首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To investigate the participation of clonotypic MM B cells in the IL-6 network in patients with multiple myeloma. METHODS: CD19(+) B cells from 45 patients with multiple myeloma and from 18 healthy donors were sorted and their expression of IL-6, IL-6 receptor (CD126) characterized by flow cytometry, in situ RT-PCR, and ELISA measurement of IL-6 and soluble IL-6R. Expression of CD31 was detected by flow cytometry. RESULTS: Interleukin-6 (IL-6) is a pleiotropic cytokine often overexpressed in multiple myeloma (MM). IL-6 induces growth and inhibits apoptosis of MM plasma cells, and upregulates the activity of osteoclasts. MM plasma cells, the most mature component of the MM clone, secrete IL-6 and induce IL-6 production from other cell types. However, the MM clone also includes circulating clonotypic B lymphocytes. Using ELISA and in situ RT-PCR we demonstrate here that, unlike the healthy control B cells, MM B cells express IL-6 mRNA and secrete IL-6 protein. In vitro, MM B cells were the major producers of IL-6 in peripheral blood mononuclear cells. On average, 50% of MM B cells express the IL-6 receptor (IL-6R, CD126), suggestive of autocrine stimulation. They also express CD31, potentially facilitating their paracrine interactions with osteoclast precursors. CONCLUSION: Secretion of IL-6 by circulating clonotypic B cells in MM may contribute to the autocrine and paracrine cytokine networks that maintain the malignant clone and are responsible for disruption of normal bone metabolism in this incurable disease.  相似文献   

2.
To explore the mechanisms involved in the pathogenesis of human multiple myeloma (MM), we investigated the potential role of interleukin-6 (IL-6), a B-cell differentiation factor in humans, and a growth factor for rat/mouse heterohybridomas and murine plasmacytomas. Using a heterohybridoma assay, we found that two well-documented human myeloma cell lines, RPMI 8226 and U266, did not secrete IL-6 and did not express RNA messengers for IL-6. Neutralizing antibodies to IL-6 did not inhibit their proliferation, and recombinant IL-6 did not stimulate it. Taken together, these data show that IL-6 is not the autocrine growth factor of these human myeloma cell lines. A high production of IL-6 was found in the bone marrows of patients with fulminating MM, compared with patients with inactive or slightly active MM, or to healthy donors. This IL-6 production was assigned to adherent cells of the bone-marrow environment but not to myeloma cells. A spontaneous proliferation of myeloma cells freshly isolated from patients was observed in short-term cultures. Recombinant IL-6 was able to amplify it two- to threefold. The spontaneous proliferation of the myeloma cells was inhibited by anti-IL-6 antibodies and reinduced by recombinant IL-6. After 2 to 3 weeks of culture, the myeloma-cell proliferation progressively declined and no IL-6-dependent myeloma cell lines could be obtained despite repeated additions of fresh IL-6 and costimulation with other cytokines such as tumor necrosis factor (TNF)beta, or IL-1 beta. These data demonstrated a paracrine but not autocrine regulation of the growth and differentiation of myeloma cells by IL-6.  相似文献   

3.
The role of granulocyte-macrophage colony-stimulating factor (GM-CSF) in the growth of multiple myeloma (MM) was investigated in 21 patients with MM. In 17 patients with proliferating myeloma cells in vivo, recombinant GM-CSF significantly increased the endogenous-IL-6-mediated spontaneous myeloma cell proliferation occurring in 5-day cultures of tumor cells in vitro (P less than .01). Furthermore, GM-CSF was detected in 5-day culture supernatants of myeloma bone marrow cells. This endogenous GM-CSF was produced by the myeloma bone marrow microenvironment but not by myeloma cells and contributed to the spontaneous myeloma-cell proliferation observed in 5-day cultures. In fact, this proliferation was partially blocked (67%) by anti-GM-CSF monoclonal antibodies. The stimulatory effect of rGM-CSF was mediated through IL-6 because it was abrogated by anti-IL-6 monoclonal antibodies. rGM-CSF did not reproducibly increase the endogenous IL-6 production in short-term cultures of bone marrow cells of MM patients. Using an IL-6-dependent myeloma cell line (XG-1 cell line), rGM-CSF was shown to act directly on myeloma cells stimulating by twofold their IL-6 responsiveness. rGM-CSF did not induce any IL-6 production in XG-1 cells, nor was it able to sustain their growth alone. Although no detectable GM-CSF levels were found in the peripheral or bone marrow blood of MM patients, it is possible that GM-CSF, produced locally by the tumoral environment, enhances the IL-6 responsiveness of myeloma cells in vivo in a way similar to that reported here in vitro.  相似文献   

