首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For complete utilization of construction and demolition (C&D) waste, an investigation of all size fractions of C&D waste generated during the recycling process should be conducted. In this work, the effects of three recycled concrete materials with different sizes (recycled coarse aggregate (RCA) with a size of 4.75–25 mm, recycled fine aggregate (RFA) of 0.15–4.75 mm, and recycled powder (RP) smaller than 0.15 mm) produced from concrete waste on the fresh and hardened mechanical properties of concrete were evaluated. The replacement ratios of natural coarse and fine aggregates by RCA and RFA were 30, 60, and 100%, and those of ordinary Portland cement for RP were 10, 20, and 30%. The results showed that the concrete properties deteriorated with increasing replacement ratio regardless of the type of recycled materials. The properties were reduced in the order of the use of RFA, RCA, and the simultaneous use of RCA and RFA. In addition, concrete with 30% RP showed lower mechanical strength than concrete with 100% RCA and 100% RFA. However, all concretes could be applicable for structural purposes under different environmental exposure conditions. In particular, concretes with 10% RP and 20% RP showed better cost-benefits compared to natural aggregate concrete with 100% ordinary Portland cement. These promising findings provide valuable initiatives for the effective and complete recycling of C&D waste.  相似文献   

2.
In this study, the shrinkage performance of recycled aggregate thermal insulation concrete (RATIC) with added glazed hollow beads (GHB) was investigated and a time-dependent shrinkage model was proposed. Two types of recycled fine aggregate (RFA) were used to replace natural fine aggregate in RATIC: RFA from waste concrete (RFA1) and waste clay brick (RFA2). Besides, the mechanical properties and thermal insulation performance of RATIC were also studied. Results showed that the pozzolanic reaction caused by RFA2 effectively improved the mechanical properties of RATIC; 75% was the optimal replacement ratio of RATIC prepared by RFA2. Added RFA decreased the thermal conductivity of thermal insulation concrete (TIC). The total shrinkage strain of RATIC increased with the increase of the replacement ratio of RFA. The 150d total shrinkage of RATIC prepared by RFA1 was 1.46 times that of TIC and the 150d total shrinkage of RATIC prepared by RFA2 was 1.23 times. The addition of GHBs led to the increase of early total shrinkage strain of concrete. Under the combined action of the higher elastic modulus of RFA2 and the pozzolanic components contained in RFA2, the total shrinkage strain of RATIC prepared by RFA2 with the same replacement ratio was smaller than that of RATIC prepared by RFA1. For example, the final total shrinkage strain of RATIC prepared by RFA2 at 100% replacement ratio was about 18.6% less than that of RATIC prepared by RFA1. A time-dependent shrinkage model considering the influence of the elastic modulus of RFA and the addition of GHB on the total shrinkage of RATIC was proposed and validated by the experimental results.  相似文献   

3.
Recycled concrete aggregate (RCA) is a promising substitute for natural aggregates and the reuse of this material can benefit construction projects both economically and environmentally. RCA has received great attention in recent years in the form of aggregate as well as a geotechnical material of sand size. Next to RCA, another recycled material, which reduces the waste volume and is a part of the present challenges in civil engineering, is tire waste. Despite the good engineering properties of recycled tire waste (RTW), its use is still limited, even after almost 30 years since they were first introduced. To broaden the applicability of reused concrete and rubber, a further understanding of their properties and engineering behavior is required. For this reason, the main subject of this paper is composite materials that consist of anthropogenic soil recycled concrete aggregate (RCA) and crushed pieces of recycled tire waste (RTW). In this study, a series of isotropic consolidated drained triaxial tests were undertaken to characterize the shear strength of eight mixtures of variable grain-size distribution, rubber inclusion (RC), and fine fraction (FF) content. The results show that the introduction of rubber waste leads to changes in the strength parameters of the tested mixtures. Improvements in RCA shear strength were observed, the largest for the mixture M7 with 10% of recycled tire waste. Similarly, the effect of fine fraction content on the angle of internal friction and cohesion was found. Dilation characteristics were observed in all analyzed composites. Based on the results of all tests performed, including physical, geometric, chemical, and mechanical properties of the created composites, it can be stated that the samples would meet local road authority requirements for sub-base applications.  相似文献   

