首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteoarthritis (OA) is a chronic health condition. MicroRNAs (miRs) are critical in chondrocyte apoptosis in OA. We aimed to investigate the mechanism of miR-130b in OA progression. Bone marrow mesenchymal stem cells (BMSCs) and chondrocytes were first extracted. Chondrogenic differentiation of BMSCs was carried out and verified. Chondrocytes were stimulated with interleukin (IL)-1β to imitate OA condition in vitro. The effect of miR-130b on the viability, inflammation, apoptosis, and extracellular matrix of OA chondrocytes was studied. The target gene of miR-130b was predicted and verified. Rescue experiments were performed to further study the underlying downstream mechanism of miR-130b in OA. miR-130b first increased and drastically reduced during chondrogenic differentiation of BMSCs and in OA chondrocytes, respectively, while IL-1β stimulation resulted in increased miR-130b expression in chondrocytes. miR-130b inhibitor promoted chondrogenic differentiation of BMSCs and chondrocyte growth and inhibited the levels of inflammatory factors. miR-130b targeted SOX9. Overexpression of SOX9 facilitated BMSC chondrogenic differentiation and chondrocyte growth, while siRNA-SOX9 contributed to the opposite trends. Silencing of SOX9 significantly attenuated the pro-chondrogenic effects of miR-130b inhibitor on BMSCs. Overall, miR-130b inhibitor induced chondrogenic differentiation of BMSCs and chondrocyte growth by targeting SOX9.  相似文献   

2.
Objective: Increased expression of tumor necrosis factor a (TNF-α) has emerged as an important inflammatory factor in osteoarthritis (OA) and other joint diseases. The study was performed to investigate whether the expression of TNF-α in human chondrocytes was regulated by miRNAs. Methods: MiRNA-130a and TNF-α expression in cartilage specimens was examined in patients with knee osteoarthritis, chondrocytes and osteoarthritis rat model. Chondrocytes were transfected with siRNAs as a gene silencing methods. Expression of genes and proteins were analyzed by real-time PCR and western blotting respectively. Results: Increased TNF-α and decreased miRNA-130a were observed in tissues from osteoarthritis patients. Moreover, we found a highly negitive correlation between miRNA-130a and TNF-α. Next, miRNA-130a loss-of-function increased the expression of TNF-α and promoted inflammation in chondrocytes. It was reasonable that miRNA-130a regulated a distinct underlying molecular and pathogenic mechanism of OA by forming a negative feedback loop with TNF-α. Furthermore, there were the abnormalities of bone metabolism in OA rat, which showed the miRNA-130a and TNF-α dysfunction that was one of important factors for the occurrence and development of OA. Conclusions: Our results indicated that miR-130a played an important role in regulating the expression of TNF-α in human chondrocytes and identified miR-130a as a novel therapeutic target in OA.  相似文献   

3.
It is well known that the inflammatory cytokines play important roles in osteoarthritis (OA). Diosgenin is a steroidal saponin found in several plants including Solanum and Dioscorea species and possesses diverse biological activities including anti-inflammatory properties. However, the role of diosgenin in inflammatory responses in OA chondrocytes is still unclear. Therefore, in this study, we investigated the anti-inflammatory properties of diosgenin in human OA chondrocytes. We found that diosgenin inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2) induced by interleukin-1-beta (IL-1β). Diosgenin significantly inhibited the IL-1β-stimulated expression of metalloproteinase-3 (MMP-3), MMP-13, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in human OA chondrocytes. In addition, diosgenin suppressed the degradation of IκB-α in IL-1β-induced human OA chondrocytes. Taken together, this study showed that diosgenin can effectively inhibit the IL-1β-induced expression of inflammatory mediators, suggesting that diosgenin may be a potential agent in the treatment of OA.  相似文献   

4.
Interleukin (IL)-1β plays an important role in promoting osteoarthritis (OA) lesions by inducing chondrocytes to secrete matrix metalloproteinases (MMPs), which degrade the extracellular matrix and facilitate chondrocyte apoptosis. Matrine was shown to exert anti-inflammatory effects. However, the role of matrine in OA is still unclear. Therefore, in this study, we investigated the effects of matrine on the expression of MMPs in IL-1β-treated human chondrocytes and the underlying mechanism. The cell viability of chondrocytes was detected by MTT assay. The cell apoptosis of chondrocytes was measured by flow cytometric analysis. The protein production of MMPs was determined by ELISA. The protein expression of phosphorylation of mitogen-activated protein kinases (MAPKs) and the inhibitor of kappaB alpha (IκBα) was determined by Western blot. Matrine significantly inhibited the IL-1β-induced apoptosis in chondrocytes. It also significantly inhibited the IL-1β-induced release of MMP-3 and MMP-13, and increased the production of TIMP-1. Furthermore, matrine inhibits the phosphorylation of p-38, extracellular regulated kinase (ERK), c-Jun-N-terminal kinase (JNK) and IκBα degradation induced by IL-1β in chondrocytes. Taken together, our results show that matrine inhibits IL-1β-induced expression of matrix metalloproteinases by suppressing the activation of MAPK and NF-κB in human chondrocytes in vitro. Therefore,-matrine may be beneficial in the treatment of OA.  相似文献   

