首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The vestibular nuclear complex (VNC) is classically divided into four nuclei on the basis of cytoarchitectonics. However, anatomical data on the distribution of afferents to the VNC and the distribution of cells of origin of different efferent pathways suggest a more complex internal organization. Immunoreactivity for calcium-binding proteins has proven useful in many areas of the brain for revealing structure not visible with cell, fiber or Golgi stains. We have looked at the VNC of the cat using immunoreactivity for the calcium-binding proteins calbindin, calretinin and parvalbumin. Immunoreactivity for calretinin revealed a small, intensely stained region of cell bodies and processes just beneath the fourth ventricle in the medial vestibular nucleus. A presumably homologous region has been described in rodents. The calretinin-immunoreactive cells in this region were also immunoreactive for choline acetyltransferase. Evidence from other studies suggests that the calretinin region contributes to pathways involved in eye movement modulation but not generation. There were focal dense regions of fibers immunoreactive to calbindin in the medial and inferior nuclei, with an especially dense region of label at the border of the medial nucleus and the nucleus prepositus hypoglossi. There is anatomical evidence that suggests that the likely source of these calbindin-immunoreactive fibers is the flocculus of the cerebellum. The distribution of calbindin-immunoreactive fibers in the lateral and superior nuclei was much more uniform. Immunoreactivity to parvalbumin was widespread in fibers distributed throughout the VNC. The results suggest that neurochemical techniques may help to reveal the internal complexity in VNC organization.  相似文献   

2.
The cytoarchitecture and immunocytochemical distribution of neuropeptides (corticotropin-releasing factor, CRF; neuropeptide Y, NPY; oxytocin, OXY; vasopressin, VP; and vasoactive intestinal polypeptide, VIP) were studied in the hypothalamic suprachiasmatic nuclei (SCN) in male and female ground squirrels of two species (Spermophilus tridecemlineatus and S. richardsonii). Immunoreactive (IR) perikarya were found in sections incubated with VP or VIP antisera. VP-IR cell bodies were seen in the dorsal and medial parts of the nucleus in colchicine-treated animals. IR fibers were distributed throughout the SCN. In the ventral part of the nucleus, VIP-IR cells were seen in untreated animals and were more pronounced in colchicine-treated animals. VIP-IR fibers and terminals form a dense plexus throughout the nucleus. Furthermore, NPY-IR terminals and fibers with multiple varicosities, but no IR perikarya, were present in the suprachiasmatic nuclei. Within the borders of the SCN, no cell bodies or fibers were stained with CRF or OXY antisera in any animal.  相似文献   

3.
Vasoactive intestinal peptide (VIP) expression was studied during rat brain development using in situ hybridization histochemistry with a 48mer, S35-ATP-labeled probe. First expression of VIP was found in the lateral thalamus at E17, in a region later recognized as the reticular nucleus. At E19, VIP mRNA was also found in the hypothalamus, especially the suprachiasmatic nucleus. The only other prenatal localizations were the cortex and the brainstem. VIP expression continously matured during the first three postnatal weeks, and adultlike patterns were found at P22, when cerebral cortex, ventrolateral and reticular thalamic nuclei, suprachiasmatic nucleus were the regions with most prominent VIP expression. These results demonstrate the relatively late appearance of VIP gene expression in the rat forebrain as compared with peptides like SRIF and CCK, suggesting it does not have a major role in early brain maturation.  相似文献   

