首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2,3,5-Tris(glutathion-S-yl)hydroquinone (TGHQ), a metabolite of benzene, catalyzes the generation of reactive oxygen species (ROS) and caspase-dependent apoptosis in human promyelocytic leukemia (HL-60) cells. We now report that TGHQ induces severe DNA damage, as evidenced by DNA ladder formation and H2AX phosphorylation. The subsequent activation of the DNA nick sensor enzyme, poly(ADP-ribose) polymerase-1 (PARP-1), leads to the rapid depletion of ATP and NAD and the concomitant formation of poly(ADP-ribosylated) proteins (PARs). PJ-34 (a PARP-1 inhibitor) completely prevented the formation of PARs, partially attenuated TGHQ-mediated ATP depletion, but had little effect on NAD depletion. Intriguingly, although z-vad-fmk (a pan-caspase inhibitor) attenuated TGHQ-induced apoptosis, cotreatment with PJ-34 led to a further decrease in apoptosis, suggesting that PARP-1 participates in caspase-dependent apoptosis. Indeed, PARP-1 inhibition reduced TGHQ-induced caspase-3, -7, and -9 activation, at least partially by attenuating cytochrome c translocation from mitochondria to the cytoplasm. In contrast, PJ-34 potentiated TGHQ-induced caspase-8 activation, suggesting that PARP-1 plays a dual role in regulating TGHQ-induced apoptosis via opposing effects on the intrinsic (mitochondrial) and extrinsic (death-receptor) pathways. PARP-1 knockdown in HL-60 cells confirmed that PARP-1 participates in effector caspase activation. Finally, PJ-34 also inhibited TGHQ-induced apoptosis-inducing factor (AIF) nuclear translocation, but neither c-jun NH(2)-terminal kinase nor p38 MAPK (p38 mitogen-activated protein kinase) activation was required for AIF translocation. In summary, TGHQ-induced apoptosis of HL-60 cells is accompanied by PARP-1, caspase activation, and AIF nuclear translocation. TGHQ-induced apoptosis appears to primarily occur via engagement of the mitochondrial-mediated pathway in a process amenable to PARP inhibition. Residual cell death in the presence of PJ-34 is likely mediated via the extrinsic apoptotic pathway.  相似文献   

2.
Novel tricyclic benzimidazole carboxamide poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors have been synthesized. Several compounds were found to be powerful chemopotentiators of temozolomide and topotecan in both A549 and LoVo cell lines. In vitro inhibition of PARP-1 was confirmed by direct measurement of NAD+ depletion and ADP-ribose polymer formation caused by chemically induced DNA damage.  相似文献   

3.
4.
SH Wang  XM Liao  D Liu  J Hu  YY Yin  JZ Wang  LQ Zhu 《Neuropharmacology》2012,63(6):1085-1092
Nerve growth factor (NGF) is a critical secreted protein that plays an important role in development, survival, and function of the mammalian nervous system. Previously reports suggest that endogenous NGF is essential for the hippocampal plasticity/memory and NGF deprivation induces the impairment of hippocampus-related memory and synaptic plasticity. However, whether exogenous supplement of NGF could promote the hippocampus-dependent synaptic plasticity/memory and the possible underlying mechanisms are not clear. In this study we found that NGF administration facilitates the hippocampus-dependent long-term memory and synaptic plasticity by increasing the activity of PARP-1, a polymerase mediating the PolyADP-ribosylation and important for the memory formation. Co-application of 3-Aminobenzamide (3-AB), a specific inhibitor of PARP-1, distinctly blocked the boosting effect of NGF on memory and synaptic plasticity, and the activation of downstream PKA-CREB signal pathway. Our data provide the first evidence that NGF supplement facilitates synaptic plasticity and the memory ability through PARP-1-mediated protein polyADP-ribosylation and activation of PKA-CREB pathway.  相似文献   

