首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
The potent adenosine A(1) receptor agonists, N(6)-cyclopentyladenosine (CPA) and 2-chloro-N(6)-cyclopentyladenosine (CCPA), were studied in Chinese hamster ovary (CHO) cells expressing the human adenosine A(3) receptor. CPA, but not CCPA, induced phosphoinositide turnover. CPA inhibited forskolin-stimulated cyclic AMP production (EC(50) value of 242+/-47 nM). CCPA competitively antagonized the effects of agonist Cl-IB-MECA (2-chloro-N(6)-(3-iodobenzyl)-5'-N-methylcarbamoyladenosine) with K(B) value of 5.0 nM. CPA competition curves versus the A(3) antagonist radioligand [3H]PSB-11 (8-ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-imidazo[2.1-i]purin-5-one) were right-shifted four-fold by 100 microM GTP, which had no effect on binding of CCPA or the antagonist MRS 1220 (N-[9-chloro-2-(2-furanyl)[1,2,4]triazolo[1,5-c]quinazolin-5-yl]benzene-acetamide). Thus, CCPA is a moderately potent antagonist (K(i)=38 nM) of the human A(3) adenosine receptor.  相似文献   

2.
The specific events between initial presumably manageable drug intake and the development of a drug-addicted state are not yet known. Drugs of abuse have varying mechanisms of action that create a complex pattern of behaviour related to drug consumption, drug-seeking, withdrawal and relapse. The neuromodulator adenosine has been shown to play a role in reward-related behaviour, both as an independent mediator and via interactions of adenosine receptors with other receptors. Adenosine levels are elevated upon exposure to drugs of abuse and adenosine A(2A) receptors are enriched in brain nuclei known for their involvement in the processing of drug-related reinforcement processing. A(2A) receptors are found in receptor clusters with dopamine and glutamate receptors. A(2A) receptors are thus ideally situated to influence the signalling of neurotransmitters relevant in the neuronal responses and plasticity that underlie the development of drug taking and drug-seeking behaviour. In this review, we present evidence for the role of adenosine and A(2A) receptors in drug addiction, thereby providing support for current efforts aimed at developing drug therapies to combat substance abuse that target adenosine signalling via A(2A) receptors.  相似文献   

3.
To investigate if adenosine A2A receptor stimulation in vivo modulates dopamine D3 receptor binding, we analyzed the effects of 2-[p-(carboxyethyl)-phenylethylamino]-5'-N-ethylcarboxyamidoade nosine (CGS 21680) on the binding properties of the selective D3 receptor agonist [N-propyl-2,3,-3H]4aR,10bR-(+)-trans-3,4,4a,10b-tetrahydro-4 -n-propyl2H,5H-[1]benzopyrano[4,3-b]1,4-oxazin-9-ol ([3H]PD 128907) in the rat forebrain using quantitative autoradiography. Intraperitoneally administered CGS 21680 (0.1-3 mg/kg) increased the Kd and Bmax values of [3H]PD 128907 binding in the islands of Calleja and in subregions of the caudate-putamen. These results suggest that stimulation of adenosine A2A receptors in vivo causes alterations in the binding characteristics of dopamine D3 receptors in the basal ganglia, and that this effect may relate to the neuroleptic-like effect of adenosine A2A receptor agonists.  相似文献   

4.
1. 2-p-(2-carboxyethylphenethylamino-5'-ethylcarboxamidoadenosine) (CGS 21680) is considered the reference compound to study adenosine A(2A) receptors. However, CGS 21680 binding in the cerebral cortex, where adenosine A(1) receptors are predominant, displays a mixed A(2A)/A(1) receptor pharmacology. We now use adenosine A(1) and A(2A) receptor knockout mice to investigate the characteristics of cortical [(3)H]CGS 21680 binding. 2. [(3)H]CGS 21680 binding to the cerebral cortex was strongly reduced in adenosine A(1) receptor knockout mice, but only slightly reduced in A(2A) receptor knockout mice compared with the corresponding wild-type littermates. 3. Another selective A(2A) receptor ligand, [(3)H]-5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine ([(3)H]SCH 58261), displayed a saturable binding to mouse cortical membranes, albeit with a binding density 20 times lower than that of striatal membranes, and this [(3)H]SCH58261 binding was abolished in both striatal and cortical membranes of A(2A) receptor knockout mice and unchanged in A(1) receptor knockout mice. 4. The presence of A(2A) receptors in cortical neurons was further confirmed by Western blot in mouse cortical nerve terminal membranes. 5. It is concluded that, although A(2A) receptors are present in the cerebral cortex, the purportedly selective A(2A) receptor agonist [(3)H]CGS 21680 binds in the cerebral cortex to an entity that requires the presence of adenosine A(1) receptors. Thus, CGS 21680 should be used with care in all preparations where adenosine A(1) receptors out-number A(2A) receptors.  相似文献   