4.
N Goel  T M Lee  L Smale 《Neuroscience》1999,92(4):1491-1509
The neural connections and neurotransmitter content of the suprachiasmatic nucleus and intergeniculate leaflet have been characterized thoroughly in only a few mammalian species, primarily nocturnal rodents. Few data are available about the neural circadian timing system in diurnal mammals, particularly those for which the formal characteristics of circadian rhythms have been investigated. This paper describes the circadian timing system in the diurnal rodent Octodon degus, a species that manifests robust circadian responses to photic and non-photic (social) zeitgebers. Specifically, this report details: (i) the distribution of six neurotransmitters commonly found in the suprachiasmatic nucleus and intergeniculate leaflet; (ii) the retinohypothalamic tract; (iii) the geniculohypothalamic tract; and (iv) retinogeniculate projections in O. degus. Using immunocytochemistry, neuropeptide Y-immunoreactive, serotonin-immunoreactive and [Met]enkephalin-immunoreactive fibers and terminals were detected in and around the suprachiasmatic nucleus; vasopressin-immunoreactive cell bodies were found in the dorsomedial and ventral suprachiasmatic nucleus; vasoactive intestinal polypeptide-immunoreactive cell bodies were located in the ventral suprachiasmatic nucleus; [Met]enkephalin-immunoreactive cells were located sparsely throughout the suprachiasmatic nucleus; and substance P-immunoreactive fibers and terminals were detected in the rostral suprachiasmatic nucleus and surrounding the nucleus throughout its rostrocaudal dimension. Neuropeptide Y-immunoreactive and [Met]enkephalin-immunoreactive cells were identified in the intergeniculate leaflet and ventral lateral geniculate nucleus, as were neuropeptide Y-immunoreactive, [Met]enkephalin-immunoreactive, serotonin-immunoreactive and substance P-immunoreactive fibers and terminals. The retinohypothalamic tract innervated both suprachiasmatic nuclei equally; in contrast, retinal innervation to the lateral geniculate nucleus, including the intergeniculate leaflet, was almost exclusively contralateral. Bilateral electrolytic lesions that destroyed the intergeniculate leaflet depleted the suprachiasmatic nucleus of virtually all neuropeptide Y- and [Met]enkephalin-stained fibers and terminals, whereas unilateral lesions reduced fiber and terminal staining by approximately half. Thus, [Met]enkephalin-immunoreactive and neuropeptide Y-immunoreactive cells project equally and bilaterally from the intergeniculate leaflet to the suprachiasmatic nucleus via the geniculohypothalamic tract in degus. This is the first report examining the neural circadian system in a diurnal rodent for which formal circadian properties have been described. The data indicate that the neural organization of the circadian timing system in degus resembles that of the most commonly studied nocturnal rodents, golden hamsters and rats. Armed with such data, one can ascertain differences in the functional organization of the circadian system between diurnal and nocturnal mammals.  相似文献   

5.
Mahoney MM  Nunez AA  Smale L 《Neuroscience》2000,99(3):565-575
The suprachiasmatic nucleus is the site of the primary circadian pacemaker in mammals. The lower sub paraventricular zone that is dorsal to and receives input from the suprachiasmatic nucleus may also play a role in the regulation of circadian rhythms. Calbindin has been described in the suprachiasmatic nucleus of some mammals, and may be important in the control of endogenous rhythms. In the first study we characterized calbindin-expressing cells in the suprachiasmatic nucleus and lower sub-paraventricular zone of nocturnal and diurnal rodents. Specifically, Rattus norvegicus was compared to Arvicanthis niloticus, a primarily diurnal species within which some individuals exhibit nocturnal patterns of wheel running. Calbindin-immunoreactive cells were present in the suprachiasmatic nucleus of Arvicanthis and were most concentrated within its central region but were relatively sparse in the suprachiasmatic nucleus of Rattus. Calbindin-expressing cells were present in the lower sub-paraventricular zone of both species. In the second study we evaluated Fos expression within calbindin-immunoreactive cells in nocturnal Rattus and in Arvicanthis that were either diurnal or nocturnal with respect to wheel-running. All animals were kept on a 12:12 light/dark cycle and perfused at either 4h after lights-on or 4h after lights-off. In the suprachiasmatic nucleus in both species, Fos expression was elevated during the day relative to the night but less than 1% of calbindin cells contained Fos in Arvicanthis, compared with 13-17% in Rattus. In the lower sub-paraventricular zone of both species, 9-14% of calbindin cells expressed Fos, and this proportion did not change as a function of time. Among Arvicanthis, the number of calbindin expressing neurons in the lower sub-paraventricular zone was influenced by an interaction between the wheel running patterns (nocturnal vs diurnal) and time of day. Thus, the number of calbindin-positive cells within the suprachiasmatic nucleus differed in Arvicanthis and Rattus, whereas the number of calbindin-positive cells within the lower sub-paraventricular zone differed in nocturnal and diurnal Arvicanthis.Our examination of R. norvegicus and A. niloticus suggests potentially important relationships between calbindin-containing neurons and whether animals are nocturnal or diurnal. Specifically, rats had more Fos expression in calbindin containing cells in the suprachiasmatic nucleus than Arvicanthis. In contrast, Arvicanthis exhibiting diurnal and nocturnal patterns of wheel-running differed in the number of calbindin-containing cells in the lower sub-paraventricular zone, dorsal to the suprachiasmatic nucleus.  相似文献   

