首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: Nickel is a potential neurotoxic pollutant. Oxidative stress is supposed to be involved in the mechanism underlying nickel‐induced neurotoxicity. Melatonin has efficient protective effects against various oxidative damages in nervous system. The purpose of this study was to investigate whether melatonin could efficiently protect against neurotoxicity induced by nickel. Here, we exposed primary cultured cortical neurons and mouse neuroblastoma cell lines (neuro2a) to different concentrations of nickel chloride (NiCl2) (0.125, 0.25, 0.5, and 1 mm ) for 12 hr or 0.5 mm NiCl2 for various periods (0, 3, 6, 12, and 24 hr). We found that nickel significantly increased reactive oxygen species production and caused the loss of cell viability both in cortical neurons and neuro2a cells. In addition, nickel exposure obviously inhibited the mitochondrial function, disrupted the mitochondrial membrane potential (ΔΨm), reduced ATP production, and decreased mitochondrial DNA (mtDNA) content. However, each of these oxidative damages was efficiently attenuated by melatonin pretreatment. These protective effects of melatonin may be attributable to its roles in reducing oxidative stress and improving mitochondrial function in nickel‐treated nerve cells. Our results suggested that melatonin may have great pharmacological potential in protecting against the adverse effects of nickel in the nervous system.  相似文献   

2.
Parkinson's disease is the second most common neurodegenerative disease, and environmental toxins such as rotenone play an important role in causing degeneration of dopaminergic neurons. Melatonin, a major secretory product of pineal, is recently reported to protect against rotenone-induced cell death in animal models. Yet, the mechanism involved in this protection needs to be elucidated. Here, we report that rotenone treatment (0-100 μM) decreased cell survival of Hela cells in a dose-dependent manner. At concentrations ranging from 0.1 to 100 μM, rotenone induced a dose-dependent increase in the expression of microtubule-associated protein 1 light chain 3 (LC3)-II, a protein associated with the autophagosomal membrane. Knockdown of Bax or Omi using shRNA inhibited 1 μM rotenone-induced autophagy. To determine whether melatonin would protect cells against rotenone-induced cell death and autophagy, we pretreated Hela cells with 250 μM melatonin for 24 hr in the presence of rotenone. Melatonin inhibited Bax expression and the release of the omi/HtrA2 into the cytoplasm induced by 1 μM rotenone. Melatonin 250 μM treatment also suppressed cell death induced by 0.1-100 μM rotenone and protected against the formation of LC3-II in cells exposed to 1 μM rotenone. This work demonstrates a novel role for melatonin as a neuroprotective agent against rotenone.  相似文献   

3.
4.
Oxaliplatin, an organoplatinum compound, is used in the treatment of colorectal cancer, but its clinical use can be limited due to the development of peripheral neuropathy. Whilst mitochondrial dysfunction has been implicated as a major pathomechanism for oxaliplatin‐induced neurotoxicity, the prevention of autophagy may also aggravate neuronal cell death. Melatonin, a well‐known mitoprotectant and autophagy inducer, was used to examine its neuroprotective role in oxaliplatin‐induced peripheral neuropathy (OIPN). Melatonin prevented the loss of mitochondrial membrane potential (Ψm) and promoted neuritogenesis in oxaliplatin‐challenged neuro‐2a cells. It did not interfere with the cytotoxic activity of oxaliplatin in human colon cancer cell line, HT‐29. Melatonin treatment significantly alleviated oxaliplatin‐induced pain behavior and neuropathic deficits in rats. It also ameliorated nitro‐oxidative stress mediated by oxaliplatin, thus prevented nitrosylation of proteins and loss of antioxidant enzymes, and therefore, it improved mitochondrial electron transport chain function and maintained cellular bioenergetics by improving the ATP levels. The protective effects of melatonin were attributed to preventing oxaliplatin‐induced neuronal apoptosis by increasing the autophagy pathway (via LC3A/3B) in peripheral nerves and dorsal root ganglion (DRG). Hence, it preserved the epidermal nerve fiber density in oxaliplatin‐induced neuropathic rats. Taken together, we provide detailed molecular mechanisms for the neuroprotective effect of melatonin and suggest it has translational potential for oxaliplatin‐induced neuropathy.  相似文献   