5.
Osteoarthritis (OA) is a common joint disease characterized by degradation and inflammation of cartilage extracellular matrix. We aimed to evaluate the protective effect of Caragana sinica root (CSR) on interleukin (IL)-1β-stimulated rat chondrocytes and a monosodium iodoacetate (MIA)-induced model of OA. In vitro, cell viability of CSR-treated chondrocytes was measured by MTT assay. The mRNA expression of Matrix metallopeptidases (MMPs), a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) and extracellular matrix (ECM) were analyzed by quantitative real-time PCR (qRT-PCR). Moreover, the protein expression of MAPK (phosphorylation of EKR, JNK, p38), inhibitory kappa B (IκBα) and nuclear factor-kappa B (NF-κB p65) was detected by western blot analysis. In vivo, the production of nitric oxide (NO) was detected by Griess reagent, while those of inflammatory mediators, MMPs and ECM were detected by ELISA. The degree of OA was evaluated by histopathological analyses, Osteoarthritis Research Society International (OARSI) score and micro-CT analysis. CSR significantly inhibited the expression of MMPs, ADAMTSs and the degradation of ECM in IL-1β-stimulated chondrocytes. Furthermore, CSR significantly suppressed IL-1β-stimulated of MAPKs, NF-κB signaling pathway. In vivo, CSR and Indomethacin inhibited the production of inflammatory mediators, MMPs and degradation of ECM in MIA-induced model of OA. In addition, CSR improved the severity of OA. Taken together, these results suggest CSR is a potential therapeutic active agent in the treatment of OA.  相似文献   

6.
7.
PurposeThe aim of this study was to determine the relationship of hypoxia-inducible factor-2 (HIF-2α) and vascular endothelial growth factor (VEGF) with radiographic severity in primary osteoarthritis (OA) of the knee. Expression of these two factors in cartilage samples from OA knee joints was examined at mRNA and protein levels.ResultsCartilage degeneration correlated with the radiographic severity grade. OA severity, determined using the Mankin scale, correlated positively with the KL grade (r=0.8790, p<0.01), and HIF-2α and VEGF levels with the radiographic severity of knee OA (r=0.7001, p<0.05; r=0.6647, p<0.05).ConclusionIn OA cartilage, HIF-2α and VEGF mRNA and protein levels were significantly and positively correlated. The expression of both factors correlated positively with the KL grade. HIF-2α and VEGF, therefore, may serve as biochemical markers as well as potential therapeutic targets in knee OA.  相似文献   

8.
9.
Purpose: The aim of this study is to evaluate the effects of myrtol standardized on cartilage lesions in osteoarthritis (OA) rats. Methods: Fifty-six healthy Sprague-Dawley rats were randomly divided into sham group (13 rats) and OA model group (43 rats) with interior meniscus excision. Then serum estradiol (E2) and glycosaminoglycan (GAG) content in cartilage tissue were measured by radioimmunoassay and toluidine blue staining, respectively. After that, the model rats were randomly divided into low dose myrtol (LDM) group, middle dose myrtol (MDM) group and high dose myrtol (HDM) group (10 rats in each group) with treatment of 450 mg/kg, 300 mg/kg and 150 mg/kg myrtol, respectively. Then, Mankin scores were used to evaluate lesion extent of knee joint cartilage. Expression of tumor necrosis factor α (TNF-α), transforming growth factor β1 (TGF-β1), interleukin (IL)-6, Bax and Bcl-2 were investigated using PCR gel electrophoresis method. Results: Mankin cores were lower in sham group and myrtol group than in model group. There were statistically significant differences (P < 0.01) between sham group and model group in expression of TNF-α, TGF-β1, IL-6, Bax and Bcl-2 in the cartilage tissue. Myrtol significantly reduced the expression of TNF-α, IL-6 and Bax, and increased the expression of TGF-β1 and Bcl-2 in myrtol group, comparing with those in model group (P < 0.01). Conclusions: Myrtol could down-regulate the expression of TNF-α, IL-6 and Bax, and up-regulate the expression of TGF-β1 and Bcl-2. Myrtol standardized is a promising drug to ameliorate knee cartilage lesions in the OA rat model.  相似文献   