4.
Typical features of multiple myeloma (MM) are osteolytic lesions and severely affected bone regeneration. This study of 53 MM patients demonstrates an enhancement of osteoblast cytotoxicity by malignant myeloma cells via the upregulation of apoptogenic receptors, including Fas ligand (Fas-L) and tumour-necrosis-factor-related apoptosis inducing ligand (TRAIL). Both were significantly increased in the marrow myeloma cells of patients with extensive osteolytic lesions in a fashion similar to the highly malignant human myeloma cell line MCC-2. Osteoblasts from these subjects over-expressed Fas and death receptor (DR) 4/5 and underwent dramatic apoptosis when co-cultured with either MCC-2 or autologous myeloma cells. In osteoblast and myeloma cell co-cultures, monocyte chemoattractant protein 1 (MCP-1) mRNA was upregulated in osteoblasts from patients with severe bone disease in parallel with increased CC-chemokine receptor R2 (CCR2) expression, the ligand of MCP-1, in the myeloma cells. This chemokine was shown to activate malignant cell migration in vitro. An upregulation of ICAM-1 expression occurred in osteoblasts from patients with active skeleton disease. This upregulation appeared to be an effect of malignant plasma cell contact, as MCC-2 co-culture greatly enhanced ICAM-1 production by resting osteoblasts from patients without skeleton involvement. Our results suggest that osteoblasts in active myeloma are functionally exhausted and promptly undergo apoptosis in the presence of myeloma cells from patients with severe bone disease. It is suggested that this cytotoxic effect plays a pivotal role in the pathogenesis of defective bone repair.  相似文献   

5.
The myeloma cell antigen syndecan-1 is lost by apoptotic myeloma cells   总被引:9,自引:0,他引:9  
Syndecan-1 is a cell membrane proteoglycan that binds extracellular matrix components and various growth factors. It is expressed only on malignant plasma cells in bone marrow samples from patients with multiple myeloma (MM). Several reports have suggested that syndecan-1 was present only on a part of the myeloma cells. By using either IL-6-dependent myeloma cell lines or primary myeloma cells stained by annexin V, we report here that syndecan-1 was rapidly lost by myeloma cells undergoing apoptosis. In the same experimental conditions, expression of other cell membrane antigens such as CD38, HLA class-I or CD49d on apoptotic myeloma cells was not affected. In addition, we show that syndecan-1 loss was independent of activation of the gp130 IL-6 transducer. Dexamethasone induced a strong apoptosis of myeloma cells associated with the loss of syndecan-1. Finally, by using freshly-explanted tumoural samples, we show that syndecan-1 rapidly disappeared from myeloma cells in association with induction of apoptosis. In conclusion we showed that syndecan-1 is a marker for viable myeloma cells which is rapidly lost by apoptotic cells. These results emphasize the usefulness of anti-syndecan-1 antibodies to purge tumoural cells from haemopoietic grafts or to purify these cells for further manipulations for immuno or gene therapies.  相似文献   

6.
Interleukin-6 (IL-6) is a multifunctional cytokine postulated to play a central role as a growth factor for multiple myeloma (MM). We evaluated the spontaneous secretion of IL-6 in supernatants of Ficoll-Hypaque-- enriched bone marrow (BM) cultures from 35 patients with MM. The levels of IL-6 were correlated with biological and clinical characteristics of the disease. High levels of IL-6 production defined a subgroup of patients with low tumor burden as determined by lower serum beta 2- microglobulin (B2M) (P = .02) and lower percentage of myeloma cells infiltrating the bone marrow (P = .003), higher synthetic rates of monoclonal protein (P = .006), and low proliferative compartments as measured by the percentage of Ki-67--positive myeloma cells. Patients with high proliferative fractions (Ki-67--positive myeloma cells > 20%) had significantly lower levels of IL-6 when compared with patients with low proliferative fractions (P = .005). Our findings do not support IL- 6 as a major growth factor for MM, but demonstrate an association of high levels of IL-6 secretion with low tumor cell burden and low proliferative fraction.  相似文献   