4.
The linear economy paradigm in place to date has to be seriously challenged to give way to a new school of thought known as the circular economy. In this research work, precast kerbs and paving blocks made with recycled concrete (RACC-mixture) bearing 50 wt% mixed recycled aggregate (masonry content of 33%) and an eco-efficient cementitious material as 25 wt% conventional binder replacement were evaluated to assess their intrinsic potential to replace traditional raw materials, in keeping with circular economy criteria. Therefore, precast products were subjected to mechanical strength, durability and microstructure tests and were compared to conventional concrete units (CC-mixture and commercially available precast elements). Although a class demotion was observed for water absorption and some decreases in flexural strength (26%), splitting tensile strength (12.8%) and electrical resistivity (45%) and a lower class water absorption were registered, and the recycled mixture also exhibited a greater performance in terms of compressive strength (6%), a better abrasion resistance classification and a comparable porosity and microstructure, which ensures a good concrete durability. In any case, the results showed that precast pieces were European standard-compliant, thus supporting the viability of the mixed recycled aggregates and eco-efficient cementitious replacement in footways.  相似文献   

5.
This paper provides experimental results to investigate the mechanical properties of sustainable strain-hardening cement composite (2SHCC) for infrastructures after freeze-thaw actions. To improve the sustainability of SHCC materials in this study, high energy-consumptive components—silica sand, cement, and polyvinyl alcohol (PVA) fibers—in the conventional SHCC materials are partially replaced with recycled materials such as recycled sand, fly ash, and polyethylene terephthalate (PET) fibers, respectively. To investigate the mechanical properties of green SHCC that contains recycled materials, the cement, PVA fiber and silica sand were replaced with 10% fly ash, 25% PET fiber, and 10% recycled aggregate based on preliminary experimental results for the development of 2SHCC material, respectively. The dynamic modulus of elasticity and weight for 2SHCC material were measured at every 30 cycles of freeze-thaw. The effects of freeze-thaw cycles on the mechanical properties of sustainable SHCC are evaluated by conducting compressive tests, four-point flexural tests, direct tensile tests and prism splitting tests after 90, 180, and 300 cycles of rapid freeze-thaw. Freeze-thaw testing was conducted according to ASTM C 666 Procedure A. Test results show that after 300 cycles of freezing and thawing actions, the dynamic modulus of elasticity and mass loss of damaged 2SHCC were similar to those of virgin 2SHCC, while the freeze-thaw cycles influence mechanical properties of the 2SHCC material except for compressive behavior.  相似文献   

6.
The practical use of recycled concrete aggregate produced by crushing concrete waste reduces the consumption of natural aggregate and the amount of concrete waste that ends up in landfills. This study investigated two methods used in the production of fine recycled concrete aggregate: (1) a method that produces fine as well as coarse aggregate, and (2) a method that produces only fine aggregate. Mortar specimens were tested using a variety of mix proportions to determine how the characteristics of fine recycled concrete aggregate affect the physical and mechanical properties of the resulting mortars. Our results demonstrate the superiority of mortar produced using aggregate produced using the second of the two methods. Nonetheless, far more energy is required to render concrete into fine aggregate than is required to produce coarse as well as fine aggregate simultaneously. Thus, the performance benefits of using only fine recycled concrete aggregate must be balanced against the increased impact on the environment.  相似文献   