10.
Developmental dislocation or dysplasia of the hip (DDH) is one of the most common deformities in children. Osteoarthritis (OA) is the most frequent long-term complication. The molecular mechanism of early articular cartilage degeneration in DDH is still unclear. It is well known that β-catenin plays a crucial role in articular cartilage degeneration. The objective of this study was to verify the relationship between β-catenin and DDH cartilage degeneration. We used a DDH model that was established by modification of swaddling position in newborn Wistar rats. The hips were isolated from the DDH model rats and untreated control group at the age of 2, 4, 6 and 8 weeks. β-Catenin gene and protein were investigated by quantitative (q)RT-PCR and immunohistochemistry. Collagen X and matrix metalloproteinase (MMP)-13, markers of early cartilage degeneration, were assessed by qRT-PCR. Primary chondrocytes were cultured from cartilage of two groups at the age of 8 weeks. Expression of β-catenin, collagen X and MMP-13 was detected. Continued high expression of β-catenin was observed in cartilage from DDH model rats. mRNA and protein expression of β-catenin was significantly increased in primary chondrocytes of the DDH model compared with the control group. Collagen X and MMP-13 expression was higher in the cartilage and chondrocytes from DDH model rats than the control group. Our findings suggest that early cartilage degeneration in DDH may result from activation of β-catenin signaling.  相似文献   

11.
Objective: To evaluate the therapeutic efficacy of uncultured bone marrow mononuclear cells (BMMCs) and bone mesenchymal stem cells in an osteoarthritis (OA) model of sheep. Methods: Induction of sheep OA was performed surgically through anterior cruciate ligament transection and medial meniscectomy. After 12 weeks, concentrated BMMCs obtained from autologous bone marrow harvested from anterior iliac crest or a single dose of 10 million autologous bone mesenchymal stem cells (BMSCs) suspended in phosphate-buffered saline (PBS) was delivered to the injured knee via direct intra-articular injection. Animals of the PBS group received vehicle alone. The contra-lateral joints were selected randomly as the control group. Knees of the four groups were compared macroscopically and histologically, and glycosaminoglycan (GAG) contents normalized to cartilage wet weight were measured at lesions of cartilage from medial condyle of the femur head. Gene expression levels of type II collagen (Col2A1), Aggrecan and matrix metalloproteinase-13 (MMP-13) in cartilage were measured based on RT-PCR and prostaglandin E2 (PGE2), Tumor Necrosis Factor-α (TNF-α) and Transforming Growth Factor beta (TGF-β) concentrations in synovial fluid were determined with ELISA assays at 8 weeks after injection. Results: At 8 weeks post cell transplantation, partial cartilage repair was observed in the cell therapy, but not the PBS group (P<0.05). The BMSCs group showed higher regeneration of cartilage and lower proteoglycan loss than the BMMCs group (P<0.05). Concentrated BMMCs injection led to a weaker treatment effect, but also inhibited PGE2, TNF-α and TGF-β levels in synovial fluid and promoted higher levels of Aggrecan and Col2A1 and downregulation of MMP-13 in sheep chondrocytes in a similar manner to BMSCs, compared with the PBS group. Conclusions: Bone marrow cells showed therapeutic efficacy in a sheep model of OA. Despite similar therapeutic potential, the easier and faster process of collection and isolation of BMMCs supports their utility as an effective alternative for OA treatment in the clinic.  相似文献   