7.
At clinical presentation, multiple myeloma (MM) is already a well-established disease. The processes involved in earlier stages are, however, unknown. Here the 5T2MM murine model was used to analyze differentiation, proliferation, invasion, and apoptosis of MM cells during disease progression. Naive mice were injected with 5T2MM cells and from the onset of the experiment 3 mice were killed each week until the end stage. Myeloma cells were isolated from the bone marrow and selected by sequential gating of 5T2MM idiotype(+) cells by flow cytometry. Microscopic analysis of these sorted 5T2MM idiotype(+) cells confirmed their identity as true myeloma cells. Based on serum paraprotein concentration and bone marrow tumor load, 3 disease stages were distinguished: a quiescent stage, an intermediate stage, and an end stage, of slow, moderate, and accelerated tumor progression, respectively. In the quiescent stage, the majority of the myeloma cells were CD45(+)CD138(-)IL-6R alpha(+), corresponding to an immature, invasive, and apoptosis-resistant phenotype. In the end stage the majority of the myeloma cells had differentiated into CD45(-)CD138(+)IL-6R alpha(-) cells, corresponding to a mature, less invasive, and apoptosis-sensitive phenotype. In the intermediate stage a gradual transition from the quiescent toward the end stage was observed. In line with these data, analysis of sorted 5T2MM cells demonstrated a significant decrease in invasive capacity and a significant increase in (dexamethasone-induced) apoptosis sensitivity and in proliferation during the disease progression. These data suggest that myeloma disease progression is a multistage and dynamic process of differentiation, proliferation, invasion, and apoptosis.  相似文献   

8.
9.
Interleukin-6 (IL-6) mediates autocrine and paracrine growth of multiple myeloma (MM) cells and inhibits tumor cell apoptosis. Abnormalities of retinoblastoma protein (pRB) and mutations of RB gene have been reported in up to 70% of MM patients and 80% of MM-derived cell lines. Because dephosphorylated (activated) pRB blocks transition from G1 to S phase of the cell cycle whereas phosphorylated (inactivated) pRB releases this growth arrest, we characterized the role of pRB in IL-6-mediated MM cell growth. Both phosphorylated and dephosphorylated pRB were expressed in all serum-starved MM patient cells and MM-derived cell lines, but pRB was predominantly in its phosphorylated form. In MM cells that proliferated in response to IL-6, exogenous IL-6 downregulated dephosphorylated pRB and decreased dephosphorylated pRB-E2F complexes. Importantly, culture of MM cells with RB antisense, but not RB sense, oligonucleotide (ODN) triggered IL- 6 secretion and proliferation in MM cells; however, proliferation was only partially inhibited by neutralizing anti-IL-6 monoclonal antibody (MoAb). In contrast to MM cells, normal splenic B cells express dephosphorylated pRB. Although CD40 ligand (CD40L) triggers a shift from dephosphorylated to phosphorylated pRB and proliferation of B cells, the addition of exogenous IL-6 to CD40L-treated B cells does not alter either pRB or proliferation, as observed in MM cells. These results suggest that phosphorylated pRB is constitutively expressed in MM cells and that IL-6 further shifts pRB from its dephosphorylated to its phosphorylated form, thereby promoting MM cell growth via two mechanisms; by decreasing the amount of E2F bound by dephosphorylated pRB due to reduced dephosphorylated pRB, thereby releasing growth arrest; and by upregulating IL-6 secretion by MM cells and related IL-6- mediated autocrine tumor cell growth.  相似文献   

10.
Silvestris F  Tucci M  Cafforio P  Dammacco F 《Blood》2001,97(5):1155-1164
Highly malignant myeloma cells up-regulate their Fas-ligand (Fas-L) to escape immune surveillance by Fas(+) cytotoxic cells. Here it is demonstrated that this abnormality is involved in the pathogenesis of the severe anemia associated with progression of multiple myeloma (MM). By measuring Fas and Fas-L in plasma cells and erythroblasts from 19 MM patients and 5 with monoclonal gammopathies of undetermined significance (MGUS), it was found that both Fas-L(+) myeloma cells and Fas(+) erythroid progenitors were significantly increased in patients with stage III MM whose erythroblasts, cultured in the presence of autologous plasma cells or their supernatant, underwent prompt apoptosis as evaluated by propidium iodide staining, the TUNEL assay, and detection of the APO2.7-reactive mitochondrial antigen. Flow cytometry of fresh erythroblasts revealed a considerable expression of the caspases CPP32 and FLICE in both their constitutive proenzymatic forms and in cleaved subunits. By contrast, their intracytoplasmic expression was defective in patients with inactive disease and MGUS controls. The evidence that Fas-L(+) myeloma clones directly prime erythroblast apoptosis in vivo was further supported by the occurrence of fluorescein isothiocyanate-TUNEL(+) erythroblasts juxtaposed to myeloma cells in bone marrow smears. These results strongly suggest that the deregulated apoptosis in myeloma clones plays an active role in the progressive destruction of the erythroid matrix by a cytotoxic mechanism based on up-regulation of Fas-L.  相似文献   