5.
Summary The adhesion of leukocytes to the endothelium of postcapillary venules hallmarks a key event in ischemia-reperfusion injury. Adenosine has been shown to protect from postischemic reperfusion injury, presumably through inhibition of postischemic leukocyte-endothelial interaction. This study was performed to investigate in vivo by which receptors the effect of adenosine on postischemic leukocyte-endothelium interaction is mediated.The hamster dorsal skinfold model and fluorescence microscopy were used for intravital investigation of red cell velocity, vessel diameter, and leukocyte-endothelium interaction in postcapillary venules of a thin striated skin muscle. Leukocytes were stained in vivo with acridine orange (0.5 mg kg–1 min–1 i.v.). Parameters were assessed prior to induction of 4 h ischemia to the muscle tissue and 0.5 h, 2 h, and 24 h after reperfusion. Adenosine, the adenosine A1-selective agonist 2-chloro-N6-cyclopentyladenosine (CCPA), the A2-selective agonist CGS 21,680, the non-selective adenosine receptor antagonist xanthine amine congener (XAC), and the adenosine uptake blocker S-(p-nitrobenzyl)-6-thioinosine (NBTI) were infused via jugular vein starting 15 min prior to release of ischemia until 0.5 h after reperfusion.Adenosine and CGS 21,689 significantly reduced postischemic leukocyte-endothelium interaction 0.5 h after reperfusion (p<0.01), while no inhibitory effect was observed with CCPA. Coadministration of XAC blocked the inhibitory effects of adenosine. Infusion of NBTI alone effectively decreased postischemic leukocyte-endothelium interaction.These findings indicate that adenosine reduces postischemic leukocyte-endothelium interaction via A2 receptor and suggest a protective role of endogenous adenosine during ischemia-reperfusion.Abbreviations AC adhesion coefficient - CAMAS computer-assisted microcirculation analysis system - CCPA 2-chloro-N6-cyclopentyladenosine - CGS21,680 2-[p-(2-carboxyethyl)-phenethylamino]-5-N-ethylcarboxamido-adenosine - DMSO dimethyl sulfoxide - NBTI S-p-(nitrobenzyl)-6-thioinosine - RBCV red blood cell velocity - WBCV white blood cell velocity - XAC xanthine amine congener Correspondence to D. Nolte at the above address  相似文献   

6.
According to the adenosine hypothesis of schizophrenia, the classically associated hyperdopaminergic state may be secondary to a loss of function of the adenosinergic system. Such a hypoadenosinergic state might either be due to a reduction of the extracellular levels of adenosine or alterations in the density of adenosine A2A receptors (A2ARs) or their degree of functional heteromerization with dopamine D2 receptors (D2R). In the present study, we provide preclinical and clinical evidences for this latter mechanism. Two animal models for the study of schizophrenia endophenotypes, namely the phencyclidine (PCP) mouse model and the A2AR knockout mice, were used to establish correlations between behavioural and molecular studies. In addition, a new AlphaLISA-based method was implemented to detect native A2AR-D2R heteromers in mouse and human brain. First, we observed a reduction of prepulse inhibition in A2AR knockout mice, similar to that observed in the PCP animal model of sensory gating impairment of schizophrenia, as well as a significant upregulation of striatal D2R without changes in A2AR expression in PCP-treated animals. In addition, PCP-treated animals showed a significant reduction of striatal A2AR-D2R heteromers, as demonstrated by the AlphaLISA-based method. A significant and pronounced reduction of A2AR-D2R heteromers was next demonstrated in postmortem caudate nucleus from schizophrenic subjects, even though both D2R and A2AR were upregulated. Finally, in PCP-treated animals, sub-chronic administration of haloperidol or clozapine counteracted the reduction of striatal A2AR-D2R heteromers. The degree of A2AR-D2R heteromer formation in schizophrenia might constitute a hallmark of the illness, which indeed should be further studied to establish possible correlations with chronic antipsychotic treatments.Subject terms: Schizophrenia, Neurochemistry  相似文献   