12.
13.
14.
The aim of this study was to compare the local gut immune response in sensitized and orally tolerized experimental animals. The development of IgE/IgG antibodies and the DTH to OA was studied in rats made orally tolerant to OA and compared with sensitized control rats after colonization with an Escherichia coli genetically engineered to produce OA. At 3 weeks of age, pups were weaned onto a standard diet without OA or an OA-containing diet for 4 weeks and then switched to a standard diet without OA. Both groups of rats were parenterally immunized with a mixture of OA and human serum albumin (HSA) in Freund''s complete adjuvant when they were 8 weeks old. After DTH measurement 2 weeks later, all rats were colonized with an E. coli producing OA for 5 days. The local immune response in the small intestine was assessed, using immunohistochemistry, as the expression of MHC class II molecules and IL-2 receptor (IL-2R) α-chain. The OA-tolerant rats showed the classical signs of oral tolerance, with a reduced IgE and IgG antibody and DTH response to OA before colonization. The difference between the two groups in the anti-OA antibody response became even more pronounced after colonization with the E. coli that produce OA. Rats orally tolerant to OA maintained a normal villus architecture after colonization, with a normal expression of MHC class II molecules similar to non-treated adult rats, but with a significantly higher (P = 0.004) expression of IL-2R α-chain on T cells in the lamina propria of the villus core compared with sensitized control rats. The tolerant rats showed a very weak staining with the anti-IL-2R α-chain-specific antibody on a few goblet cells in only one out of seven rats. In the sensitized control rats, a marked local immune response was seen with an intense staining with a monoclonal anti-IL-2R α-chain-specific antibody on goblet cells in five out of seven rats (P = 0.019) and also an increased expression of MHC class II molecules in the epithelial cells and cells in the lamina propria of all rats. Rats orally tolerant to OA maintained a normal villus architecture after colonization, but with a significantly higher (P = 0.004) expression of IL-2R α-chain on T cells in the lamina propria of the villus core compared with sensitized control rats. The novel finding that goblet cells express IL-2R α-chain and the striking difference in expression of the receptor and the numbers of goblet cells between tolerant and sensitized rats may suggest a direct T cell regulation of the goblet cells. A possibility that oral tolerance might be maintained by the activated T cells expressing IL-2R α-chain in the lamina propria of the villus core is also discussed.  相似文献   

15.
目的观察SOX6和SOX9基因转染对原发性OA关节软骨MPCs的促增殖、分化作用,为通过调控关节软骨MPCs以防治原发性OA提供理论依据。方法分别以pAdTrack-CMV-SOX6、SOX9腺病毒穿梭质粒构建SOX6、SOX9基因,并感染原发性OA关节软骨MPCs,比较基因感染组和未感染组成软骨诱导分化后TB、Ⅱ型胶原以及Ⅱ型胶原mRNA表达的变化。结果SOX6和SOX9能够分别稳定感染OA关节软骨MPCs;经二者分别感染的关节软骨MPCs成软骨诱导分化后,其TB染色、Ⅱ型胶原染色呈强阳性表达,未基因感染细胞为弱阳性着色;SOX6基因感染原发性OA关节软骨MPCs的Ⅱ型胶原mRNA表达量为未基因感染细胞的3.8倍(P0.01),SOX9基因为未感染细胞的5.15倍(P0.01)。结论构建的SOX6、SOX9基因序列与基因库报道序列完全一致;SOX6和SOX9能稳定感染原发性OA关节软骨MPCs,并显著促进感染细胞成软骨分化;提示通过适宜浓度的bFGF、TGF-β1对原发性OA关节软骨MPCs的作用及SOX6和SOX9基因感染,可能具有促进原发性OA关节软骨损伤修复的作用。  相似文献   

16.
Jun  Zhou  Xinmeng  Jin  Yue  Liu  Zhi  Wang  Yan  Zhang  Tieyi  Yang  Jiangan  Tang 《Inflammation research》2020,69(7):657-666
Objectives

This study aimed to explore the effects and relative mechanism of JMJD3 on knee osteoarthritis (OA).

Methods

In this study, we first analyzed the expression of JMJD3 in OA cartilage using western blot and immunohistochemistry. In an in vitro study, the effects of GSK-J4, JMJD3 inhibitor, on ATDC-5 chondrocytes were evaluated by CCK-8 assay. Real-time PCR and western blot were used to examine the inhibitory effect of GSK-J4 on the inflammation and ECM degradation of chondrocytes. NF-κB p65 phosphorylation and nuclear translocation were measured by western blot and immunofluorescence. In the animal study, twenty mice were randomized into four experimental groups: sham group, DMM-induced OA + DMSO group, OA + low-dose GSK-J4 group, and OA + high-dose GSK-J4 group. After the treatment, hematoxylin–eosin and safranin O/fast green staining were used to evaluate cartilage degradation of knee joint, with OARSI scores for quantitative assessment of cartilage damage.

Results

Our results revealed that JMJD3 was overexpressed in OA cartilage and GSK-J4 could suppress the IL-1β-induced production of pro-inflammatory cytokines and catabolic enzymes, including IL-6, IL-8, MMP-9 and ADAMTS-5. Consistent with these findings, GSK-J4 could inhibit IL-1β-induced degradation of collagen II and aggrecan. Mechanistically, GSK-J4 dramatically suppressed IL-1β-stimulated NF-κB signal pathway activation. In vivo, GSK-J4 prevented cartilage damage in mouse DMM-induced OA model.

Conclusions

This study elucidates the important role of JMJD3 in cartilage degeneration in OA, and our results indicate that JDJM3 may become a novel therapeutic target in OA therapy.