11.
Long-term bone marrow cultures (LTBMC) from patients with multiple myeloma (MM) and normal donors were analyzed for immunophenotype and cytokine production. Both LTBMC adherent cells from myeloma and normal donor origin expressed CD10, CD13, the adhesion molecules CD44, CD54, vascular cell adhesion molecule 1, very late antigen 2 (VLA-2), and VLA- 5, and were positive for extracellular matrix components fibronectin, laminin, and collagen types 3 and 4. LTBMC from myeloma patients and normal donors spontaneously secreted interleukin-6 (IL-6). However, levels of IL-6 correlated with the stage of disease; highest levels of IL-6 were found in LTBMC from patients with active myeloma. To identify the origin of IL-6 production, LTBMC from MM patients and normal donors were cocultured with BM-derived myeloma cells and cells from myeloma cell lines. IL-6 was induced by plasma cell lines that adhered to LTBMC such as ARH-77 and RPMI-8226, but not by nonadhering cell lines U266 and FRAVEL. Myeloma cells strongly stimulated IL-6 secretion in cocultures with LTBMC adherent cells from normal donors and myeloma patients. When direct cellular contact between LTBMC and plasma cells was prevented by tissue-culture inserts, no IL-6 production was induced. This implies that intimate cell-cell contact is a prerequisite for IL-6 induction. Binding of purified myeloma cells to LTBMC adherent cells was partly inhibited by monoclonal antibodies against adhesion molecules VLA-4, CD44, and lymphocyte function-associated antigen 1 (LFA-1) present on the plasma cell. Antibodies against VLA-4, CD29, and LFA-1 also inhibited the induced IL-6 secretion in plasma cell-LTBMC cocultures. In situ hybridization studies performed before and after coculture with plasma cells indicated that LTBMC adherent cells produce the IL-6. These results suggest that the high levels of IL-6 found in LTBMC of MM patients with active disease are a reflection of their previous contact with tumor cells in vivo. These results provide a new perspective on tumor growth in MM and emphasize the importance of plasma cell-LTBMC interaction in the pathophysiology of MM.  相似文献   

12.
13.
14.
Interleukin-6 (IL-6) is an important growth factor for human myeloma cells in vitro and in vivo . However, the identity of the cells producing IL-6 in vivo in patients with multiple myeloma (MM) remains the subject of debate. We have developed a sensitive dual-colour fluorescence in situ hybridization (FISH) technique to investigate the expression of IL-6 mRNA by individual bone marrow plasma cells from patients with multiple myeloma, monoclonal gammopathy of undetermined significance (MGUS) and healthy subjects. IL-6 mRNA could be identified in all immunoglobulin light chain (IgLC) expressing cells from all patients with MM and MGUS. The IL-6 protein could also be detected by direct immunofluorescence in all plasma cells (cytoplasmic light chain positive) from all patients with MM and MGUS. Furthermore, it was also possible to demonstrate cytoplasmic IL-6 staining of plasma cells from patients with MM by flow cytometric analysis. In contrast, neither the IL-6 mRNA or protein could be detected in normal plasma cells from healthy bone marrow donors. These data demonstrate that plasma cells from patients with MM and MGUS express the IL-6 mRNA and synthesize the IL-6 protein and support the hypothesis that autocrine synthesis of IL-6 is of importance in patients with MM.  相似文献   

15.
Summary Functioning as a B-cell growth and differentiation factor, interleukin-6 (IL-6) may play an important role in the pathophysiology of B-cell tumors. The capacity for IL-6 secretion was evaluated in 58 patients with various B-cell leukemias/lymphomas and in four patients with Castleman's disease (CMD). Cell populations from various sites including peripheral blood, bone marrow, lymph nodes, and osteolytic bone lesions were cultured and tested for spontaneous or IL-1/ TNF-induced IL-6 production in a sensitive bioassay. No significant IL-6 levels were released by the tumor cells in any of the B-cell leukemias or lymphomas tested, including hairy cell leukemia (HCL) and B-cell chronic lymphocytic leukemia (B-CLL). In contrast, purified malignant plasma cells were found to secrete IL-6, strengthening the idea that an autocrine pathway for growth regulation in multiple myeloma (MM) exists. For the first time, in several patients with CMD, peripheral blood cells were shown to produce extremely high levels of IL-6, the pathogenetic significance of which remains to be elucidated. However, similar observations were very occasionally made in MM patients. Therapy with corticosteroids strongly inhibited this IL-6 production. These data provide evidence for autocrine and possibly an additional paracrine regulatory loop in plasma cell neoplasias and CMD.  相似文献   