7.
The present work describes the synthesis of a pyrazinopurinedione derivative which was together with a series of pyrimidopurinedione derivatives tested for potential antiparkinsonian activity in two tests: the "oxotremorine" and the "reserpine" test. For the studies compounds which had shown affinity for the adenosine A(2A) receptor were chosen. One compound, a pyrazinopurinedione derivative, without affinity for A(2A) receptors, but showing adenosine A(1) receptor affinity was also investigated. The performed preliminary tests indicated that, contrary to the pyrazinopurinedione all pyrimidopurinediones demonstrated antiparkinsonian effects. As a result of present studies it may be concluded that antiparkinsonian effects of the examined compounds are correlated with the antagonistic activity toward adenosine A(2A) receptors in this class of compounds. However a direct correlation of the potency of both effects was not observed possibly due to different pharmacokinetic properties of the compounds. The most active derivatives of the present series were aryl-substituted pyrimidopurinediones.  相似文献   

8.
During the past years a number of potent and selective antagonists for the human A(3) adenosine receptor (AR) have been developed, including tricyclic compounds, such as triazoloquinazoline, pyrazolo-triazolopyridine, imidazopurinone, triazoloquinoxaline and pyrazoloquinoline derivatives. Bicyclic compounds include isoquinoline and related quinazoline derivatives. Monocyclic dihydropyridine and pyridine also proved to be potent selective A(3) AR antagonists. So far, no potent, selective antagonist is available for rodent A(3) ARs. Most of the A(3) AR antagonists are highly lipophilic and exhibit very poor water-solubility. Potential therapeutic applications for A(3) AR antagonists include inflammatory diseases, asthma, stroke, and glaucoma.  相似文献   

9.
Adenosine A(2A) receptor antagonists have been proposed as an effective therapy in the treatment of Parkinson's disease. To explore the possibility that dopamine denervation may produce modifications in adenosine A(2A) transmission, we measured the extracellular concentration of adenosine and adenosine A(2A) receptor mRNA in the striatum of rats infused unilaterally with 6-hydroxydopamine in the medial forebrain bundle. Fifteen days after 6-hydroxydopamine infusion, extracellular adenosine levels, measured by in vivo microdialysis, were significantly lower (-35%) in the dopamine-denervated striatum. At the time of the decrease in adenosine levels, an increase in striatal adenosine A(2A) receptor mRNA levels (+20%), measured by in situ hybridization, was observed. Modifications in adenosine A(2A) transmission, following nigrostriatal dopamine neuron degeneration, establish a potential neural basis for the effectiveness of adenosine A(2A) receptor antagonists in the treatment of Parkinson's disease.  相似文献   

10.
INTRODUCTION: Parkinson's disease (PD) is a progressive neurodegenerative disorder. To date, most of the currently available therapies in PD target the dopaminergic system and none of these therapeutic approaches have been proven to modify the course of the disease. To various extents, these drugs can also cause motor and non-motor complications. A novel target, the adenosine A(2A) receptor (AA2AR), was recently identified, blockade of which may alleviate Parkinsonian symptoms, reduce motor fluctuations and potentially afford neuroprotection. AREAS COVERED: This review is based on a PubMed search covering the relationship of the adenosine receptors and PD. The role of the AA2AR is reviewed and the results of preclinical investigations of antagonists are assessed. A synopsis of current drug development is provided, with a special focus on the pharmacokinetics and relevant clinical trials. EXPERT OPINION: The localization of the AA2AR in the central nervous system, the ultra structural localization and the molecular mechanism of its action reveal the potential importance of the AA2AR in movement disorders. The theoretical background and experimental data indicate that AA2AR antagonists may have a potential therapeutic effect in Parkinson's disease. More importantly, the putative neuroprotective effect needs further investigation.  相似文献   