5.
Protein conformational diseases are associated with the aberrant accumulation of amyloid protein aggregates, but whether amyloid formation is cytotoxic or protective is unclear. To address this issue, we investigated a normally benign amyloid formed by the yeast prion [RNQ(+)]. Surprisingly, modest overexpression of Rnq1 protein was deadly, but only when preexisting Rnq1 was in the [RNQ(+)] prion conformation. Molecular chaperones protect against protein aggregation diseases and are generally believed to do so by solubilizing their substrates. The Hsp40 chaperone, Sis1, suppressed Rnq1 proteotoxicity, but instead of blocking Rnq1 protein aggregation, it stimulated conversion of soluble Rnq1 to [RNQ(+)] amyloid. Furthermore, interference with Sis1-mediated [RNQ(+)] amyloid formation exacerbated Rnq1 toxicity. These and other data establish that even subtle changes in the folding homeostasis of an amyloidogenic protein can create a severe proteotoxic gain-of-function phenotype and that chaperone-mediated amyloid assembly can be cytoprotective. The possible relevance of these findings to other phenomena, including prion-driven neurodegenerative diseases and heterokaryon incompatibility in fungi, is discussed.  相似文献   

6.
Melatonin is a strong antioxidant that has beneficial effects against early brain injury (EBI) following a subarachnoid hemorrhage (SAH) in rats; protection includes reduced mortality and brain water content. The molecular mechanisms underlying these clinical effects in the SAH model, however, have not been clearly identified. This study was undertaken to determine the influence of melatonin on neural apoptosis and the potential mechanism of these effects in EBI following SAH using the filament perforation model of SAH in male Sprague Dawley rats. Melatonin (150 mg/kg) or vehicle was given via an intraperitoneal injection 2 hr after SAH induction. Brain samples were extracted 24 hr after SAH. The results show that melatonin treatment markedly reduced caspase‐3 activity and the number of TUNEL‐positive cells, while the treatment increased the LC3‐II/LC3‐I, an autophagy marker, which indicated that melatonin‐enhanced autophagy ameliorated apoptotic cell death in rats subjected to SAH. To further identify the mechanism of autophagy protection, we demonstrated that melatonin administration reduced Bax translocation to the mitochondria and the release of cytochrome c into the cytosol. Taken together, this report demonstrates that melatonin improved the neurological outcome in rats by protecting against neural apoptosis after the induction of filament perforation SAH; moreover, the mechanism of these antiapoptosis effects was related to the enhancement of autophagy, which ameliorated cell apoptosis via a mitochondrial pathway.  相似文献   

7.
Cadmium (Cd) is a persistent environmental toxin and occupational pollutant that is considered to be a potential risk factor in the development of neurodegenerative diseases. Abnormal mitochondrial dynamics are increasingly implicated in mitochondrial damage in various neurological pathologies. The aim of this study was to investigate whether the disturbance of mitochondrial dynamics contributed to Cd‐induced neurotoxicity and whether melatonin has any neuroprotective properties. After cortical neurons were exposed to 10 μM cadmium chloride (CdCl2) for various periods (0, 3, 6, 12, and 24 hr), the morphology of their mitochondria significantly changed from the normal tubular networks into punctuated structures within 3 hr. Following this pronounced mitochondrial fragmentation, Cd treatment led to signs of mitochondrial dysfunction, including excess reactive oxygen species (ROS) production, decreased ATP content, and mitochondrial membrane potential (?Ψm) loss. However, 1 mM melatonin pretreatment efficiently attenuated the Cd‐induced mitochondrial fragmentation, which improved the turnover of mitochondrial function. In the brain tissues of rats that were intraperitoneally given 1 mg/kg CdCl2 for 7 days, melatonin also ameliorated excessive mitochondrial fragmentation and mitochondrial damage in vivo. Melatonin's protective effects were attributed to its roles in preventing cytosolic calcium ([Ca2+]i) overload, which blocked the recruitment of Drp1 from the cytoplasm to the mitochondria. Taken together, our results are the first to demonstrate that abnormal mitochondrial dynamics is involved in cadmium‐induced neurotoxicity. Melatonin has significant pharmacological potential in protecting against the neurotoxicity of Cd by blocking the disbalance of mitochondrial fusion and fission.  相似文献   