  相似文献   

17.
Chondrocyte apoptosis is mostly responsible for the development and progression of osteoarthritis. IL-1β is generally served as an agent that induces chondrocyte apoptosis. Shikonin exerts its anti-inflammatory effect on cartilage protection in vivo. We aimed to explore the protective effect of shikonin on interleukin-1beta (IL-1β)-induced chondrocyte apoptosis and the potential molecular mechanisms. Chondrocytes were isolated from the joints of newborn Sprague-Dawley rats. The MTT assay and LDH cell death assay were used to determine the cell viability and chondrocyte apoptosis was detected by Annexin-V/PI staining and nucleosomal degradation. The contents of phosphorylated-PI3K (p-PI3k), phosphorylated-Akt (p-Akt), Bcl-2, Bax, and cytochrome c were detected by Western blotting. A quantitative colorimetric assay was used to detect the caspase-3 activity. Our results showed that pretreatment with shikonin (4 μM) inhibited cytotoxicity and apoptosis induced by IL-1β (10 ng/ml) in chondrocytes. Shikonin pretreatment also decreased the activity of IL-1β that decreased Bcl-2 expression and levels of p-PI3K and p-Akt, and increased Bax expression, cytochrome c release, and caspase-3 activation. It also reversed the activity of IL-1β that promoted the synthesis of matrix metalloproteinase-13 and inhibited the expression of tissue inhibitor of metalloproteinase-1 expression, with the net effect of suppressing extracellular matrix degradation. These data suggested that shikonin may protect chondrocytes from apoptosis induced by IL-1β through the PI3K/Akt signaling pathway, by deactivating caspase-3.  相似文献   

18.
SOX trio (SOX-5, SOX-6, and SOX-9) maintain the chondrocytic phenotypes and are vital for chondrogenesis in embryonic development. The purpose of this study is to investigate the change in the expression of SOX trio with the advancement of osteoarthritis (OA) in human articular cartilage (AC). Human OA samples from eight patients were obtained from the distal femoral condyles during total knee arthroplasty. Minimally OA cartilage taken from areas with no obvious surface defects on lateral condyles was compared with advanced OA cartilage obtained from areas within 1 cm of overt lesion located on medial condyle surface. SOX-5, SOX-6, and SOX-9 gene expressions significantly decreased by 41% (p = 0.047), 46% (p = 0.047), and 56% (p = 0.029) in advanced OA area compared with the minimally OA area. There was a significant decrease in aggrecan and type II collagen (COL2A1) gene expressions by 73% (p = 0.029) and 65% (p = 0.029), respectively, in advanced OA area compared with the minimally OA area. From Western blotting and immunohistochemistry, SOX-5, SOX-6, SOX-9, type II collagen, and aggrecan protein expressions also significantly decreased in advanced OA cartilage compared with minimally OA cartilage. DNA methylation study of SOX-9 promoter regions revealed no difference in the epigenetic status between the two areas. It is concluded that SOX trio gene and protein decreased with advancement of OA in human articular cartilage.  相似文献   

19.
20.
Chondrocytes form and maintain the extracellular matrix of cartilage. The cells can be isolated from cartilage for applications such as tissue engineering, but their expansion in monolayer culture causes a progressive loss of chondrogenic phenotype. In this work, we have investigated the isolation of human articular chondrocytes from osteoarthritic (OA) cartilage at joint replacement, their expansion in monolayer culture, and their transduction with adenoviral, retroviral, and lentiviral vectors, using the gene encoding green fluorescent protein as a marker gene. The addition of growth factors (transforming growth factor beta(1), fibroblast growth factor 2, and platelet-derived growth factor BB) during cell culture was found to greatly increase cell proliferation and thereby to selectively enhance the efficiency of transduction with retrovirus. With adenoviral and lentiviral vectors the transduction efficiency achieved was 95 and 85%, respectively. Using growth factor-supplemented medium with a retroviral vector, efficiency in excess of 80% was achieved. The expression was stable for several months with both retrovirus and lentivirus when analyzed by fluorescence-activated cell-sorting flow analysis and immunoblotting. Transduction with SOX9 was investigated as a method to reinitiate cartilage matrix gene expression in passaged human OA chondrocytes. Endogenous collagen II expression (both mRNA and protein) was increased in monolayer culture using both adenoviral and retroviral vectors. Furthermore, collagen II gene expression in chondrocytes retrovirally transduced with SOX9 was stimulated by alginate bead culture, whereas in control chondrocytes it was not. These results demonstrated methods for rapid expansion and highly efficient transduction of human OA chondrocytes and the potential for the recovery of key features of chondrocyte phenotype by transduction with SOX9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号