7.
Despite extensive research studies, recycled aggregates and worn-out tyres of motor vehicles are still not fully reused and are hence disposed of in ways that are damaging to the environment. Several studies have been carried out on recycled aggregate and rubberized concrete, but very limited studies are conducted on rubber recycled aggregate concrete. This study focuses on the workability, mechanical properties and durability performance of concrete made with 100% recycled aggregates and crumb rubber at different replacement level (5%, 10%, 15% and 20%). The first stage of the study covers the effect of incorporating crumb rubber at different concentration on the workability and mechanical properties of recycled aggregate concrete. The results revealed that the workability and mechanical properties of the recycled aggregate concrete can be used for structural applications when 5% of crumb rubber are used to replace recycled aggregates. The 28-days compressive strength of the rubberized recycled aggregate concrete with 5% crumb rubber concentration is reduced by 21.1% and 32.8% when compared to recycled aggregate concrete and control concrete, respectively. The second stage of the study assesses the durability performance of the recycled aggregate concrete with 5% crumb rubber concentration. The 5% crumb rubber content for durability tests was considered because the ultrasonic pulse velocity tests revealed that the quality of the recycled aggregate concrete is questionable if the concentration of crumb rubber particles is beyond 5%. The durability performance using the surface resistivity test also shows that the chloride ion penetration of recycled aggregates concrete with 5% crumb rubber replacement is moderate using air dried curing technique and high using the water bath curing method. Hence the study suggests the use of rubber recycled aggregate concrete for applications were the exposure condition is not extreme.  相似文献   

8.
Nowadays, effective and eco-friendly ways of using waste materials that could replace natural resources (for example, sand) in the production of concrete composites are highly sought. The article presents the results of research on geopolymer composites produced from two types of waste materials—hemp and fine fractions recovered from recycled cement concrete, which were both used as a replacement for standard sand. A total of two research experiments were conducted. In the first experiment, geopolymer mortars were made using the standard sand, which was substituted with recycled fines, from 0% to 30% by weight. In the second study, geopolymers containing organic filler were designed, where the variables were (i) the amount of hemp and the percent of sand by volume (0%, 2.5%, and 5%) and(ii) the amount of hydrated lime and the percent of fly ash (by weight) (0%, 2%, and 4%) that were prepared. In both cases, the basic properties of the prepared composites were determined, including their flexural strength, compressive strength, volume density in a dry and saturated state, and water absorption by weight. Observations of the microstructure of the geopolymers using an electron and optical microscope were also conducted. The test results show that both materials (hemp and recycled fines) and the appropriate selection of the proportions of mortar components and can produce composites with better physical and mechanical properties compared to mortars made of only natural sand. The detailed results show that recycled fines (RF) can be a valuable substitute for natural sand. The presence of 30% recycled fines (by weight) as a replacement for natural sand in the alkali-activated mortar increased its compressive strength by 26% and its flexural strength by 9% compared to control composites (compared to composites made entirely of sand without its alternatives). The good dispersion of both materials in the geopolymer matrix probably contributed to filling of the pores and reducing the water absorption of the composites. The use of hemp as a sand substitute generally caused a decrease in the strength properties of geopolymer mortar, but satisfactory results were achieved with the substitution of 2.5% hemp (by volume) as a replacement for standard sand (40 MPa for compressive strength, and 6.3MPa for flexural strength). Both of these waste materials could be used as a substitute for natural sand and are examples of an eco-friendly and sustainable substitution to save natural, non-renewable resources.  相似文献   

9.
To replace porous basalt, the mechanical properties of concrete with recycled resources and durability improvement were analyzed in this study. The analysis was based on the quality improvement of recycled aggregate, use of fly ash, and changes in curing conditions. Basalt aggregate (BA) with a 3% water absorption, raw recycled aggregate and basalt (RRA), and improved recycled aggregate and basalt (PRA) were the main experimental variables. As PRA was applied to concrete, the compressive strength was lower than that of the specimen comprising BA in the normal strength region, but the modulus of elasticity (22.9 GPa) was equivalent or higher. The initial drying shrinkage increased because of the use of basalt-based recycled aggregate (B-RA). The drying shrinkage of PRA was similar to that of BA with an average difference of <7% as the age increased. The specimens subjected to steam curing exhibited the lowest drying shrinkage. These results showed that pores in the old paste of recycled aggregate increased freeze–thaw resistance because of the increase in the spacing factor. Although the PRA did not satisfy the quality criteria, the efficient use of recycled aggregate achieved an equivalent or higher performance than that of concrete comprising BA and improved durability.  相似文献   