8.
In the present study, we evaluated the effect of melatonin, a well-known free radical scavenger and neuroprotector, against rotenone-induced oxidative stress in a hemiparkinsonian rat model. The effect of melatonin on glutathione (GSH) depletion caused by unilateral, intranigral infusion of rotenone was investigated employing a spectrofluorimetric procedure. We also studied the effect of melatonin on rotenone-induced changes in the antioxidant enzymes superoxide dismutase (SOD) and catalase in the cytosolic fractions of substantia nigra (SN), employing spectrophotometric procedures. Rotenone-induced hydroxyl radicals (*OH) in the isolated mitochondria, as measured employing a sensitive HPLC-electrochemical method, were significantly scavenged by melatonin. Melatonin treatment restored the rotenone-induced decrease in GSH level and changes in antioxidant enzyme (SOD and catalase) activities in the SN. Our results strongly indicate melatonin's beneficial use in Parkinson's disease therapy as an antioxidant.  相似文献   

9.
朊病毒病(Prion diseases)是一种由细胞型朊蛋白(PrPC)构象发生改变所形成的致病型朊蛋白(PrPSc)大量沉积在细胞中而引起的一种致命性神经退行性疾病,致死率高达100%。目前为止,该病还没有一种确切的治疗方法,严重威胁人类和动物的健康。随着对朊病毒病研究深入,科学家们发现细胞自噬,RNA干扰,PrP抗体、核酸疫苗、一些药物及化合物在疾病治疗方面有积极作用。我们将近些年来在治疗朊病毒病方面具有潜在应用价值的方法和理论做具体阐述。  相似文献   

10.
Although mesenchymal stem cell (MSC)‐based therapy is a treatment strategy for ischemic diseases associated with chronic kidney disease (CKD), MSCs of CKD patients undergo accelerated senescence, with decreased viability and proliferation upon uremic toxin exposure, inhibiting their utility as a potent stem cell source for transplantation therapy. We investigated the effects of melatonin administration in protecting against cell senescence and decreased viability induced by pathophysiological conditions near the engraftment site. MSCs harvested from CKD mouse models were treated with H2O2 to induce oxidative stress. CKD‐derived MSCs exhibited greater oxidative stress‐induced senescence than normal‐mMSCs, while melatonin protected CKD‐mMSCs from H2O2 and associated excessive senescence. The latter was mediated by PrPC‐dependent mitochondrial functional enhancement; melatonin upregulated PrPC, which bound PINK1, thus promoting mitochondrial dynamics and metabolism. In vivo, melatonin‐treated CKD‐mMSCs survived longer, with increased secretion of angiogenic cytokines in ischemic disease engraftment sites. CKD‐mMSCs are more susceptible to H2O2‐induced senescence than normal‐mMSCs, and melatonin administration protects CKD‐mMSCs from excessive senescence by upregulating PrPC and enhancing mitochondrial function. Melatonin showed favorable therapeutic effects by successfully protecting CKD‐mMSCs from related ischemic conditions, thereby enhancing angiogenesis and survival. These results elucidate the mechanism underlying senescence inhibition by melatonin in stem cell‐based therapies using mouse‐derived CKD‐mMSCs.  相似文献   

11.
Several hypotheses regarding the mechanism underlying amphetamine-induced neurotoxicity have been proposed. One of them is based on the observation of free radical formation and oxidative stress produced by auto-oxidation of dopamine (DA). The formation of DA-related reactive oxygen species (ROS) such as superoxide and hydroxyl radicals appears to play an important role in amphetamine-induced neurotoxicity. Melatonin, the main secretory product of pineal gland, is well known for its protective effects that are currently attributed mainly to its radical scavenging and antioxidant properties. The present study was conducted to investigate the protective effects of melatonin on d-amphetamine (AMPH)-induced neurotoxicity in cultured human dopaminergic neuroblastoma SK-N-SH cells. Our data indicate that AMPH significantly reduces cell viability, induces oxidative stress (enhances ROS production and malondialdehyde levels), up-regulates alpha-synuclein expression and decreases intracellular ATP levels. However, pretreatment of SK-N-SH cells with melatonin prevents AMPH-induced loss of cell viability and induction of oxidative stress, while reducing alpha-synuclein expression and increasing ATP production. These results suggest that the antioxidant properties of melatonin may provide a protective mechanism against AMPH-induced neuronal degeneration.  相似文献   

12.
13.
线粒体是一种动态的细胞器,通过响应各种代谢和环境的信号, 分裂和融合改变其形态和结构,从而维持细胞的正常功能。它们短暂而快速的形态变化对于细胞周期、免疫、凋亡和线粒体自噬的质量控制等许多复杂的细胞过程至关重要。线粒体自噬与线粒体质量控制密切相关,通过将受损的功能障碍的线粒体转运到溶酶体进行降解,促进心肌细胞受损线粒体的更新,并有效地抑制功能障碍线粒体的积累。由于心脏作为一个复杂而高耗能的器官,心肌细胞严重地依赖线粒体氧化代谢过程作为其能量和营养供应的来源。许多研究表明,线粒体融合、分裂和线粒体自噬的诸多影响和调控功能的因子都与各种心血管疾病有关,维持线粒体的功能和其完整性对正常心肌细胞的运行是至关重要的。在这篇的综述中,我们将重点概述一下线粒体的融合、分裂和线粒体自噬的诸多调控因子与心血管疾病的最新研究进展。  相似文献   