6.
The normal anatomy of the three cochlear nuclei in the hen, the nucleus laminaris, the nucleus angularis and the nucleus magnocellularis is described. Following lesions of the cochlear nerve, all three nuclei are shown to receive primary cochlear fibers (silver impregnation methods). The part of nucleus laminaris which consists of a ventral convex sheet of cells is shown to receive cochlear nerve fibers from both ears, the nerve fibers from the ipsilateral ear terminating dorsal to the cell sheet while contralateral nerve fibers terminate ventral to the nerve cells. The cochlear ganglion cells projecting to the nucleus laminaris are apparently situated in other parts of the ganglion that the cells projecting to the nucleus angularis and magnocellularis. The findings are discussed in the light of known data on the organization and function of the cochlear nuclei in birds.  相似文献   

7.
Previous anatomic and electrophysiological evidence suggests that serotonin modulates processing in the vestibular nuclei. This study examined the organization of projections from serotonergic raphe nuclei to the vestibular nuclei in rats. The distribution of serotonergic axons in the vestibular nuclei was visualized immunohistochemically in rat brain slices using antisera directed against the serotonin transporter. The density of serotonin transporter-immunopositive fibers is greatest in the superior vestibular nucleus and the medial vestibular nucleus, especially along the border of the fourth ventricle; it declines in more lateral and caudal regions of the vestibular nuclear complex. After unilateral iontophoretic injections of Fluoro-Gold into the vestibular nuclei, retrogradely labeled neurons were found in the dorsal raphe nucleus (including the dorsomedial, ventromedial and lateral subdivisions) and nucleus raphe obscurus, and to a minor extent in nucleus raphe pallidus and nucleus raphe magnus. The combination of retrograde tracing with serotonin immunohistofluorescence in additional experiments revealed that the vestibular nuclei receive both serotonergic and non-serotonergic projections from raphe nuclei. Tracer injections in densely innervated regions (especially the medial and superior vestibular nuclei) were associated with the largest numbers of Fluoro-Gold-labeled cells. Differences were observed in the termination patterns of projections from the individual raphe nuclei. Thus, the dorsal raphe nucleus sends projections that terminate predominantly in the rostral and medial aspects of the vestibular nuclear complex, while nucleus raphe obscurus projects relatively uniformly throughout the vestibular nuclei. Based on the topographical organization of raphe input to the vestibular nuclei, it appears that dense projections from raphe nuclei are colocalized with terminal fields of flocculo-nodular lobe and uvula Purkinje cells. It is hypothesized that raphe-vestibular connections are organized to selectively modulate processing in regions of the vestibular nuclear complex that receive input from specific cerebellar zones. This represents a potential mechanism whereby motor activity and behavioral arousal could influence the activity of cerebellovestibular circuits.  相似文献   

8.
大鼠扣带皮质各区的传入联系   总被引:6,自引:0,他引:6  
用HRP-TMB逆行追踪法研究了扣带皮质各区的传入联系。结果表明扣带各区间存在着纤维联系,与新、旧及中间皮质有联系,与皮质下结构间存在着较广泛的联系。扣带皮质前、后部的传入显著不同,例如与痛及抗痛反应有关的丘脑束旁核、尾状核、隔外侧核及中缝背核等主要与其前部相联系。此外,还观察到目前尚未见之报道的丘脑带旁核、梨状皮质及内嗅皮质投射到25区,脚间核投射到32和24区,隔外侧核投射到24区,斜角带核投射到扣带皮质的5个区域。关于脚间核和隔外侧核向扣带皮质的投射与本研究室脚间核、隔外侧核传出研究所见一致。  相似文献   