11.
Adenosine A(2A) receptor knockout mice (A(2A)R KO) were compared to wild-type controls (A(2A)R WT) in a caffeine intake paradigm. When mice had ad libitum access to caffeine (0.3 g/l) and water in a two-bottle paradigm for 12 consecutive days, adenosine A(2A)R KO mice drank less caffeinated solution, demonstrating a reduced appetite for caffeine as compared to adenosine A(2A)R WT mice. These data reveal an important role for the adenosine A(2A) receptor in the appetitive properties of caffeine.  相似文献   

12.
The adenosine A(2A) receptor and the dopamine D(2) receptor are prototypically coupled to G(s) and G(i)/G(o), respectively. In striatal intermediate spiny neurons, these receptors are colocalized in dendritic spines and act as mutual antagonists. This antagonism has been proposed to occur at the level of the receptors or of receptor-G protein coupling. We tested this model in PC12 cells which endogenously express A(2A) receptors. The human D(2) receptor was introduced into PC12 cells by stable transfection. A(2A)-agonist-mediated inhibition of D(2) agonist binding was absent in PC12 cell membranes but present in HEK293 cells transfected as a control. However, in the resulting PC12 cell lines, the action of the D(2) agonist quinpirole depended on the expression level of the D(2) receptor: at low and high receptor levels, the A(2A)-agonist-induced elevation of cAMP was enhanced and inhibited, respectively. Forskolin-stimulated cAMP formation was invariably inhibited by quinpirole. The effects of quinpirole were abolished by pretreatment with pertussis toxin. A(2A)-receptor-mediated cAMP formation was inhibited by other G(i)/G(o)-coupled receptors that were either endogenously present (P(2y12)-like receptor for ADP) or stably expressed after transfection (A(1) adenosine, metabotropic glutamate receptor-7A). Similarly, voltage activated Ca(2+) channels were inhibited by the endogenous P(2Y) receptor and by the heterologously expressed A(1) receptor but not by the D(2) receptor. These data indicate functional segregation of signaling components. Our observations are thus compatible with the proposed model that D(2) and A(2A) receptors are closely associated, but they highlight the fact that this interaction can also support synergism.  相似文献   

13.
Long-term L-dopa treatment of Parkinson's disease can lose its effectiveness and cause development of motor complications such as dyskinesia. Furthermore, L-dopa therapy does not address the fundamental pathological process of dopaminergic neurodegeneration in Parkinson's disease. This prompts a search for an alternative or complementary therapy for Parkinson's disease to overcome these limitations. During the last 5 years, the adenosine A(2A) receptor has emerged as an attractive target for Parkinson's disease therapy, primarily because of its localized expression in striatum and motor enhancement function. Recent genetic and pharmacological studies indicate that A(2A) receptor antagonists also offer neuroprotective effects and may possibly modify chronic L-dopa-induced maladaptive responses in animal models of Parkinson's disease. This review summarizes multiple potential benefits of the A(2A) receptor blockade in treating the motor symptoms as well as the underlying dopaminergic neurodegeneration of Parkinson's disease.  相似文献   

14.
Adenosine A(2A) and dopamine D(2) receptors (A(2A) and D(2)) associate in homo- and heteromeric complexes in the striatum, providing a structural basis for their mutual antagonism. At the cellular level, the portion of receptors engaging in homo- and heteromers, as well as the effect of persistent receptor activation or antagonism on the cell oligomer repertoire, are largely unknown. We have used bimolecular fluorescence complementation (BiFC) to visualize A(2A) and D(2) oligomerization in the Cath.a differentiated neuronal cell model. Receptor fusions to BiFC fluorescent protein fragments retained their function when expressed alone or in A(2A)/A(2A), D(2)/D(2), and A(2A)/D(2) BiFC pairs. Robust fluorescence complementation reflecting A(2A)/D(2) heteromers was detected at the cell membrane as well as in endosomes. In contrast, weaker BiFC signals, largely confined to intracellular domains, were detected with A(2A)/dopamine D(1) BiFC pairs. Multicolor BiFC was used to simultaneously visualize A(2A) and D(2) homo- and heteromers in living cells and to examine drug-induced changes in receptor oligomers. Prolonged D(2) stimulation with quinpirole lead to the internalization of D(2)/D(2) and A(2A)/D(2) oligomers and resulted in decreased A(2A)/D(2) relative to A(2A)/A(2A) oligomer formation. Opposing effects were observed in cells treated with D(2) antagonists or with the A(2A) agonist 5'-N-methylcarboxamidoadenosine (MECA). Subsequent radioreceptor binding analysis indicated that the drug-induced changes in oligomer formation were not readily explained by alterations in receptor density. These observations support the hypothesis that long-term drug exposure differentially alters A(2A)/D(2) receptor oligomerization and provide the first demonstration for the use of BiFC to monitor drug-modulated GPCR oligomerization.  相似文献   