5.
Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors in cancer chemotherapy   总被引:1,自引:0,他引:1  
Poly(ADP-ribose) polymerases (PARPs) are defined as a family of cell signaling enzymes present in eukaryotes, which are involved in poly(ADP-ribosylation) of DNA-binding proteins. The best studied of these enzymes (PARP-1) is involved in the cellular response to DNA damage so that in the event of irreparable DNA damage overactivation of PARP-1 leads to necrotic cell death. Inhibitors of PARP-1 activity in combination with DNA-binding antitumor drugs may constitute a suitable strategy in cancer chemotherapy. When DNA is moderately damaged, PARP-1 participates in the DNA repair process and the cell survives. However, in the case of extensive DNA damage PARP-1 overactivation induces a decrease of NAD+ and ATP levels leading to cell dysfunction or even to necrotic cell death. So, due to PARP-1 involvement in cell death, pharmacological inhibition of PARP-1 activity by PARP-1 inhibitors may constitute a suitable target to enhance the activity of antitumor drugs through inhibition of necrosis and activation of apoptosis. PARP-1 inhibitors such as 3-aminobenzamide, 1,5-dihydroxyisoquinolinone and the recently patented tryciclic benzimidazoles have shown potent inhibitory effects of PARP-1 activity in tumor cells. The present review gives an update of the state-of-the-art of inhibition of PARP-1 activity as adjuvant therapy in cancer treatment.  相似文献   

6.
目的建立体外聚腺苷二磷酸核糖聚合酶-1[Poly(ADP-ribose)polymerase-1,PARP-1]抑制剂的高通量筛选模型,筛选潜在的PARP-1抑制剂。方法将PARP-1、裸DNA与底物NAD+反应,再将剩余底物NAD+转化为荧光物质,通过测定其荧光强度来决定PARP-1的活性,并以此筛选PARP-1的抑制剂。建立384孔板的高通量筛选模型,对9280个化合物(包括合成化合物、天然产物、微生物发酵提取物)组成的随机库进行体外筛选。结果筛选出148个活性化合物对PARP-1的抑制作用大于70%,最终确定3个化合物具有较高的抑制活性。结论建立的PARP-1抑制剂高通量筛选模型具有灵敏度高、快速、微量、准确的特点。  相似文献   

7.
The alkylating agent N-methyl-N′-nitro-N′-nitrosoguanidine (MNNG) can cause excess DNA strand breaks that lead to poly(ADP-ribose)polymerase-1 (PARP-1) overactivation and cell death (parthanatos). However, the detail mechanism of MNNG-induced parthanatos was not well-investigated. In this study, we used MNNG-treated mouse embryonic fibroblasts (MEFs) to elucidate the signaling pathways of MNNG-induced parthanatos. We found that MNNG-induced cell death accompanied by rapid PARP-1 activation, c-Jun N-terminal kinase (JNK) activation, biphasic reactive oxygen species (ROS) production and intracellular calcium increase. The early ROS production occurring at 1 min and peaking at 5–15 min after MNNG treatment partially resulted from NADPH oxidase. In contrast, the late phase of ROS production occurring at 30 min and time-dependently increasing up to 6 h after MNNG treatment was generated by mitochondria. The antioxidant, NAC can abrogate all phenomena caused by MNNG. Results indicate that the calcium rise was downstream of early ROS production, and was involved in PARP-1 and JNK activation. Moreover, the PARP inhibitor was able to reduce MNNG-induced late-phase ROS production, calcium elevation, and cell death. Results further indicated the involvement of RIP1 in sustained ROS production and calcium increase. We characterized the interactive roles of ROS, calcium, JNK, and RIP1 in MNNG-induced cell death. We found that in addition to the alkylating property previously demonstrated, ROS production triggered by MNNG results in enhanced DNA damage and PARP-1 activation. Moreover, intracellular calcium elevation and ROS production have mutual amplification effects and thus contribute to PARP-1-mediated parthanatos.  相似文献   