14.
In Asia, the incidence of colorectal cancer has been increasing gradually due to a more Westernized lifestyle. The aim of study is to determine the interaction between melatonin‐induced cell death and cellular senescence. We treated HCT116 human colorectal adenocarcinoma cells with 10 μm melatonin and determined the levels of cell death‐related proteins and evaluated cell cycle kinetics. The plasma membrane melatonin receptor, MT1, was significantly decreased by melatonin in a time‐dependent manner, whereas the nuclear receptor, RORα, was increased only after 12 hr treatment. HCT116 cells, which upregulated both pro‐apoptotic Bax and anti‐apoptotic Bcl‐xL in the early response to melatonin treatment, activated autophagic as well as apoptotic machinery within 18 hr. Melatonin decreased the S‐phase population of the cells to 57% of the control at 48 hr, which was concomitant with a reduction in BrdU‐positive cells in the melatonin‐treated cell population. We found not only marked attenuation of E‐ and A‐type cyclins, but also increased expression of p16 and p‐p21. Compared to the cardiotoxicity of Trichostatin A in vitro, single or cumulative melatonin treatment induced insignificant detrimental effects on neonatal cardiomyocytes. We found that 10 μm melatonin activated cell death programs early and induced G1‐phase arrest at the advanced phase. Therefore, we suggest that melatonin is a potential chemotherapeutic agent for treatment of colon cancer, the effects of which are mediated by regulation of both cell death and senescence in cancerous cells with minimized cardiotoxicity.  相似文献   

15.
Defected mitochondrial respiratory chain (RC), in addition to causing a severe ATP deficiency, often augments reactive oxygen species (ROS) generation in mitochondria (mROS) which enhances pathological conditions and diseases. Previously, we demonstrated a potent endogenously RC defect-augmented mROS associated dose-dependently with a commonly seen large-scale deletion of 4977 base pairs of mitochondrial DNA (mtDNA), i.e. the common deletion (CD). As current treatments for CD-associated diseases are rather supplementary and ineffective, we investigated whether melatonin, a potential mitochondrial protector, provides beneficial protection for CD-augmented mitochondrial oxidative stress and apoptosis particularly upon the induction of a secondary oxidative stress. Detailed mechanistic investigations were performed by using laser scanning dual fluorescence imaging microscopy to provide precise spatial and temporal resolution of mitochondrial events at single cell level. We demonstrate, for the first time, that melatonin significantly prevents CD-augmented mROS formation under basal conditions as well as at early time-points upon secondary oxidative stress induced by H2O2 exposure. Thus, melatonin prevents mROS-mediated depolarization of mitochondrial membrane potential (DeltaPsim) and subsequent opening of the mitochondrial permeability transition pore (MPTP) and cytochrome c release. Moreover, melatonin prevents depletion of cardiolipin which appears to be crucial for postponing later MPTP opening, disruption of the mitochondrial membrane and apoptosis. Finally, the protection provided by melatonin is superior to those caused by the suppression of mitochondrial Ca2+ regulators including the mitochondrial Na+-Ca2) exchanger, the MPTP, and the mitochondrial Ca2+ uniporter and by antioxidants including vitamin E and mitochondria-targeted coenzyme Q, MitoQ. As RC defect-augmented endogenous mitochondrial oxidative stress is centrally involved in a variety of pathological conditions and diseases, melatonin thus may serve as a therapeutic drug to benefit many clinical conditions that involve malfunction of the mitochondria.  相似文献   

16.
Hyperphosphorylation of cytoskeletal proteins seen in Alzheimer's disease is most probably the result of an imbalanced regulation in protein kinases and protein phosphatases (PP) in the affected neurons. Previous studies have revealed that PP-2A and PP-1 play important roles in the pathogenesis. Employing human neuroblastoma cells, we found that 10 nM calyculin A (CA), a selective inhibitor of PP-2A and PP-1, significantly increased phosphorylation and accumulation of neurofilament (NF) in the cells. Levels of NF-M (middle chain) and NF-L (light chain) mRNA decreased after CA treatment. Additionally, CA led to a decreased cell viability determined by MTT and crystal violet assay. Melatonin efficiently protects the cell from CA-induced alterations in NF hyperphosphorylation and accumulation, suppressed NF gene expression as well as decreased cell viability. It is concluded that inhibition of PP-2A/PP-1 by CA induces abnormalities in NF metabolism and cell survival, and melatonin efficiently arrests the lesions.  相似文献   