9.
The distribution of the calcium-binding protein, calretinin, in the thalamus of the squirrel monkey (Saimiri sciureus) was studied with immunohistochemical methods. Calretinin was found to be heterogeneously distributed in the primate thalamus and to occur only in specific neuronal populations of certain thalamic nuclei. Neuronal cells and fibers in midline nuclei and their dorsolateral extension, which includes the parataenial and central superior lateral nuclei, displayed the most intense calretinin immunoreactivity. The immunoreactivity for cells and fibers in the intralaminar nuclei was moderate rostrally but very weak caudally. The centre médian nucleus, together with the medial habenular nucleus, were virtually devoid of calretinin immunostaining. The mediodorsal nucleus displayed a markedly heterogeneous staining, with numerous clusters of labeled cells and fibers in its central parvicellular part. Cell and fiber immunoreactivity ranged from moderate to high in the nuclei of the anterior and lateral groups, but was very weak in the nuclei of the ventral and posterior groups. There was a small to moderate number of heterogeneously distributed calretinin-immunoreactive cells and fibers in the lateral and medial geniculate bodies, as well as in the reticular nucleus. The present study provides the first evidence for the existence of calretinin in primate thalamus, where this protein is distributed according to a highly heterogeneous pattern. This specific pattern of distribution suggests that calretinin may play a role that is complementary to those of the other calcium-binding proteins parvalbumin and calbindin D-28k in the thalamus of primates.  相似文献   

10.
Cholecystokinin (CCK) and substance P (SP) are thought to play an important role in a variety of stress responses. Both CCK- and SP-positive fibers innervating the thalamus are found principally in the midline nuclei, including the paraventricular thalamic nucleus (PVT), which has strong reciprocal connections with the medial prefrontal cortex. In the present study, we determined the source of the CCK- and SP-immunoreactive fibers to the PVT, employing combination of retrograde neuronal tracing and immunohistochemistry in the rat. The PVT-projecting neurons showing CCK immunoreactivity were detected in the dorsomedial nucleus of the hypothalamus, and ventral mesencephalic periaqueductal gray, including the Edinger-Westphal nucleus and the dorsal raphe nucleus. Sources of SP afferents to the PVT were detected in the Edinger-Westphal nucleus, the mesopontine tegmentum and the medullary raphe nucleus. CCK- and SP-immunoreactive fibers may exert modulatory influence on the prefrontal cortical activity via the PVT and regulate behavioral components of stress-adaptation responses.  相似文献   

11.
R C Maxwell  G Fink 《Neuroscience》1988,24(1):265-274
The [14C]2-deoxyglucose method was used to investigate the role of the ventrolateral geniculate and raphe nuclei in the control of the metabolism of the suprachiasmatic nuclei in adult female Wistar rats anaesthetized with alphaxalone. Three to seven days before the [14C]2-deoxyglucose studies a stimulating electrode was implanted or a lesion was made in the ventrolateral geniculate nucleus, or the ascending projection from the raphe nuclei was severed. Stimulation of the ventrolateral geniculate nucleus (biphasic rectangular pulses, 30 s on and 30 s off, 50 Hz, 500 microA pulse amplitude and 1 ms pulse duration) led to a significant increase in the relative metabolic activity of the ipsilateral suprachiasmatic nucleus and a smaller increase in the relative metabolic activity of the contralateral suprachiasmatic nucleus. The stimulus also increased significantly the relative metabolic activities of mainly the ipsilateral hypothalamus, midbrain central gray and reticular formation, all of which are too remote from the ventrolateral geniculate nucleus to be affected by current spread. In animals in which the ventrolateral geniculate nucleus had been lesioned, the relative metabolic activity of the suprachiasmatic nuclei was not significantly different from normal. In animals in which the ascending projection from the raphe nuclei had been severed, there was a slight, though significant increase in the relative metabolic activity of the suprachiasmatic nucleus of one side. These results, together with the effects of stimulating the suprachiasmatic nuclei [R. C. Maxwell and G. Fink, Neuroscience 23, 241-263 (1987)], show that the connections between the ventrolateral geniculate, raphe nuclei and suprachiasmatic nuclei are "metabolically functional", but that the integrity of the ventrolateral geniculate nucleus is not essential for maintaining the relative metabolic activity of the suprachiasmatic nuclei. The raphe nuclei may reduce the relative metabolic activity of the suprachiasmatic nucleus.  相似文献   