8.
9.
10.
The formation of reactive oxygen species (ROS) plays a critical role in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced toxicities in mammalian cells since it promotes cell proliferation, growth arrest, and apoptosis. In this study, we investigated whether TCDD induces oxidative stress and DNA damage in human ERalpha(+)/MCF-7 and ERalpha(-)/MDA-MB-231 breast cancer cells and whether this is accompanied by the initiation of DNA repair events. Results indicated that viability of MCF-7 and MDA-MB-231 cells was concentration- and time-dependently reduced by TCDD. Further, we observed significant increases in ROS formation and decreases in intracellular glutathione (GSH) in these two cell lines after TCDD treatment. Overall, the extent of cell death was greater in MCF-7 cells than in MDA-MB-231 cells whereas the magnitude of ROS formation and GSH depletion was greater in MDA-MB-231 cells than in MCF-7 cells. In addition, we observed that at non-cytotoxic concentration (1nM for 5h), TCDD induced decreases in intracellular NAD(P)H and NAD(+) in MCF-7 and MDA-MB-231 cells. These decreases were completely blocked by three types of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. The catalytic activation of PARP-1 in cells treated with TCDD was confirmed by detection of the presence of polymers of ADP-ribose-modified PARP-1 using Western blotting. Moreover, we demonstrated increases in the number of DNA strand breaks in MCF-7 and MDA-MB-231 cells exposed to TCDD as measured by the single-cell gel electrophoresis (Comet) assay. Overall, this evidence confirms that TCDD induces decreases in intracellular NAD(P)H and NAD(+) through PARP-1 activation mediated by formation of DNA strand breaks. In addition, we demonstrated that the extent of oxidative stress and DNA damage was greater in MDA-MB-231 cells than in MCF-7 cells, with a strong correlation to estrogen receptor (ER) status. In conclusions, our findings add further support to the theme that ROS formation is a significant determinant factor in mediating the induction of oxidative DNA damage and repair in human breast cancer cells exposed to TCDD and that the TCDD-induced oxidative stress and DNA damage may, in part, contribute to TCDD-induced carcinogenesis.  相似文献   

11.
The activity of the nuclear enzyme poly(ADP-ribose)polymerase-1 (E.C.2.4.2.30), which is highly activated by DNA strand breaks, is associated with the pathophysiology of both acute as well as chronic inflammatory diseases. PARP-1 overactivation and the subsequent extensive turnover of its substrate NAD+ put a large demand on mitochondrial ATP-production. Furthermore, due to its reported role in NF-kappaB and AP-1 mediated production of pro-inflammatory cytokines, PARP-1 is considered an interesting target in the treatment of these diseases. In this study the PARP-1 inhibiting capacity of caffeine and several metabolites as well as other (methyl)xanthines was tested using an ELISA-assay with purified human PARP-1. Caffeine itself showed only weak PARP-1 inhibiting activity, whereas the caffeine metabolites 1,7-dimethylxanthine, 3-methylxanthine and 1-methylxanthine, as well as theobromine and theophylline showed significant PARP-1 inhibiting activity. Further evaluation of these compounds in H2O2-treated A549 lung epithelial and RF24 vascular endothelial cells revealed that the decrease in NAD+-levels as well as the formation of the poly(ADP-ribose)polymer was significantly prevented by the major caffeine metabolite 1,7-dimethylxanthine. Furthermore, H2O2-induced necrosis could be prevented by a high dose of 1,7-dimethylxanthine. Finally, antioxidant effects of the methylxanthines could be ruled out with ESR and measurement of the TEAC. Concluding, caffeine metabolites are inhibitors of PARP-1 and the major caffeine metabolite 1,7-dimethylxanthine has significant PARP-1 inhibiting activity in cultured epithelial and endothelial cells at physiological concentrations. This inhibition could have important implications for nutritional treatment of acute and chronic inflammatory pathologies, like prevention of ischemia-reperfusion injury or vascular complications in diabetes.  相似文献   