17.
Melatonin, a major hormone of the pineal gland, exerts many beneficial effects on mitochondria. Several studies have shown that melatonin can protect against toxin-induced oocyte quality impairment during maturation. However, there is little information regarding the beneficial effects of melatonin on toxin-exposed early embryos, and the mechanisms underlying such effects have not been determined. Rotenone, a chemical widely used in agriculture, induces mitochondrial toxicity, therefore, damaging the reproductive system, impairing oocyte maturation, ovulation, and fertilization. We investigated whether melatonin attenuated rotenone exposure-induced impairment of embryo development by its mitochondrial protection effect. Activated oocytes were randomly assigned to four groups: the control, melatonin treatment, rotenone-exposed, and “rotenone + melatonin” groups. Treatment with melatonin abrogated rotenone-induced impairment of embryo development, mitochondrial dysfunction, and ATP deficiency, and significantly decreased oxidative stress and apoptosis. Melatonin also increased SIRT1 and PGC-1α expression, which promoted mitochondrial biogenesis. SIRT1 knockdown or pharmacological inhibition abolished melatonin's ability to revert rotenone-induced impairment. Thus, melatonin rescued rotenone-induced impairment of embryo development by reducing ROS production and promoting mitochondrial biogenesis. This study shows that melatonin rescues toxin-induced impairment of early porcine embryo development by promoting mitochondrial biogenesis.  相似文献   

18.
Mesenchymal stem cells (MSCs) are promising candidates for stem cell‐based therapy in ischemic diseases. However, ischemic injury induces pathophysiological conditions, such as oxidative stress and inflammation, which diminish therapeutic efficacy of MSC‐based therapy by reducing survival and functionality of transplanted MSCs. To overcome this problem, we explored the effects of melatonin on the proliferation, resistance to oxidative stress, and immunomodulatory properties of MSCs. Treatment with melatonin enhanced MSC proliferation and self‐renewal via upregulation of cellular prion protein (PrPC) expression. Melatonin diminished the extent of MSC apoptosis in oxidative stress conditions by regulating the levels of apoptosis‐associated proteins, such as BCL‐2, BAX, PARP‐1, and caspase‐3, in a PrPC‐dependent manner. In addition, melatonin regulated the immunomodulatory effects of MSCs via the PrPC‐IDO axis. In a murine hind‐limb ischemia model, melatonin‐stimulated MSCs improved the blood flow perfusion, limb salvage, and vessel regeneration by lowering the extent of apoptosis of affected local cells and transplanted MSCs as well as by reducing infiltration of macrophages. These melatonin‐mediated therapeutic effects were inhibited by silencing of PrPC expression. Our findings for the first time indicate that melatonin promotes MSC functionality and enhances MSC‐mediated neovascularization in ischemic tissues through the upregulation of PrPC expression. In conclusion, melatonin‐treated MSCs could provide a therapeutic strategy for vessel regeneration in ischemic disease, and the targeting of PrPC levels may prove instrumental for MSC‐based therapies.  相似文献   

19.
Autophagy is an intracellular turnover pathway. It has special relevance for neurodegenerative proteinopathies, such as Alzheimer disease, Parkinson disease, and Huntington disease (HD), which are characterized by the accumulation of misfolded proteins. Although induction of autophagy enhances clearance of misfolded protein and has therefore been suggested as a therapy for proteinopathies, neurons appear to be less responsive to classic autophagy inducers than nonneuronal cells. Searching for improved inducers of neuronal autophagy, we discovered an N10-substituted phenoxazine that, at proper doses, potently and safely up-regulated autophagy in neurons in an Akt- and mTOR-independent fashion. In a neuron model of HD, this compound was neuroprotective and decreased the accumulation of diffuse and aggregated misfolded protein. A structure/activity analysis with structurally similar compounds approved by the US Food and Drug Administration revealed a defined pharmacophore for inducing neuronal autophagy. This pharmacophore should prove useful in studying autophagy in neurons and in developing therapies for neurodegenerative proteinopathies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号