首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
2.
The molecular mechanism underlying circadian rhythmicity within the suprachiasmatic nuclei (SCN) of the hypothalamus has two light-sensitive components, namely the clock genes Per1 and Per2 . Besides, light induces the immediate-early gene c-fos . In adult rats, expression of all three genes is induced by light administered during the subjective night but not subjective day. The aim of the present study was to ascertain when and where within the SCN the photic sensitivity of Per1 , Per2 and c-fos develops during early postnatal ontogenesis. The specific aim was to find out when the circadian clock starts to gate photic sensitivity. The effect of a light pulse administered during either the subjective day or the first or second part of the subjective night on gene expression within the rat SCN was determined at postnatal days (P) 1, 3, 5 and 10. Per1 , Per2 and c-fos mRNA levels were assessed 30 min, 1 and 2 h after the start of each light pulse by in situ hybridization histochemistry. Expression of Per1 and c-fos was light responsive from P1, and the responses began to be gated by the circadian clock at P3 and P10, respectively. Expression of Per2 was only slightly light responsive at P3, and the response was not fully gated until P5. These data demonstrate that the light sensitivity of the circadian clock develops gradually during postnatal ontogenesis before the circadian clock starts to control the response. The photoinduction of the clock gene Per2 develops later than that of Per1 .  相似文献   

3.
The suprachiasmatic nuclei (SCN) of the hypothalamus are necessary for coordination of major aspects of circadian rhythmicity in mammals. Although the molecular clock mechanism of the SCN has been a field of intense research during the last decade, the role of the neuropeptides in the SCN, including arginine-vasopressin (AVP), vasoactive intestinal polypeptide (VIP) and gastrin-releasing peptide (GRP), in the clock itself or in circadian organization is still largely unknown. Previous studies mainly performed in the rat have examined the profiles of AVP, VIP and GRP mRNA and peptide levels and suggested that the AVP rhythm is controlled by the circadian clock, whereas those of VIP and GRP are directly dependent on lighting conditions. Here, both daily (i.e., under light-dark cycle [LD]) and circadian (i.e., in constant darkness [DD]) profiles of neuropeptide mRNA were investigated in the SCN of the nocturnal mouse Mus musculus and the diurnal rodent Arvicanthis ansorgei to gain insight into a possible role in circadian organization. Our data show that AVP mRNA exhibits a clear circadian rhythm in the SCN peaking by the end of the subjective day in both species. Contrary to what has been observed in rats, oscillations of VIP and GRP mRNA in the SCN are found to be clock-controlled in mice and A. ansorgei, but with different phases for peak expression. While both VIP and GRP mRNA peak during the middle of the subjective night (i.e., with a 6-h lag compared to AVP mRNA) in mice, they peak almost in phase with AVP mRNA in A. ansorgei. Contrary to what has been reported in the rat, mean levels of VIP and GRP peptide mRNA levels tended to be increased by light in the mice. The different circadian organization of SCN neuropeptides mRNA profiles in both light/dark and constant darkness conditions between mice and A. ansorgei could be related with diurnality.  相似文献   

4.
The mechanism whereby brief light exposure resets the mammalian circadian clock in a phase dependent manner is not known, but is thought to involve Per gene expression. At the behavioural level, a light pulse produces phase delays in early subjective night, phase advances in late subjective night, and no phase shifts in mid-subjective night or subjective day. To understand the relationship between Per gene activity and behavioural phase shifts, we examined light-induced mPer1 and mPer2 expression in the suprachiasmatic nucleus (SCN) of the mouse, in the subjective night, with a view to understanding SCN heterogeneity. In the VIP-containing region of the SCN (termed 'core'), light-induced mPer1 expression occurs at all times of the subjective night, while mPer2 induction is seen only in early subjective night. In the remaining regions of the SCN (termed 'shell'), a phase delaying light pulse produces no mPer1 but significant mPer2 expression, while a phase advancing light pulse produces no mPer2 but substantial mPer1 induction. Moreover, following a light pulse during mid-subjective night, neither mPer1 nor mPer2 are induced in the shell. The results reveal that behavioural phase shifts occur only when light-induced Per gene expression spreads from the core to the shell SCN, with mPer1 expression in shell corresponding to phase advances, and mPer2 corresponding to phase delays. The results indicate that the time course and the localization of light-induced Per gene expression in SCN reveals important aspects of intra-SCN communication.  相似文献   