12.
Poly(ADP-ribose) polymerase (PARP) plays a pivotal role in the repair of DNA strand breaks. However, excessive activation of PARP causes a rapid depletion of intracellular energy, leading to cell death. PARP inhibitors may have potential therapeutic benefit in the treatment of myocardial ischemia, stroke, and neurodegenerative disease. With these emerging medicinal interests, various screening programs have identified small molecules that inhibit PARP with reasonable potencies. However, the increasing numbers of diverse small molecules generated through combinatorial chemistry necessitate the use of robust assays with good sensitivity and specificity for use as a high-throughput screening (HTS) program. Here, we report the development and the validation of a nonisotopic PARP-1 assay suitable for HTS by converting a biotinylated NAD-based colorimetric assay to a miniaturized 384-well plate format. Comparing with the conventional methods, this miniaturized PARP-1 inhibition assay was equally sensitive with excellent reproducibility and cost-effectiveness. Because nonisotopic PARP-1 inhibition assays are widely used, the methodology described in this article can expand the feasibility of this assay as a high-throughput assay for screening of PARP-1 inhibitors from a random chemical library.  相似文献   

13.
Poly(ADP-ribose) polymerase (PARP)-1 was reported to promote the religation activity of topoisomerase I in the presence of camptothecin by itself through the direct interaction with topoisomerase I or by the formation of poly(ADP-ribosyl)ated topoisomerase I. We have demonstrated previously that ATP inhibited PARP-1/NAD-facilitated religation of topoisomerase I-linked DNA (TLD) in the presence of camptothecin. The mechanism of action was further studied in the present work. ATP as well as other nucleotides, including CTP, UTP, and GTP, had no effect on topoisomerase I cleavage and religation activities in the absence of camptothecin. In the presence of camptothecin or its derivative topotecan, ATP (at up to 2 mM) inhibited PARP-1/NAD-facilitated TLD religation in a dose-dependent manner. This could be due to the suppression of topoisomerase I poly(ADP-ribosyl)ation through the competition with NAD for the binding site(s) on PARP-1. The interaction between ATP and PARP-1 was independent of ATP hydrolysis. Study of different nucleotide analogs revealed that the structure could determine the dose response of nucleotides. In addition, it was noted that higher concentrations of ATP and CTP (at 2.5 mM or higher) promoted DNA religation by a PARP-1-independent mechanism. Our study implies the possible role of ATP and other nucleotides in the regulation of topoisomerase I activity in the presence of camptothecin analogs.  相似文献   

14.
Exposure of human bladder urothelial cells (UROtsa) to 50 nM of the arsenic metabolite, monomethylarsonous acid (MMAIII), for 12 weeks results in irreversible malignant transformation. The ability of continuous, low-level MMAIII exposure to cause an increase in genotoxic potential by inhibiting repair processes necessary to maintain genomic stability is unknown. Following genomic insult within cellular systems poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger protein, is rapidly activated and recruited to sites of DNA strand breaks. When UROtsa cells are continuously exposed to 50 nM MMAIII, PARP-1 activity does not increase despite the increase in MMAIII-induced DNA single-strand breaks through 12 weeks of exposure. When UROtsa cells are removed from continuous MMAIII exposure (2 weeks), PARP-1 activity increases coinciding with a subsequent decrease in DNA damage levels. Paradoxically, PARP-1 mRNA expression and protein levels are elevated in the presence of continuous MMAIII indicating a possible mechanism to compensate for the inhibition of PARP-1 activity in the presence of MMAIII. The zinc finger domains of PARP-1 contain vicinal sulfhydryl groups which may act as a potential site for MMAIII to bind, displace zinc ion, and render PARP-1 inactive. Mass spectrometry analysis demonstrates the ability of MMAIII to bind a synthetic peptide representing the zinc-finger domain of PARP-1, and displace zinc from the peptide in a dose-dependent manner. In the presence of continuous MMAIII exposure, continuous 4-week zinc supplementation restored PARP-1 activity levels and reduced the genotoxicity associated with MMAIII. Zinc supplementation did not produce an overall increase in PARP-1 protein levels, decrease the levels of MMAIII-induced reactive oxygen species, or alter Cu-Zn superoxide dismutase levels. Overall, these results present two potential interdependent mechanisms in which MMAIII may increase the susceptibility of UROtsa cells to genotoxic insult and/or malignant transformation: elevated levels of MMAIII-induced DNA damage through the production of reactive oxygen species, and the direct MMAIII-induced inhibition of PARP-1.  相似文献   

