首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The possibility that cerebral tumours may be graded by measuring T1 or T2 with magnetic resonance (MR) imaging was studied. A consecutive series of patients with subsequently verified gliomas was enrolled, and studied with MR. Patients who had prior surgical, chemotherapeutic or steroid treatment were excluded. Single slice multiple saturation recovery and multiple spin echo techniques were used to measure T1, T2 and proton density in the tumour. In 33 patients with cerebral gliomas there were 5 grade I, 12 grade II, 7 grade III and 9 grade IV. T1 and T2 values tended to be smaller in grade I gliomas than in grades II, III and IV gliomas. Relaxation parameters overlapped considerably in tumours with different grades. Proton density values did not show much change between different grades of gliomas. Relaxation parameters cannot be used to determine tumour grade reliably. Correspondence to: S. Newman  相似文献   

6.
7.
8.
An imaging method called "quantification of relaxation times and proton density by twin-echo saturation-recovery turbo-field echo" (QRAPTEST) is presented as a means of quickly determining the longitudinal T(1) and transverse T(2) (*) relaxation time and proton density (PD) within a single sequence. The method also includes an estimation of the B(1) field inhomogeneity. High-resolution images covering large volumes can be achieved within clinically acceptable times of 5-10 min. The range of accuracy for determining T(1), T(2) (*), and PD values is flexible and can be optimized relative to any anticipated values. We validated the experimental results against existing methods, and provide a clinical example in which quantification of the whole brain using 1.5 mm(3) voxels was achieved in less than 8 min.  相似文献   

9.
10.
INTRODUCTION: Even mild hepatic steatosis in a split liver donor may cause general liver failure and death in the donor. So far, CT density measurements or percutaneous biopsy is used to determine the presence of hepatic steatosis. Magnetic resonance imaging (MRI) may be an elegant method of non-invasive and non-radiation quantification of hepatic fat content. METHODS: Fast gradient echo (GRE) technique was used to discriminate between fat and water spins. Echo time (TE) was adjusted for field strength dependent in-phase and out-of-phase states at 1.0, 1.5 and 3.0 T. Continuous MR signal transition from 100% water to 100% fat was investigated using a wedge water-oil phantom, which was positioned in such a way, that no spatial resolution occurred, thereby combining water and fat in one slice. RESULTS: Using the phantom, a significant difference for a 5% difference in fat content was demonstrated in the range from 20 to 80% fat content (p<0.05) for all tested field strengths. In 25 patients MRI data were correlated with the percentage of fat determined by histologic evaluation of a CT-guided liver biopsy. Using the linear correlation calculated from the MRI phantom data at 1.0 T, we determined the liver fat from each patient's MRI measurements. Comparison of these data with the histologic quantified fat fraction of liver tissue showed a strong correlation (r(2)=0.93 for TE 6 ms and r(2)=0.91 for TE 10 ms). CONCLUSION: The described method can be used to determine the presence of hepatic steatosis of >10% with p<0.05.  相似文献   

11.
12.
13.
14.
15.
16.

Aim

To assess the diagnostic accuracy of a new reconstruction technique for gradient-recalled-echo magnetic resonance (MR) sequences that provides a full decomposition of the water and fat content inside a voxel for nonalcoholic fatty liver disease (NAFLD) in rats.

Material and methods

Rats were randomized into two groups. A control group (n = 10) was given free access to regular dry rat chow for 4 weeks. The steatosis (n = 40) group was given free access to feed and water 4 days per week, and fasted for the remaining 3 days for 4 weeks. All rats were killed at 4 weeks and assessed for fatty infiltration and biochemical method.

Results

The average fat content using the gold standard method was 2.65 g (2.20–3.05) of fat/100 g liver for the control group and 4.14 g (1.95–8.60) of fat/100 g of liver for the overfed group (p < 0.05). The average fat-fraction obtained from the MR was 0.016 (0.01–0.02) for the control group and 0.057 (0.00–0.18) for the overfed group. The Pearson correlation coefficient between the samples was r2 = 0.87.

Conclusion

Multi-echo MR is a good technique to quantify liver fat in rats.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号