5.
Previously, we have shown that mice deficient in either vasoactive intestinal peptide (VIP) or pituitary adenylate cyclase‐activating polypeptide (PACAP) exhibit specific deficits in the behavioral response of their circadian system to light. In this study, we investigated how the photic regulation of the molecular clock within the suprachiasmatic nucleus (SCN) is altered by the loss of these closely‐related peptides. During the subjective night, the magnitude of the light‐induction of FOS and phosphorylated mitogen‐activated protein kinase (p‐MAPK) immunoreactive cells within the SCN was significantly reduced in both VIP‐ and PACAP‐deficient mice when compared with wild‐type mice. The photic induction of the clock gene Period1 (Per1) in the SCN was reduced in the VIP‐ but not in the PACAP‐deficient mice. Baselines levels of FOS, p‐MAPK or Per1 in the night were not altered by the loss of these peptides. In contrast, during the subjective day, light exposure increased the levels of FOS, p‐MAPK and Per1 in the SCN of VIP‐deficient mice, but not in the other genotypes. During this phase, baseline levels of these markers were reduced in the VIP‐deficient mice compared with untreated controls. Finally, the loss of either neuropeptide reduced the magnitude of the light‐evoked increase in Per1 levels in the adrenals in the subjective night without any change in baseline levels. In summary, our results indicate that both VIP and PACAP regulate the responsiveness of cells within the SCN to the effects of light. Furthermore, VIP, but not PACAP, is required for the appropriate temporal gating of light‐induced gene expression within the SCN.  相似文献   

6.
Circadian rhythms in behaviour and physiology generated by the suprachiasmatic nucleus (SCN) are entrained to the environmental light/dark cycle via the retinohypothalamic tract. How light is able to adjust the endogenous rhythm is not fully understood, but induction of the two clock genes per1 and per2 in the SCN is believed to be important for the adjustment. Recently, it was shown that vasoactive intestinal polypeptide (VIP), a neurotransmitter found in light-responsive cells of the SCN, is able to phase shift the circadian rhythm similar to light. In the present study we show by means of an in vitro brain slice model and quantitative in situ hybridization histochemistry that VIP induces both per1 and per2 gene expression in the SCN during late subjective night (CT19). The signalling pathways responsible for the VIP signalling to the clock were investigated using inhibitors of protein kinase A and phospholipase C mediated signalling. Our results demonstrate that both pathways are involved in VIP induced per gene expression and suggest that VIP is important for light-induced phase shift late at night.  相似文献   

7.
The master circadian clock in mammals, located in the suprachiasmatic nuclei (SCN) of the hypothalamus, is entrained by light and behavioural stimulation. In addition, the SCN can be reset by dark pulses in nocturnal rodents under constant light conditions. Here, the shifting effects of a dark pulse on the SCN clock were detailed at both a behavioural and molecular level in a nocturnal rodent (Syrian hamster), and were compared to those of a diurnal rodent (Arvicanthis ansorgei). Four-hour dark pulses led to phase advances in the circadian rhythm of locomotor activity from subjective midday to dusk in hamsters, but from subjective dusk to midnight in Arvicanthis. Moreover, dark pulses had no resetting effect during the middle of the subjective night in hamsters, while such a dead shifting zone occurred during most of the subjective day in Arvicanthis. The behavioural phase advances in both hamsters and Arvicanthis were most often accompanied by marked downregulation of the clock genes Per1 and/or Per2 in the SCN, and also by changes in the transforming growth factor-alpha expression, a neuropeptide that suppresses daytime activity in nocturnal mammals. Despite that both hamsters and Arvicanthis showed dark-induced phase advances at circadian time-12, Per1 gene and its protein PER1 were downregulated in Arvicanthis but not in hamsters. Altogether these results show that dark resetting of the SCN is always associated with downregulation of Per1 and/or Per2 expression, and mostly occurs during resting. Thus, the circadian window of sensitivity to dark differs between nocturnal and diurnal rodents.  相似文献   