12.
The distribution of cell bodies and nerve fibers that combine with antisera to vasoactive intestinal polypeptide (VIP) was studied by immunohistochemistry in combination with radioimmunoassay in the brain of rat and mouse. The highest concentrations (60pmol/g wet wt) of immuno-reactive VIP were found in the cerebral cortex and in certain limbic structures, whereas the concentrations in the basal ganglia, thalamus, lower brain stem, cerebellum and spinal cord were low (<15pmol/g). VIP-immunoreactive cell bodies were found mainly in the cerebral cortex and the limbic system, with the great majority of them in neo- and allocortical areas. In the neocortex the VIP-containing cell bodies were found in layers II-V in all areas. The cells were fusiform or stellate shaped, resembling intracortical and corticocortical association neurones. In the pyriform and entorhinal cortex the cell bodies were located mainly in layer II. In the hippocampal complex VIP-containing cell bodies occurred in both the subiculum, areas CA1 and CA3 and the dentate gyrus. Most of the cells had the appearance of interneurones, some of them probably being identical with basket cells. Of subcortical areas, the amygdala had the largest number of VIP-containing cell bodies; they were numerous in all amygdaloid nuclei except in the central nucleus. Non-cortical areas where there were cell bodies containing VIP included the anterior olfactory nuclei, the bed nucleus of stria terminalis, lateral septum, suprachiasmatic nucleus, superior colliculus, and the mesencephalic periaqueductal gray.VIP-immunoreactive fibres had a distribution which on the whole paralleled that of the cell bodies, suggesting that many of the VIP-containing cells project locally. VIP-containing fibres were numerous in the following areas: the entire neocortex, the pyrifom cortex, the entorhinal cortex, the hippocampal complex, the amygdala (the central nucleus in particular), the anterior olfactory nuclei, the nucleus accumbens, ventral pallidum, bed nucleus of stria terminalis, suprachiasmatic nucleus, medial preoptic nucleus, median eminence, lateral geniculate body, pretectum, superior colliculus, periaqueductal gray, and the lateral parabrachial nucleus. Only few, scattered fibres were seen in other parts of the brain stem, in the striatum, thalamus and spinal cord. The cerebellum was devoid of VIP-containing fibres. VIP-containing neurones seem to form predominantly local projections. In addition, some VIP-containing neurones probably also form long projections, such as descending and transcallosal projections from the cortical cells, and projections from the amygdala to preoptic, hypothalamic and basal forebrain areas.The characteristic telencephalic distribution of the neurones that contain VIP suggests a role for this peptide in cortical and limbic functions.  相似文献   

13.
Axonal connections between the amygdala and the hypothalamic paraventricular nucleus were examined by combined anterograde-retrograde tract tracing. Iontophoretic injections of the retrograde tracer Fluorogold were placed in the paraventricular nucleus, and the anterograde tracer PHA-L in the ipsilateral central or medial amygdaloid nuclei. Single and double-label immunohistochemistry were used to detect tracers. Single label anterograde and retrograde tracing suggest limited evidence for direct connections between the central or medial amygdala and the paraventricular nucleus. In general, scattered PHA-L-positive terminals were seen in autonomic subdivisions of the paraventricular nucleus (lateral parvocellular, dorsal parvocellular and ventral medial parvocellular subnuclei) following central or medial amygdaloid nulcleus injection. Double-label studies indicate that central and medial amygdaloid nucleus efferents contact paraventricular nucleus -projecting cells in several forebrain nuclei. In the case of central nucleus injections, PHA-L positive fibers occasionally contacted Fluorogold-labeled neurons in the anteromedial, ventromedial and preoptic subnuclei of the bed nucleus of the stria terminalis. Overall, such contacts were quite rare, and did not occur in the bed nucleus of the stria terminalis regions showing greatest innervation by the central amygdaloid nucleus. In contrast, medial amygdala injections resulted in a significantly greater overlap of PHA-L labeling and Fluorogold-labeled neurons, with axosomatic appositions observed in medial divisions of the bed nucleus of the stria terminalis, anterior hypothalamic area and preoptic area. The results provide anatomical evidence that a substantial proportion of amygdaloid connections with hypophysiotrophic paraventricular nucleus neurons are likely multisynaptic, relaying in different subregions of the bed nucleus of the stria terminalis and hypothalamus.  相似文献   