10.
Recycled aggregate concrete-filled steel tubular (RACFST) columns are widely recognized as efficient structural members that can reduce the environmental impact of the building industry and improve the mechanical behavior of recycled aggregate concrete (RAC). The objective of this study is to investigate the behavior of recycled aggregate concrete-filled circular steel tubular (RACFCST) stub columns subjected to the axial loading. Three-dimensional finite element (FE) models were established using a triaxial plastic-damage constitutive model of RAC considering the replacement ratio of recycled aggregates. The FE analytical results revealed that the decreased ultimate bearing capacity of RACFCST stub columns compared with conventional concrete infilled steel tubular (CFST) columns was mainly due to the weakened confinement effect and efficiency. This trend will become more apparent with the larger replacement ratio of recycled aggregates. A practical design formula of the ultimate bearing capacity of RACFCST stub columns subjected to axial load was proposed on the basis of the reasonably simplified cross-sectional stress nephogram at the ultimate state. The derivation process incorporated the equilibrium condition and the superposition theory. The proposed equation was evaluated by comparing its accuracy and accessibility to some well-known design formulae proposed by other researchers and some widely used design codes.  相似文献   

11.
Recycled aggregate is essential to protect Jeju Island’s natural environment, but waste concrete, including porous basalt, is a factor that lowers the quality of recycled aggregate. Therefore, an experiment was conducted to analyze the properties of concrete application of basalt-based recycled aggregate (B-RA) through quality improvement. The absorption of the B-RA ranged from 3–5%; restricting its absorption to less than 3% was challenging owing to its porosity and irregular shape. However, the increase in the solid volume percentage of the concrete when replacing 25 or 50% of fresh basalt aggregate with recycled basalt aggregate improved the mechanical performance of the concrete, especially at 25%, for which a compressive strength of 55.9 MPa and modulus of elasticity of 25.9 GPa exceeded those of concrete with fresh basalt aggregate. Moreover, increasing the replacement ratio of the fresh basalt with recycled aggregate reduced the slump and decreased the air content, consequently increasing the concrete drying shrinkage. However, the replacement of fresh basalt aggregate with recycled basalt aggregate unaltered the mechanical performance of the concrete. The results indicate that efficient use of recycled aggregates can yield superior performance to that of fresh basalt, irrespective of aggregate quality.  相似文献   

12.
The incorporation of a recycled concrete aggregate (RCA) as a replacement of natural aggregates (NA) in road construction has been the subject of recent research. This tendency promotes sustainability, but its use depends mainly on the final product’s properties, such as chemical stability. This study evaluates the physical and chemical properties of RCAs from two different sources in comparison with the performance of NA. One RCA was obtained from the demolition of a building (recycled concrete aggregate of a building—RCAB) and another RCA from the rehabilitation of a Portland cement concrete pavement (recycled concrete aggregate from a pavement—RCAP). Characterization techniques such as X-ray fluorescence (XRF), X-ray diffraction (XRD), UV spectroscopy, and atomic absorption spectrometry were used to evaluate the RCAs’ coarse fractions for chemical potential effects on asphalt mixtures. NA was replaced with RCA at 15%, 30%, and 45% for each size of the coarse fractions (retained 19.0, 12.5, 9.5, and 4.75 sieves in mm). The mineralogical characterization results indicated the presence of quartz (SiO2) and calcite (CaCO3) as the most significant constituents of the aggregates. XFR showed that RCAs have lower levels of CaO and Al2O3 concerning NA. Potential reactions in asphalt mixtures by nitration, sulfonation, amination of organic compounds, and reactions by alkaline activation in the aggregates were discarded due to the minimum concentration of components such as NO2, (–SO3H), (–SO2Cl), and (Na) in the aggregates. Finally, this research concludes that studied RCAs might be used as replacements of coarse aggregate in asphalt mixtures since chemical properties do not affect the overall chemical stability of the asphalt mixture.  相似文献   