16.
Vascular endothelial growth factor (VEGF), a multifunctional cytokine, potently stimulates angiogenesis including tumor neovascularization. Although well established in solid tumors, the role of VEGF in bone marrow neoangiogenesis and paracrine tumor-stromal cell interactions in lymphohematopoietic malignancies has not been fully elucidated. In multiple myeloma (MM), marrow neovascularization parallels disease progression. This parallel prompted us to investigate the expression and secretion of VEGF by myeloma cells and its potential effects in myeloma-marrow stroma interactions. The biologically active splice variants VEGF165 and VEGF121 were expressed and secreted by myeloma cell lines and plasma cells isolated from the marrow of patients with MM. As shown by immunocytochemistry or RT-PCR, myeloma cells did not express or weakly expressed the VEGF receptors FLT-1 and FLK-1/KDR, indicating that autocrine stimulation is unlikely. In contrast, FLK-1/KDR was abundantly expressed by marrow stromal cells. Therefore, we studied the effects of VEGF on marrow stroma, focusing on the secretion of interleukin-6 (IL-6), a potent growth factor for myeloma cells and an inhibitor of plasma cell apoptosis. Exposure of stromal and microvascular endothelial cells to recombinant human (rh) VEGF165 or VEGF121 induced a time- and dose-dependent increase in IL-6 secretion (14- to 27-fold at 50 ng/mL after 24 hours, P <.001). Conversely, rhIL-6 stimulated VEGF expression and secretion in myeloma cell lines (40%-60%; P <.05) and to a variable degree (up to 5.3-fold; P <.005) in plasma cells purified from the marrow of patients with MM. This mutual stimulation suggests paracrine interactions between myeloma and marrow stromal cells triggered by VEGF and IL-6. (Blood. 2000;95:2630-2636)  相似文献   

17.
18.
The proliferative rate of malignant plasma cells, as measured by the plasma cell labelling index (PCLI), is an important prognostic factor in multiple myeloma (MM); however, the PCLI alone is probably Inadequate to describe tumour growth because it ignores the idea that myeloma cells may have a reduced rate of apoptosis. The aims of this study were to develop a flow cytometric method to measure the apoptosis index of fresh marrow plasma cells and develop a plasma cell growth index (PCGI) that related both proliferation and apoptosis to disease activity. Marrow aspirates were obtained from 91 patients with plasma cell disorders and the plasma cells in apoptosis were identified by either 7-amino actinomycin-D (7-AAD) or annexin V-FITC three-colour flow cytometry. The median plasma cell apoptotic index (PCAI) for patients with monoclonal gammopathy of undetermined significance (MGUS), smouldering or indolent myeloma (SMM/IMM), and new multiple myeloma (MM) was 5.2, 3.4 and 2.4, respectively (P=0.03, MGUS v MM). The median PCLI for these same patient groups was 0.0, 0.2 and 0.6, respectively (P<0.001, MGUS v MM). The paired PCLI and PCAI for each sample were used to derive the PCGI=2 + [PCLI-(O.1)(PCAI)]. The median PCGI for patients with inactive disease (MGUS, SMM/IMM or amyloidosis) was 1.8 compared to 2.4 for those with active disease (new or relapsed MM) (P<0.001). These results suggest that a decrease in the PCAI may be a factor in the progression from MGUS to SMM to overt MM.  相似文献   

19.
20.
The NOTCH ligand, JAG2, was found to be overexpressed in malignant plasma cells from multiple myeloma (MM) patients and cell lines but not in nonmalignant plasma cells from tonsils, bone marrow from healthy individuals, or patients with other malignancies. In addition, JAG2 overexpression was detected in 5 of 5 patients with monoclonal gammopathy of undetermined significance (MGUS), an early phase of myeloma disease progression. This overexpression appears to be a consequence of hypomethylation of the JAG2 promoter in malignant plasma cells. An in vitro coculture assay was used to demonstrate that JAG2 induced the secretion of interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and insulin-like growth factor-1 (IGF-1) in stromal cells. Further, the induction of IL-6 secretion was blocked in vitro by interference with anti-Notch-1 monoclonal antibodies raised against the binding sequence of Notch-1 with JAG2. Taken together, these results indicate that JAG2 overexpression may be an early event in the pathogenesis of multiple myeloma involving IL-6 production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号