8.
The suprachiasmatic nuclei (SCN) of the hypothalamus contain the master circadian clock in mammals. Nocturnal light pulses that reset the circadian clock also lead to rapid increases in levels of Per1 and Per2 mRNA in the SCN, suggesting that these genes are involved in the synchronization to light. During the day, when light has no phase-shifting effects in nocturnal rodents, the consequences of light exposure for Per expression have been less thoroughly studied. Therefore, the effects of light exposure during the day were assessed on Per1 and Per2 mRNA in the SCN of mice. Expression of Per1 and Per2 was generally increased by 30-min light pulses during the subjective day, with more pronounced effects in the morning. One exception was noted for a transient decrease in Per2 expression after a short light pulse applied at midday. Prolonged light exposure (up to 3 hr) starting at midday markedly increased Per2 expression but not that of Per1. Moreover, the amplitude of the daily variations of both Per and the duration of Per1 peak was increased in mice exposed to a light-dark cycle compared with those transferred to constant darkness. Finally, the amplitude of the daily variations of both Per and the basal level of Per1 were increased in mice under a light-dark cycle compared with animals synchronized to a skeleton photoperiod (i.e., with daily dawn and dusk 1-hr exposures to light). Taken together, the results indicate that prolonged light exposure during daytime positively modulates daily levels of Per1 and Per2 mRNA in the SCN of mice.  相似文献   

9.
10.
To examine for circadian rhythmicity, the messenger RNA (mRNA) amount of the clock genes Per1 and Per2 was measured in undifferentiated and nerve-growth-factor-differentiated PC12 cells harvested every fourth hour. Serum shock was needed to induce circadian oscillations, which in undifferentiated PC12 cultures lasted only one 24-h period, while in differentiated cultures, the rhythms continued for at least 3 days. Thus, neuronal differentiation provided PC12 cells the ability to maintain rhythmicity for an extended period. Both vasoactive intestinal polypeptide (VIP) and its receptor VPAC2 are expressed in the suprachiasmatic nucleus (SCN), and in agreement with VIP signaling being crucial for maintenance of rhythmicity, we found both VIP and VPAC2 mRNA increased after differentiation of PC12 cells. Pituitary adenylate cyclase activating polypeptide (PACAP) exerts time- and concentration-dependent effects on Per gene expression in the SCN. We added 1 nM and 1 microM PACAP to oscillating PC12 cells at times corresponding to midday and early and late night to evaluate whether the effects were similar as in SCN. Induction of Per1 mRNA was found at all three times, which differs from results in SCN. Thus, PC12 cells seem more useful for studying mechanisms behind acquirement of rhythmicity of cell cultures than for resetting of circadian rhythm.  相似文献   

11.
12.
13.
The main circadian clock, localized in the suprachiasmatic nuclei (SCN) in mammals, can be synchronized by light and non-photic factors such as serotonergic cues. In nocturnal rodents, injections during the subjective day of the 5-HT1A/7 receptor agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) or its positive enantiomer, induce behavioral phase-advances in correlation with decreased expression of two clock genes, Per1/2. In addition, 8-OH-DPAT and the selective serotonin reuptake inhibitor fluoxetine reduce light-induced phase-shifts during the subjective night. Beside the chronobiotic effects of serotonin, changes of serotonergic activity in humans have been involved in mood disorders, that are often associated with alterations in circadian rhythmicity. To get insights into the circadian role of serotonin in diurnal species, we investigated its modulation of the SCN in Arvicanthis ansorgei housed in constant darkness. In striking contrast to nocturnal rodents, daily serotonin content in Arvicanthis SCN peaked during daytime while the sensitivity window of its SCN to (+)8-OH-DPAT occurred essentially during the subjective night. Moreover, fluoxetine produced behavioral phase-advances at circadian time (CT) 0 and CT12. Expression of Per1/2, Rev-erbalpha/beta and Roralpha/beta in the SCN was not modified after fluoxetine or (+)8-OH-DPAT injection. Furthermore, both treatments enhanced light-induced phase-advances and delays. Light responses of Per1 and Rorbeta expression at CT0 and those of Per2 and Rev-erbalpha at CT12 were markedly altered by serotonergic activation. The present findings demonstrate that the serotonergic modulation of the SCN clock appears to differ between nocturnal species and the diurnal Arvicanthis. The potentiating effects of fluoxetine on light resetting in a diurnal rodent may be clinically relevant.  相似文献   

14.
The suprachiasmatic nucleus (SCN) of the hypothalamus, the mammalian circadian pacemaker, is entrained by external cues and especially by photic information. Light is transmitted primarily via the retinohypothalamic tract, which terminates in the ventral part (or core) of the SCN, where vasoactive intestinal polypeptide (VIP)-containing neurons are located. VIP cells are mainly intrinsic and project to the dorsal part (or shell) of the SCN, where neurons containing arginine-vasopressin (AVP) reside. As aging leads to marked changes in the expression of circadian rhythms, we examined in primates whether age-related decay in biological rhythmicity is associated with changes in the oscillation of peptide expression in SCN neurons. We used double immunohistochemistry and quantitative analysis in the SCN of mouse lemurs, which provide a unique model of aging in non-human primates. In adult animals, VIP-positive and AVP-positive SCN neurons exhibited daily rhythms of their number and immunostaining intensity: AVP immunoreactivity peaked during the second part of the day, and VIP peaked during the night. In aged mouse lemurs, the peaks of AVP and VIP immunopositivity were significantly shifted, so that AVP was most intense at the beginning of the night, whereas VIP peaked at the beginning of daytime. The results show that the circadian rhythm of neuropeptides in the SCN is modified by aging in primates, with a differential regulation of the two main peptidergic cell populations. These changes may affect the ability of the SCN to transmit rhythmic information to other neural target sites, and thereby to modify the expression of some biological rhythms.  相似文献   