13.
Construction and demolition waste (CDW) constitutes an increasingly significant problem in society due to the volume generated, rendering sustainable management and disposal problematic. The aim of this study is to identify a possible reuse option in the concrete manufacturing for recycled aggregates with a significant ceramic content: mixed recycled aggregates (MixRA) and ceramic recycled aggregates (CerRA). In order to do so, several tests are conducted in accordance with the Spanish Code on Structural Concrete (EHE-08) to determine the composition in weight and physic-mechanical characteristics (particle size distributions, fine content, sand equivalent, density, water absorption, flakiness index, and resistance to fragmentation) of the samples for the partial inclusion of the recycled aggregates in concrete mixes. The results of these tests clearly support the hypothesis that this type of material may be suitable for such partial replacements if simple pretreatment is carried out. Furthermore, this measure of reuse is in line with European, national, and regional policies on sustainable development, and presents a solution to the environmental problem caused by the generation of CDW.  相似文献   

14.
A steel fiber-reinforced recycled concrete (SFRRC) is a porous material, and its macromechanical properties are affected by its microstructure. To elucidate the change rules and internal mechanisms of the mechanical properties of SFRRCs, the mechanical properties and failure modes of SFRRCs were studied at different water–cement ratio, replacement rate of recycled concrete aggregate (RCA), and steel fiber content. Moreover, the microstructures of the interface transition zones (ITZ) of the SFRRC specimens were tested by scanning electron microscopy and mercury intrusion, and the effect of the microscopic pore structure on the macromechanical properties of SFRRC was analyzed. The research results showed that an appropriate amount of steel fibers could reduce the size and number of cracks in the ITZ and improve the pore structure of an SFRRC. Based on the fractal dimension, porosity and other factors, the quantitative relationship between the macromechanical properties and microscopic pore structure parameters of SFRRCs was established.  相似文献   

15.
This research investigates the effectiveness of bio-sourced flax fiber-reinforced polymer in comparison with a traditional system based on carbon fiber-reinforced epoxy polymer in order to confine recycled aggregate concretes. The experimental investigation was conducted on two series of concrete including three mixtures with 30%, 50%, and 100% of recycled aggregates and a reference concrete made with natural aggregates. The concrete mixtures were intended for a frost environment where an air-entraining agent was added to the mixture of the second series to achieve 4% air content. The first part of the present work is experimental and aimed to characterize the compressive performance of confined materials. The results indicated that bio-sourced composites are efficient in strengthening recycled aggregates concrete, especially the air-entrained one. It was also found that the compressive strength and the strain enhancement obtained from FRP confinement are little affected by the replacement ratio. The second part was dedicated to the analytical modeling of mechanical properties and stress–strain curves under compression. With the most adequate ultimate strength and strain prediction relationships, the full behavior of FRP-confined concrete can be predicted using the model developed by Ghorbel et al. to account for the presence of recycled aggregates in concrete mixtures.  相似文献   

16.
This paper investigated the influence of recycled ceramics and grazed hollow beads on the mechanical, thermal conductivity and material properties of concrete. The results showed that the concentration of recycled ceramics and grazed hollow beads has significant optimization on the workability and thermal properties of the concrete. However, the superabundant concentration can reduce the hydration degree of the concrete, which results in the suppressed production of C-S-H gel and the increase of material defects. In summary, considering the coordinated development of key factors such as thermal insulation properties, mechanical properties and microstructure, 10% RCE and 60% GHB are the optimal material system design methods.  相似文献   

17.
In this paper, the recycled fine aggregates and powders produced from crushing old basaltic concrete and natural basalt were used to produce new concrete. The sand was partially replaced by two types of recycled wastes at five percentages: 0%, 20%, 40%, 60%, and 80%. The cement was partially replaced by recycled powders and silica fume (SF) at four percentages: 0, 5%, 10%, and 20%. The concrete strengths and water absorption were obtained at several curing ages. The obtained results emphasized the positive effects of increasing the curing time on enhancing the concrete properties, regardless of the types or the waste sources. Moreover, the recycled powders retarded the hydration reaction. In addition, the recycled fine aggregates and powders could achieve about 99.5% and 99.3% of the ordinary concrete strength and enhance the tensile strength. Furthermore, the mix containing 40% of recycled fine concrete aggregate diffused the highest contents of both calcium and silicate, which led to enhancing the interfacial transition zone (ITZ) and concrete properties, compared to the other tested mixes. Finally, the water absorption of all tested concrete mixes decreased with an increase in the curing age, while the mixes integrating 10% and 20% of SF experienced the lowest values of water absorption.  相似文献   