15.
4-(2-[7-amino-2-(2-furyl?1,2,4?-triazolo?2,3a?-?1,3, 5?triazin-5-yl-amino]ethyl)phenol (ZM 241385) has been used as an antagonist of adenosine A(2A) receptors, exhibiting high selectivity over adenosine A(1) receptors. We now report that ZM 241385 (10-50 nM) attenuated the inhibitory action of N(6)-cyclopentyladenosine (10 nM) and R(-)-N(6)-phenylisopropyladenosine (R-PIA, 20 nM), two selective adenosine A(1) receptor agonists, on hippocampal population spike amplitude. This effect is unlikely to be a direct antagonism of adenosine A(1) receptor since the K(i) of ZM 241385 to displace [3H]PIA (2 nM) binding, from hippocampal membranes ranged from 0.8 to 1.9 microM. These results question the usefulness of ZM 241385 to define adenosine A(2A) receptors actions in functional studies.  相似文献   

16.
Virtual screening was performed against experimentally enabled homology models of the adenosine A(2A) receptor, identifying a diverse range of ligand efficient antagonists (hit rate 9%). By use of ligand docking and Biophysical Mapping (BPM), hits 1 and 5 were optimized to potent and selective lead molecules (11-13 from 5, pK(I) = 7.5-8.5, 13- to >100-fold selective versus adenosine A(1); 14-16 from 1, pK(I) = 7.9-9.0, 19- to 59-fold selective).  相似文献   

17.
Cell surface A(2A) adenosine receptor (A(2A)R) mediated signalling affects a variety of important processes and adenosine analogues possess promising pharmacological properties. Demonstrating the receptor specificity of potentially lymphotoxic adenosine-based drugs facilitates their development for clinical applications. To distinguish between the receptor-dependent and -independent lymphotoxicity and apoptotic activity of adenosine and its analogues we used lymphocytes from A(2A)R-deficient mice. Comparison of A(2A)R-expressing (+/+) and A(2A)R-deficient (-/-) cells in cyclic AMP accumulation assays confirmed that the A(2A)R agonist CGS 21680 is indeed selective for A(2A) receptors in T-lymphocytes. Incubation of A(2A)R-expressing thymocytes with extracellular adenosine or CGS 21680 in vitro results in the death of about 7-15% of thymocytes. In contrast, no death was induced in parallel assays in cells from A(2A)R-deficient mice, providing genetic evidence that CGS 21680 does not display adenosine receptor-independent intracellular cytotoxicity. The A(2A) receptor-specific lymphotoxicity of CGS 21680 is also demonstrated in a long-term (6-day) in vitro model of thymocyte positive selection where addition of A(2A)R antagonist ZM 241,385 did block the effects of CGS 21680, allowing the survival of T cells. The use of cells from adenosine receptor-deficient animals is proposed as a part of the screening process for potential adenosine-based drugs for their receptor-independent cytotoxicity and lymphotoxicity.  相似文献   

18.
We describe the synthesis of new high affinity and selective A(3)-adenosine receptor (A(3)-AdoR) agonists. Introduction of a methyl group at the N(6)-position of the A(2A)-AdoR selective 2-pyrazolyl-adenosine analogues (Figure 2) brought about a substantial increase in the A(3)-AdoR binding affinity and selectivity. While the N(6)-desmethyl analogues 3a and 4 were inactive at the A(3)-AdoR (K(i) > 10 microM), the corresponding N(6)-methyl analogues 5 and 22 showed good binding affinity at the A(3)-AdoR (K(i) = 73 and 97 nM, respectively). Replacement of the carboxamide group in 5 with different heteroaryl groups resulted in analogues with high affinities and selectivity for the A(3)-AdoR. (2R,3S,4R)-tetrahydro-2-(hydroxymethyl)-5-(6-(methylamino)-2-(4-(pyridin-2-yl)-1H-pyrazol-1-yl)-9H-purin-9-yl)furan-3,4-diol (15, K(i) = 2 nM) displayed high selectivity for the A(3)-AdoR versus A(1)- and A(2A)-AdoRs (selectivity ratios of 1900 and >2000, respectively).  相似文献   

