首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
The continuous demand for thermoplastic polymers in a great variety of applications, combined with an urgent need to minimize the quantity of waste for a balanced energy-from-waste strategy, has led to increasing scientific interest in developing new recycling processes for plastic products. Glycol-modified polyethylene terephthalate (PETG) is known to have some enhanced properties as compared to polyethylene terephthalate (PET) homopolymer; this has recently attracted the interest from the fused filament fabrication (FFF) three-dimensional (3D) printing community. PET has shown a reduced ability for repeated recycling through traditional processes. Herein, we demonstrate the potential for using recycled PETG in consecutive 3D printing manufacturing processes. Distributed recycling additive manufacturing (DRAM)-oriented equipment was chosen in order to test the mechanical and thermal response of PETG material in continuous recycling processes. Tensile, flexure, impact strength, and Vickers micro-hardness tests were carried out for six (6) cycles of recycling. Finally, Raman spectroscopy as well as thermal and morphological analyses via scanning electron microscopy (SEM) fractography were carried out. In general, the results revealed a minor knockdown effect on the mechanical properties as well as the thermal properties of PETG following the process proposed herein, even after six rounds of recycling.  相似文献   

2.
Polypropylene (PP) is an engineered thermoplastic polymer widely used in various applications. This work aims to enhance the properties of PP with the introduction of titanium dioxide (TiO2) nanoparticles (NPs) as nanofillers. Novel nanocomposite filaments were produced at 0.5, 1, 2, and 4 wt.% filler concentrations, following a melt mixing extrusion process. These filaments were then fed to a commercially available fused filament fabrication (FFF) 3D printer for the preparation of specimens, to be assessed for their mechanical, viscoelastic, physicochemical, and fractographic properties, according to international standards. Tensile, flexural, impact, and microhardness tests, as well as dynamic mechanical analysis (DMA), Raman, scanning electron microscopy (SEM), melt flow volume index (MVR), and atomic force microscopy (AFM), were conducted, to fully characterize the filler concentration effect on the 3D printed nanocomposite material properties. The results revealed an improvement in the nanocomposites properties, with the increase of the filler amount, while the microstructural effect and processability of the material was not significantly affected, which is important for the possible industrialization of the reported protocol. This work showed that PP/TiO2 can be a novel nanocomposite system in AM applications that the polymer industry can benefit from.  相似文献   

3.
This work aimed to prepare a composite with a polyamide (PA) matrix and surface-modified ZrO2 or Al2O3 to be used as ceramic fillers (CFs). Those composites contained 30 wt.% ceramic powder to 70 wt.% polymer. Possible applications for this type of composite include bioengineering applications especially in the fields of dental prosthetics and orthopaedics. The ceramic fillers were subjected to chemical surface modification with Piranha Solution and suspension in 10 M sodium hydroxide and Si3N4 to achieve the highest possible surface development and to introduce additional functional groups. This was to improve the bonding between the CFs and the polymer matrix. Both CFs were examined for particle size distribution (PSD), functional groups (FTIR), chemical composition (XPS), phase composition (XRD), and morphology and chemical composition (SEM/EDS). Filaments were created from the powders prepared in this way and were then used for 3D FDM printing. Samples were subjected to mechanical tests (tensility, hardness) and soaking tests in a high-pressure autoclave in artificial saliva for 14, 21, and 29 days.  相似文献   

4.
Polycarbonate-based nanocomposites were developed herein through a material extrusion (MEX) additive manufacturing (AM) process. The fabrication of the final nanocomposite specimens was achieved by implementing the fused filament fabrication (FFF) 3D printing process. The impact of aluminum nitride (AlN) nanoparticles on the thermal and mechanical behavior of the polycarbonate (PC) matrix was investigated thoroughly for the fabricated nanocomposites, carrying out a range of thermomechanical tests. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) provided information about the morphological and surface characteristics of the produced specimens. Using energy dispersive spectroscopy (EDS), the elemental composition of the nanocomposite materials was validated. Raman spectroscopy revealed no chemical interactions between the two material phases. The results showed the reinforcement of most mechanical properties with the addition of the AlN nanoparticles. The nanocomposite with 2 wt.% filler concentration exhibited the best mechanical performance overall, with the highest improvements observed for the tensile strength and toughness of the fabricated specimens, with a percentage of 32.8% and 51.6%, respectively, compared with the pure polymer. The successful AM of PC/AlN nanocomposites with the MEX process is a new paradigm, which expands 3D printing technology and opens a new route for the development of nanocomposite materials with multifunctional properties for industrial applications.  相似文献   

5.
Additively manufactured (AM) materials and hot rolled materials are typically orthotropic, and exhibit anisotropic elastic properties. This paper elucidates the anisotropic elastic properties (Young’s modulus, shear modulus, and Poisson’s ratio) of Ti6Al4V alloy in four different conditions: three AM (by selective laser melting, SLM, electron beam melting, EBM, and directed energy deposition, DED, processes) and one wrought alloy (for comparison). A specially designed polygon sample allowed measurement of 12 sound wave velocities (SWVs), employing the dynamic pulse-echo ultrasonic technique. In conjunction with the measured density values, these SWVs enabled deriving of the tensor of elastic constants (Cij) and the three-dimensional (3D) Young’s moduli maps. Electron backscatter diffraction (EBSD) and micro-computed tomography (μCT) were employed to characterize the grain size and orientation as well as porosity and other defects which could explain the difference in the measured elastic constants of the four materials. All three types of AM materials showed only minor anisotropy. The wrought (hot rolled) alloy exhibited the highest density, virtually pore-free μCT images, and the highest ultrasonic anisotropy and polarity behavior. EBSD analysis revealed that a thin β-phase layer that formed along the elongated grain boundaries caused the ultrasonic polarity behavior. The finding that the elastic properties depend on the manufacturing process and on the angle relative to either the rolling direction or the AM build direction should be taken into account in the design of products. The data reported herein is valuable for materials selection and finite element analyses in mechanical design. The pulse-echo measurement procedure employed in this study may be further adapted and used for quality control of AM materials and parts.  相似文献   

6.
Ultrasonic pulse velocity (UPV) and rebound hammer tests are accepted as alternatives to destructive testing to determine the compressive strength, dynamic modulus of elasticity, and Poisson’s ratio, which are needed for structural design. Although much work has been conducted for plain concrete, the research data for fibre-reinforced concrete (FRC) is insufficient. In this regard, this study explains the correlations between compressive strength, rebound hammer, and UPV tests for plain concrete and FRC contains 0.25%, 0.50%, and 1.00% of 30 mm and 50 mm long steel fibres. A total of 78 concrete cube and beam specimens were tested by direct, semi-direct, and indirect UPV and rebound hammer test methods. The study found that the rebound hammer test is more suitable for measuring the compressive strength of matured FRC than young concrete. The UPV test revealed that the volume fraction does not, but the length of steel fibres does affect the UPV results by the direct test method. The UPV direct method has the highest velocity, approximately two times the indirect velocity in FRC. UPV measurements can be effectively used to determine the dynamic modulus of elasticity and Poisson’s ratio of FRC. The dynamic elastic modulus increases while the Poisson’s ratio decreases for the same steel fibre length when at increasing FRC fibre content. The results of this study will be significant for non-destructive evaluations of FRC, while additional recommendations for future studies are presented at the end of the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号