15.
Oxidative stress results from an oxidant/antioxidant imbalance, an excess of oxidants and/or a depletion of antioxidants. A vast amount of circumstantial evidence implicates oxygen-derived free radicals (especially, superoxide and hydroxyl radical) and high energy oxidants (such as peroxynitrite) as mediators of secondary damage associated with spinal cord injury. Reactive oxygen species (ROS) (e.g., superoxide, peroxynitrite, hydroxyl radical and hydrogen peroxide) are all potential reactants capable of initiating DNA single strand breakage, with subsequent activation of the nuclear enzyme poly (ADP ribose) synthetase (PARS), leading to eventual severe energy depletion of the cells, and necrotic-type cell death. Moreover, Poly(ADP-ribosyl)ation is regulated by the synthesizing enzyme poly(ADP-ribose) polymerase-1 (PARP-1) and the degrading enzyme poly(ADP-ribose) glycohydrolase (PARG). Here, we review the roles of ROS, PARP-1 and PARG in spinal cord injury as well as the beneficial effect of the in vivo treatment with novel pharmacological tools (e.g. peroxynitrite decomposition catalysts, selective superoxide dismutase mimetics (SODm), PARP-1 and PARG inhibitors.  相似文献   

16.
17.
A series of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors, 5-oxo-2,4,5,6-tetrahydro-1H-thiopyrano[3,4-c]quinoline-9-carboxamide derivatives, were successfully synthesized and their PARP-1 inhibitory activity was evaluated. These compounds were prepared from carboxylic acid 7 and the appropriate amines, and a number of the synthesized compounds were found to have significant PARP-1 activity. Among them, 9m showed potent activity in a PARP-1 enzymatic assay and cell-based assay (IC50?=?0.045?μM, ED50?=?0.54?μM). Molecular modeling studies confirmed the obtained biological results.  相似文献   

18.
Novel indeno[1,2-c]isoquinolinone derivatives were synthesized and evaluated as inhibitors of the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1). These potent nonmutagenic PARP-1 inhibitors possess an additional five-membered ring between the B and C rings of 6(5H)-phenanthridinone. The most potent PARP-1 inhibitors were obtained from the substitution of the D ring at the C-9 position, in particular sulfonamide and N-acyl analogues (6 and 11). The 9-sulfonamide analogues 11a and 12a exhibited IC(50) values of 1 and 10 nM, respectively.  相似文献   

19.
A series of novel compounds have been designed that are potent inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1), and the activity and physical properties have been characterized. The new structural classes, 3,4,5,6-tetrahydro-1H-azepino[5,4,3-cd]indol-6-ones and 3,4-dihydropyrrolo[4,3,2-de]isoquinolin-5-(1H)-ones, have conformationally locked benzamide cores that specifically interact with the PARP-1 protein. The compounds have been evaluated with in vitro cellular assays that measure the ability of the PARP-1 inhibitors to enhance the effect of cytotoxic agents against cancer cell lines.  相似文献   

20.
Despite the known adverse effects of abamectin pesticide, little is known about its action on male fertility. To explore the effects of exposure to abamectin on male fertility and its mechanism, low (1 mg/kg/day) and high dose (4 mg/kg/day) abamectin were applied to male rats by oral gavage for 1 week and for 6 weeks. Weight of testes, serum reproductive hormone levels, sperm dynamics and histopathology of testes were used to evaluate the reproductive efficiency of abamectin-exposed rats. Abamectin level was determined at high concentrations in plasma and testicular tissues of male rats exposed to this pesticide. The testes weights of animals and serum testosterone concentrations did not show any significant changes after abamectin exposure. Abamectin administration was associated with decreased sperm count and motility and increased seminiferous tubule damage. In addition, significant elevations in the 4-hydroxy-2-nonenal (4-HNE)-modified proteins and poly(ADP-ribose) (PAR) expression, as markers for oxidative stress and poly(ADP-ribose) polymerase (PARP) activation, were observed in testes of rats exposed to abamectin. These results showed that abamectin exposure induces testicular damage and affects sperm dynamics. Oxidative stress-mediated PARP activation might be one of the possible mechanism(s) underlying testicular damage induced by abamectin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号