15.
Neuroactive peptides and the intracellular calcium concentration ([Ca(2+) ](i) ) play important roles in light-induced modulation of gene expression in the suprachiasmatic nucleus (SCN) neurons that ultimately control behavioral rhythms. Vasoactive intestinal peptide (VIP) and arginine vasopressin (AVP) are expressed rhythmically within populations of SCN neurons. Pituitary adenylate cyclase-activating peptide (PACAP) is released from retinohypothalamic tract (RHT) terminals synapsing on SCN neurons. Nociceptin/orphanin FQ (OFQ) receptors are functionally expressed in the SCN. We examined the role of several neuropeptides on Ca(2+) signaling, simultaneously imaging multiple neurons within the SCN neural network. VIP reduced the [Ca(2+) ](i) in populations of SCN neurons during the day, but had little effect at night. Stimulation of the RHT at frequencies that simulate light input signaling evoked transient [Ca(2+) ](i) elevations that were not altered by VIP. AVP elevated the [Ca(2+) ](i) during both the day and night, PACAP produced variable responses, and OFQ induced a reduction in the [Ca(2+) ](i) similar to VIP. During the day, VIP lowered the [Ca(2+) ](i) to near nighttime levels, while AVP elevated [Ca(2+) ](i) during both the day and night, suggesting that the VIP effects on [Ca(2+) ](i) were dependent, and the AVP effects independent of the action potential firing activity state of the neuron. We hypothesize that VIP and AVP regulate, at least in part, Ca(2+) homeostasis in SCN neurons and may be a major point of regulation for SCN neuronal synchronization.  相似文献   

16.
In mammals, behavioural and physiological rhythms as well as clock gene expression in the central suprachiasmatic clock (SCN) are phase-shifted by a timed calorie restriction (T-CR; animals receiving at midday 66% of their daily food intake). The molecular mechanism of SCN depends on feedback loops involving clock genes and their protein products. To understand how T-CR mediates its synchronizing effects, we examined the rhythmic expression of three clock proteins, PERIOD (PER) 1, 2 and CLOCK, and one clock-controlled protein (i.e. vasopressin; AVP) in the SCN of mice either fed ad libitum (AL) or with T-CR. Moreover, we evaluated expression of these proteins in the SCN of AL and T-CR mice following a 1-h light pulse. The results indicate that, while PER1 and AVP rhythms were phase-advanced in T-CR mice, the PER2 rhythm showed an increased amplitude. CLOCK was expressed constitutively in AL mice while in T-CR it was significantly reduced, especially after feeding time. A light pulse produced a delayed increase in PER1 and a larger increase in PER2 expression in the SCN of T-CR mice than in AL animals. In addition, light exposure triggered an increase in AVP-ir cells in both AL and T-CR mice, and also of CLOCK expression but in T-CR mice only. The circadian changes in clock and clock-controlled proteins and their acute responses to light in the SCN of T-CR mice demonstrate that metabolic cues induced by a calorie restriction modulate the translational regulation of the SCN clock.  相似文献   

17.
We examined Period (Per) mRNA rhythms in the suprachiasmatic nucleus (SCN) of a diurnal rodent and assessed how phase-shifting stimuli acutely affect SCN Per mRNA using semiquantitative in situ hybridization. First, Per1 and Per2 varied rhythmically in the SCN over the course of one circadian cycle in constant darkness: Per1 mRNA was highest in the early to mid-subjective day, while Per2 mRNA levels peaked in the late subjective day. Second, acute light exposure in the early subjective night significantly increased both Per1 and Per2 mRNA. Third, Per2 but not Per1 levels decreased 1 and 2 h after injection of the gamma-aminobutyric acid (GABA)(A) receptor agonist muscimol into the SCN during the subjective day. Fourth, muscimol also reduced the light-induced Per2 in the early subjective night, but Per1 induction by light was not significantly affected. Consistent with previous studies, these data demonstrate that diurnal and nocturnal animals show very similar daily patterns of Per mRNA and light-induced Per increases in the SCN. As with light, muscimol alters circadian phase, and daytime phase alterations induced by muscimol are associated with significant decreases in Per2 mRNA. In diurnal animals, muscimol-induced decreases in Per are associated with phase delays rather than advances. The direction of the daytime phase shift may be determined by the relative suppression of Per1 vs. Per2 in SCN cells. As in nocturnal animals, changes in Per1 and Per2 mRNA by photic and non-photic stimuli appear to be associated with circadian phase alteration.  相似文献   