18.
Compared with traditional concrete beams, recycled concrete beams are more prone to cracking and shear failure. Generally, shear failure is a brittle failure and its failure consequences are often very serious. Thus, the shear capacity is an important parameter in the design and testing for beam structures. In this work, the computation method and size effect on shear capacity of recycled concrete beams without stirrups are studied. Four recycled aggregate concrete beams with different sizes are tested by the bending experiment to obtain their ultimate shear capacities. By keeping the shear span ratio unchanged, the variation laws of mechanical parameters such as cracking load, ultimate shear capacity and shear strength for these beam specimens are studied. From the experiment results, it is concluded that the shear capacities of beams with lengths of 740 mm, 1010 mm, 1280 mm and 1550 mm are 86.3 kN, 106 kN, 124.7 kN and 177.7 kN, respectively. The corresponding shear strengths are 6.84 MPa, 5.59 MPa, 4.9 MPa, and 5.56 MPa, respectively. Nine computation formulas of shear capacity in the literature, such as ACI 318M-14, EN 1992-1-1, GB50010-2010 and so on, are used to calculate the shear capacities of these recycled concrete beams for comparison. The comparative study shows that it is feasible to consider the size effect in the computation of shear capacity for the recycled concrete beam.  相似文献   

19.
In this research we evaluated the use of recycled fine mortar aggregate (RFMA) as a fine aggregate for new masonry mortar creation. The pre-wetting effect on the aggregate before creating the mixture was analyzed as a method to reduce its absorption potential. A control mixture of conventional mortar and two groups of recycled mortars were designed with a partial replacement of natural sand by RFMA (pre-wetted and not pre-wetted) performed in different proportions. The results established that the pre-wetting process allows a reduction in the amount of water required during the creation of new mixtures, regulating the water/cement (W/C) ratio and improving the properties of recycled mortars such as air content, fresh and hardened densities, and compressive and adhesive strength for all substitution levels. Mortar made with a 20% substitution and pre-wetted until it was at 67% of its absorption capacity displayed adhesive values higher than the ones shown by the reference mortar. The pre-wetting process proves to be an easy performance technique; it is inexpensive, environmentally friendly, and the most valuable fact is that specialized equipment is not necessarily needed. This process is the most profitable option for improving RFMA exploitation and reuse.  相似文献   

20.
High–strength manufactured sand recycled aggregate concrete (MSRAC) prepared with manufactured sand (MS) and recycled coarse aggregate (RCA) is an effective way to reduce the consumption of natural aggregate resources and environmental impact of concrete industry. In this study, high–, medium– and low–quality MS, which were commercial MS local to Changzhou and 100% by volume of recycled coarse aggregate, were used to prepare MSRAC. The quality of MS was determined based on stone powder content, methylene blue value (MBV), crushing value and soundness as quality characteristic parameters. The variation laws of compressive strength and chloride penetration resistance of high–strength MSRAC with different rates of replacement and different qualities of MS were explored. The results showed that for medium– and low–quality MS, the compressive strength of the MSRAC increased first and then decreased with increasing rate of replacement. Conversely, for high–quality MS, the compressive strength gradually increased with increasing rate of replacement. The chloride diffusion coefficient of MSRAC increased with decreasing MS quality and increasing rate of replacement. The chloride diffusion coefficient of MSRAC basically met the specifications for 50–year and 100–year design working life when the chloride environmental action was D and E. To prepare high–strength MSRAC, high–quality MS can 100% replace RS (river sand), while rates of replacement of 50–75% for medium–quality MS or 25–50% for low–quality MS are proposed. Scanning Electron Microscope (SEM) images indicated that an appropriate amount of stone powder is able to improve the compressive strength of RAC, but excessive stone powder content and MBV are unfavorable to the compressive strength and chloride penetration resistance of RAC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号