14.
15.
Hypothalamus of the human fetus   总被引:3,自引:0,他引:3  
The organization of the human hypothalamus was studied in 31 brains aged from 9 weeks of gestation (w.g.) to newborn, using immunohistochemistry for parvalbumin, calbindin, calretinin, neuropeptideY, neurophysin, growth associated protein GAP43, synaptophysin and glycoconjugate, 3-fucosyl-N-acetyl-lactosamine. Morphogenetic periods 9–10 and 11–14 w.g. are characterized by differentiating structures of the lateral hypothalamic zone, which give rise to the lateral hypothalamus (LH) and posterior hypothalamus. The perifornical nucleus differentiates at 18 w.g., from LH neurons which remain anchored in the perifornical position while most of the LH cells are displaced laterally. A transient supramamillary nucleus was apparent at 14 w.g. but not after 16 w.g. As the ventromedial nucleus differentiated at 13–16 w.g., three principal parts; the ventrolateral, the dorsomedial and the shell were revealed by distribution of calbindin, calretinin and GAP43 immunoreactivity. Morphogenetic periods 15–17, 18–23 and 24–33 w.g. are characterized by differentiation of the hypothalamic core, in which calbindin positive neurons revealed the medial preoptic nucleus at 16 w.g. abutted laterally by the intermediate nucleus. The dorsomedial nucleus was clearly defined at 10 w.g. and consisted of compact and diffuse parts, an organization that was lost after 15 w.g. Differentiation of the medial mamillary body into lateral and medial was seen at 13–16 w.g. Morphogenetic period after 34 w.g. was marked by differentiation of midline zone structures including suprachiasmatic, arcuate and paraventricular nuclei. The findings of the present study provide for a better understanding of the structural organization of the adult human hypothalamus, produce new evidence for homologies with the better studied rat hypothalamus and underpin staging system for fetal human hypothalamic development.  相似文献   

16.
曾少举  左明雪 《神经解剖学杂志》2001,17(2):166-170,T028
应用免疫组织化学和神经示踪方法 ,对脑啡肽在雌雄鸣禽白腰文鸟脑中发声调控核团中的分布差异 ,以及雌性白腰文鸟发声调控核团—古纹状体栎核的神经联系进行了研究。结果发现 :(1)雌雄白腰文鸟端脑发声调控核团上纹状体腹尾侧核、古纹状体栎核中存在脑啡肽能纤维分布 ,但脑啡肽能纤维在雄性的此二核内分布比较集中。在端脑的其它发声调控核团内 ,仅新纹状体前部外侧巨核有少量脑啡肽能细胞。在中脑及以下水平 ,脑啡肽分布在雌雄间无差别。 (2 )雌鸟古纹状体栎核和上纹状体腹尾侧核与中脑背内侧核之间仅存在弥散且较弱的神经联系 ,而与学习记忆相关的核团—新纹状体前部外侧巨核有较强的神经联系。(3 )中脑背内侧核与脑桥臂旁核、延髓上橄榄下核、延髓喙腹外侧核、舌下神经核气管鸣管部存在广泛联系 ,雌雄间未见差别。这些结果对深入认识鸟类雌雄间复杂的鸣叫行为差异提供了神经解剖学资料  相似文献   

