fewer microholes and microcracks as when compared to the ordinary concrete. The research showed that hybrid fiber–polymer concrete had superior strength and environmental erosion resistance and was a pavement material with superior mechanical properties. 相似文献
20.
Zhuanqin Liang Wenxin Fan Pengfei Wang Yushuai Wang Kai Zhang Junsheng Zhao Lijun Peng 《Materials》2021,14(18)
In the present study, a Cu–6Ni–6Sn–0.6Si alloy is fabricated through frequency induction melting, then subjected to solution treatment, rolling, and annealing. The phase composition, microstructure evolution, and transition mechanism of the Cu–6Ni–6Sn–0.6Si alloy are researched systematically through simulation calculation and experimental characterization. The ultimate as-annealed sample simultaneously performs with high strength and good ductility according to the uniaxial tensile test results at room temperature. There are amounts of precipitates generated, which are identified as belonging to the DO22 and L12 phases through the transmission electron microscope (TEM) analysis. The DO22 and L12 phase precipitates have a significant strengthening effect. Meanwhile, the generation of the common discontinuous precipitation of the γ phase, which is harmful to the mechanical properties of the copper–nickel–tin alloy, is inhibited mightily during the annealing process, possibly due to the existence of the Ni5Si2 primary phase. Therefore, the as-annealed sample of the Cu–6Ni–6Sn–0.6Si alloy possesses high tensile strength and elongation, which are 967 MPa and 12%, respectively. 相似文献