19.
The molecular mechanisms of interaction between G(s) and the A(2A) adenosine receptor were investigated using synthetic peptides corresponding to various segments of the Galpha(s) carboxyl terminus. Synthetic peptides were tested for their ability to modulate binding of a selective radiolabeled agonist, [(3)H]2-[4-(2-carboxyethyl)phenylethylamino]-5'-N-ethylcarboxam idoade nosine ([(3)H]CGS21680), to A(2A) adenosine receptors in rat striatal membranes. The Galpha(s) peptides stimulated specific binding both in the presence and absence of 100 microM guanosine-5'-O-(3-thiotriphosphate) (GTPgammaS). Three peptides, Galpha(s)(378-394)C(379)A, Galpha(s)(376-394)C(379)A, and Galpha(s)(374-394)C(379)A, were the most effective. In the presence of GTPgammaS, peptide Galpha(s)(374-394)C(379)A increased specific binding in a dose-dependent fashion. However, the peptide did not stabilize the high-affinity state of the A(2A) adenosine receptor for [(3)H]CGS21680. Binding assays with a radiolabeled selective antagonist, [(3)H]5-amino-7-(2-phenylethyl)-2-(2-furyl)pyrazolo[4, 3-e]-1,2,4-triazolo[1,5-c]pyrimidine ([(3)H]SCH58261), showed that the addition of the Galpha(s) peptide modified the slope of the 5'-N-ethylcarboxamidoadenosine (NECA) competition curve, suggesting modulation of receptor affinity states. In the presence of GTPgammaS, the displacement curve was right-shifted, whereas the addition of Galpha(s)(374-394)C(379)A caused a partial left-shift. Both curves were fitted by one-site models. This same Galpha(s) peptide was also able to disrupt G(s)-coupled signal transduction as indicated by inhibition of the A(2A) receptor-stimulated adenylyl cyclase activity without affecting either basal or forskolin-stimulated enzymatic activity in the same membrane preparations. Shorter peptides from Galpha(s) and Galpha(i1/2) carboxyl termini were not effective. NMR spectroscopy showed the strong propensity of peptide Galpha(s)(374-394)C(379)A to assume a compact carboxyl-terminal alpha-helical conformation in solution. Overall, our results point out the conformation requirement of Galpha(s) carboxyl-terminal peptides to modulate agonist binding to rat A(2A) adenosine receptors and disrupt signal transduction.  相似文献   

20.
The broad spectrum anti-inflammatory actions of adenosine A(2A) receptor agonists are well described. The wide distribution of this receptor, however, suggests that the therapeutic potential of these agents is likely to reside in topical treatments to avoid systemic side effects associated with oral administration. Adenosine A(2A) receptor agonists have been assessed as topical agents: GW328267X (GSK; allergic rhinitis and asthma), UK-432097 (Pfizer; chronic obstructive pulmonary disease [COPD]) and Sonedenoson (MRE0094, King Pharmaceuticals; wound healing). All trials failed to achieve effects against the desired clinical end points. This broad-based review will discuss general principles of chemical design of topically applied agents and potential therapeutic topical applications of current adenosine A(2A) receptor agonists. Potential factors contributing to the lack of efficacy in the above clinical trials will be discussed together with design principles, which may influence efficacy in disease states. Our analysis suggests that adenosine A(2A) receptor agonists have a wide therapeutic potential as topical agents in a wide variety of diseases, such as neutrophil-dependent lung diseases (acute lung injury, exacerbations in asthma and COPD), allergic rhinitis, glaucoma and wound repair. Factors that will influence topical activity include formulation, tissue retention, compound potency, receptor kinetics and pharmacokinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号