18.
Vasoactive intestinal polypeptide (VIP) signaling is critical for circadian rhythms. For example, the expression of VIP and its main receptor, VPAC2R, is necessary for maintaining synchronous daily rhythms among neurons in the suprachiasmatic nucleus (SCN), a master circadian pacemaker in animals. Where and when VPAC2R protein is expressed in the SCN and other brain areas has not been examined. Using immunohistochemistry, we characterized a new antibody and found that VPAC2R was highly enriched in the SCN and detectable at low levels in many brain areas. Within the SCN, VPAC2R was circadian, peaking in the subjective morning, and abundantly expressed from the rostral to caudal margins with more in the dorsomedial than ventrolateral area. VPAC2R was found in nearly all SCN cells including neurons expressing either VIP or vasopressin (AVP). SCN neurons mainly expressed VPAC2R in their somata and dendrites, not axons. Finally, constant light increased VIP and AVP expression, but not VPAC2R. We conclude that the circadian clock, not the ambient light level, regulates VPAC2R protein localization. These results are consistent with VPAC2R playing a role in VIP signaling at all times of day, broadly throughout the brain and in all SCN cells.  相似文献   

19.
In mammals, the suprachiasmatic nuclei (SCN) of the hypothalamus control endogenous circadian rhythms and entrainment to the environment. A core SCN region of calbindin (CalB)-containing cells is retinorecipient and the cells therein lack rhythmic expression of clock genes and electrical activity. The core is surrounded by a 'shell' of rhythmic oscillator cells. In the present experiments, we studied the spatial arrangement of oscillator cells by examining the spatial and temporal patterns of expression of the canonical clock genes Per1, Per2 and vasopressin mRNA, a clock-controlled gene. Surprisingly, in the SCN shell, the dorsomedial cells were the first to rhythmically express both Per1 and VP mRNA, with gene expression then spreading very slowly through much of the nucleus for the next 12 h then receding to baseline levels. Following a light pulse, Per expression increased after 1 h in the core SCN and after 1.5 h in the shell. Although expression in the shell occurred earlier in light-pulsed animals than in those housed in constant darkness, it still followed the same spatial and temporal expression pattern as was observed in constant darkness. The results suggest that not only is the SCN organized into light-responsive and rhythmic regions but also that the rhythmic region of the SCN itself has an ordered arrangement of SCN oscillator cells.  相似文献   

20.
The suprachiasmatic nucleus (SCN) of the anterior hypothalamus contains a light-entrainable circadian pacemaker. Neurons in the SCN are part of a circuit that conveys light information from retinal efferents to the pineal gland. Light presented during the night acutely increases mRNA levels of the circadian clock genes Per1 and Per2 in the SCN, and acutely suppresses melatonin levels in the pineal gland. The present study investigated whether the ability of light to increase Per1 and Per2 mRNA levels and suppress pineal melatonin levels requires sodium-dependent action potentials in the SCN. Per1 and Per2 mRNA levels in the SCN and pineal melatonin levels were measured in Syrian hamsters injected with tetrodotoxin (TTX) prior to light exposure or injection of N-methyl-D-aspartate (NMDA). TTX inhibited the ability of light to increase Per1 and Per2 mRNA levels and suppress pineal melatonin levels. TTX did not, however, influence the ability of NMDA to increase Per1 and Per2 mRNA levels, though it did inhibit the ability of NMDA to suppress pineal melatonin levels. These results demonstrate that action potentials in the SCN are not necessary for NMDA receptor activation to increase Per1 and Per2 mRNA levels, but are necessary for NMDA receptor activation to decrease pineal melatonin levels. Taken together, these data support the hypothesis that the mechanism through which light information is conveyed to the pacemaker in the SCN is separate from and independent of the mechanism through which light information is conveyed to the SCN cells whose efferents suppress pineal melatonin levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号