17.
The suprachiasmatic nucleus, site of the dominant mammalian circadian clock, contains a variety of different neurons that tend to form groups within the nucleus. The present investigation used single and multiple label tract tracing and immunofluorescence methods to evaluate the relative locations of the neuron groups and to compare them with the distributions of the three major afferent projections, the retinohypothalamic tract, geniculohypothalamic tract and the serotonergic pathway from the median raphe nucleus. The suprachiasmatic nucleus has a complex order characterized by peptidergic cell groups (vasopressin, gastrin releasing peptide, vasoactive intestinal polypeptide, calbindin, calretinin, corticotrophin releasing factor and enkephalin) that, in most cases, substantially overlap. The retinohypothalamic tract projects bilaterally to virtually all the suprachiasmatic nucleus in both rat (predominantly contralateral) and mouse (symmetric) and its terminal field overlaps that for the geniculohypothalamic tract, but with distinctions visible according to density criteria; neither provides more than sparse innervation of the dorsomedial suprachiasmatic nucleus. In the mouse, the serotonergic terminal field is densest medially and ventrally, but is also distributed elsewhere with varying density. The serotonergic terminal plexus in the rat is densest centromedially and largely, but not completely, overlaps the complete distribution of retinal terminals with density much reduced in the lateral suprachiasmatic nucleus. The locations of vasopressin neurons, retinohypothalamic tract terminals and serotonergic (mouse, rat) or geniculohypothalamic tract (rat) provide evidence for three clear, but not exclusionary, sectors of the suprachiasmatic nucleus. The data, in conjunction with emerging knowledge concerning rhythmically dynamic changes in the size of regions of neuropeptide gene expression in suprachiasmatic nucleus cells, support the view that suprachiasmatic nucleus organization is more complex than a simple "core" and "shell" arrangement. While generalizations about suprachiasmatic nucleus organization can be made with respect to location of cell phenotypes or terminal fields, oversimplification may hinder, rather than facilitate, understanding of suprachiasmatic nucleus structure-function relationships.  相似文献   

18.
Summary Immunocytochemistry revealed that in the cat dorsal lateral geniculate nucleus (dLGN) almost all parvalbumin-positive cells are GABAergic and about 56% of the calbindin D-28K calbindin-immunoreactive neurons are also GABA-positive. On the other hand, in the same nucleus, almost all GABAergic neurons contain parvalbumin, and about 89% of the GABA-immunoreactive neurons contain calbindin. Double-labeling with calbindin and parvalbumin revealed that approximately 50% of the immunoreactive neurons are doublestained. In the PGN, virtually all neurons are GABA and parvalbuminpositive. Only a few scattered cells were also calbindin-immunoreactive. These results show that GABAergic geniculate cells can be differentiated on the basis of their calcium-binding protein immunoreactivity. Four types of immunoreactive cells are described here: (1) cells positive for GABA, parvalbumin and calbindin, (2) cells positive for GABA and parvalbumin, but negative for calbindin, (3) cells negative for GABA and parvalbumin, but positive for calbindin, (4) cells negative for GABA, parvalbumin and calbindin.  相似文献   

19.
Salusins are two newly discovered TOR-related peptides consisting of 28 and 20 amino acids and designated salusin-alpha and salusin-beta, respectively. Using immunohistochemistry techniques, salusin-like immunoreactivity was detected in the rat hypothalamo-neurohypophyseal tract and immunopositive cells were distributed in the suprachiasmatic, supraoptic and paraventricular nucleus. In the paraventricular nucleus, salusin-like immunoreactivity was observed both in parvocellular and magnocellular neurons. Many salusin-positive nerve fibers and their terminals were identified in the internal layer of the median eminence and posterior pituitary. Less intense salusin-positive staining of fibers and terminals was found in the suprachiasmatic nucleus and external layer of the median eminence. Dual immunostaining was performed to determine if salusin coexisted with vasopressin or oxytocin in the hypothalamus. Most of the salusin-like immunoreactivity was detected in vasopressin- but not in oxytocin-containing neurons in these nuclei. The functional significance of the coexistence of salusin with vasopressin is discussed, including the possibility that salusin participates in the regulation of blood pressure.  相似文献   

20.
VIP样神经元在大鼠丘脑下部的定位—PAP法研究   总被引:2,自引:0,他引:2  
本文用免疫组化PAP法,观察了经秋水仙碱预处理,在正午和午夜取材的大鼠丘脑下部血管活性肠多肽(vasoactiVe intestinal polypeptide, VIP)样神经元。为比较VIP神经元与加压素神经元的关系,对相应应部位的加压素神经元也做了免疫组化染色。结果,许多VIP样神经元形成密集的细胞群位于视交叉上核腹侧半,许多加压素样神经元形成的密集细胞群位于视交叉上核背内侧份。由于所在部位的不同,可以推测含VIP的神经元与含加压素的神经元不是同一种细胞。光镜下,对比正午和午夜取材的标本,看不出视交叉上核中含VIP的神经元有明显的差异。VIP样神经元也出理于前连合核,此发现尚未见报道。前连合核内含VIP的神经元与含加压素的神经元同样也似非同一种细胞。另外,在视上核内见到了VIP样神经纤维。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号