首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA repair gene XRCC1 polymorphisms, smoking, and esophageal cancer risk   总被引:11,自引:0,他引:11  
To investigate the effect of X-ray repair cross complementing 1 (XRCC1) genetic polymorphisms on esophageal cancer risk, we determined XRCC1 polymorphisms at codon 194 (Arg --> Trp) and codon 399 (Arg --> Gln) in 135 patients with esophageal squamous cell carcinoma (ESCC) and 152 normal controls from hospitals. Although polymorphism at codon 194 was not associated with risk for ESCC, we found that the frequency of XRCC1 399 Gln/Gln genotype in ESCC patients (14.1%) was significantly higher than that in normal controls (3.3%), and that XRCC1 399 Gln/Gln genotype was associated with an increased risk of ESCC (odds ratio (OR) = 5.15, 95% confidence interval (CI): 2.42-0.93). In addition, we found that the risk for smoker increased 4.2-fold than non-smokers in the 399 Gln/Gln genotype (OR = 4.20, 95% CI: 2.37-7.44). These results suggest that XRCC1 399 Gln/Gln genotype may contribute to the risk of ESCC and modify risk associated with smoking.  相似文献   

2.
DNA damage is thought to play a critical role in the development of colorectal adenoma. Variation in DNA repair genes may alter their capacity to correct endogenous and exogenous DNA damage. We explored the association between common single-nucleotide polymorphisms (SNPs) in DNA repair genes and adenoma risk with a case-control study nested in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. A total of 1338 left sided, advanced colorectal adenoma cases and 1503 matched controls free of left-sided polyps were included in the study. Using DNA extracted from blood, 3144 tag SNPs in 149 DNA repair genes were successfully genotyped. Among Caucasians, 30 SNPs were associated with adenoma risk at P < 0.01, with four SNPs remaining significant after gene-based adjustment for multiple testing. The most significant finding was for a non-synonymous SNP (rs9350) in Exonuclease-1 (EXO1) [odds ratio (OR) = 1.30, 95% confidence interval (CI) = 1.11-1.51, P = 0.001)], which was predicted to be damaging using bioinformatics methods. However, the association was limited to smokers with a strong risk for current smokers (OR = 2.15, 95% CI = 1.27-3.65) and an intermediate risk for former smokers (OR = 1.45, 95% CI = 1.14-1.82) and no association for never smokers (OR = 0.98, 95% CI = 0.76-1.25) (P(interaction) = 0.002). Among the top findings, an SNP (rs17503908) in ataxia telangiectasia mutated (ATM) was inversely related to adenoma risk (OR = 0.75, 95% CI = 0.63-0.91). The association was restricted to never smokers (OR = 0.55, 95% CI = 0.40-0.76) with no increased risk observed among smokers (OR = 0.89, 95% CI = 0.70-1.13) (P(interaction) = 0.006). This large comprehensive study, which evaluated all presently known DNA repair genes, suggests that polymorphisms in EXO1 and ATM may be associated with risk for advanced colorectal adenoma with the associations modified by tobacco-smoking status.  相似文献   

3.
DNA repair gene XRCC1 polymorphisms, smoking, and bladder cancer risk.   总被引:16,自引:0,他引:16  
Bladder cancer is the sixth most common cancer in the United States. The main identified risk factor is cigarette smoking, which is estimated to contribute to up to 50% of new cases in men and 20% in women. Besides containing other carcinogens, cigarette smoke is a rich source of reactive oxygen species (ROS) that can induce a variety of DNA damage, some of which is repaired by the base excision repair (BER) pathway. The XRCC1 gene protein plays an important role in BER by serving as a scaffold for other repair enzymes and by recognizing single-strand DNA breaks. Three polymorphisms that induce amino acid changes have been found in codon 194 (exon 6), codon 280 (exon 9), and codon 399 (exon 10) of this gene. We tested whether polymorphisms in XRCC1 were associated with bladder cancer risk and whether this association was modified by cigarette smoking. Therefore, we genotyped for the three polymorphisms in 235 bladder cancer cases and 213 controls who had been frequency matched to cases on age, sex, and ethnicity. We found no evidence of an association between the codon 280 variant and bladder cancer risk [odds ratio (OR), 1.2; 95% confidence interval (CI), 0.6-2.6]. We found some evidence of a protective effect for subjects that carried at least one copy of the codon 194 variant allele relative to those homozygous for the common allele (OR, 0.59; 95% CI, 0.3-1.0). The combined analysis with smoking history suggested a possible gene-exposure interaction; however, the results were not statistically significant. Similarly, for the codon 399 polymorphism, our data suggested a protective effect of the homozygous variant genotype relative to carriers of either one or two copies of the common allele (OR, 0.70; 95% CI, 0.4-1.3), and provided limited evidence, albeit not statistically significant, for a gene-smoking interaction.  相似文献   

4.
XRCC1单核苷酸多态性与结直肠癌风险的关系   总被引:3,自引:0,他引:3  
Jin MJ  Chen K  Zhang Y  Zhang W  Liu B  Zhang YJ 《癌症》2007,26(3):274-279
背景与目的:X线交叉互补基因1(X-ray repair cross complementing group 1,XRCC1)编码蛋白在DNA单链断裂修复和DNA碱基修复过程中起重要作用.该基因外显子多态性的存在可影响编码蛋白的功能活性,最终使机体对癌症的易感性发生变化.本研究旨在探讨该基因外显子最常见的3处单核苷酸多态(single nucleotide polymorphism,SNP)--C26304T、G27466A和G28152A与结直肠癌风险的关系.方法:以聚合酶链反应(polymerase chain reaction,PCR)和限制性片段长度多态性(restrictive fragment length polymorphism,RFLP)分析方法,检测207例结直肠癌病例和621例成组匹配的正常对照XRCC1 C26304T、G27466A和G28152A基因型,并比较不同基因型与结直肠癌风险的关系.采用EH Linkage Software 1.2统计分析软件对研究对象的单体型分布进行预测.结果:年龄、性别、身体质量指数(body mass index,BMI)等个体特征,以及吸烟、饮酒等常见环境暴露因素的分布和/或构成比在结直肠癌病例组和对照组间差异均无显著性(P>0.05).对XRCC1各多态基因型检测分型发现,结直肠癌病例组携带26304T、27466A和28152A变异等位基因的频率分别为29.95%、11.22%和28.22%,对照组分别为32.87%、12.34%和27.27%,各多态等位基因在两组间分布均没有显著性差异(P>0.05).各多态基因型分布经x2拟合优度检验均符合Hardy-Weinberg平衡定律,且在两组间都没有显著性差异(P>0.05).没有观察到各多态基因型与结直肠癌发病风险存在显著相关关系(P>0.05).单体型分析发现,各变异等位基因在病例组和对照组内均存在遗传连锁不平衡现象,CGG、CGA、CAG和TGG是最常见的4类单体型,其在两组的分布频率总和分别为95.54%和96.64%,然而在两组间同样不存在显著性差异(P>0.05).结论:我国浙江省嘉善县人群中,XRCC1 C26304T、G27466A和G28152A基因多态性与结直肠癌发病风险不存在相关性,然而各变异等位基因存在遗传连锁不平衡现象,CGG、CGA、CAG和TGG是最常见的4类单体型.  相似文献   

5.
The X-ray repair cross-complementing group 3 (XRCC3) in homologous recombination repair (HRR) pathway plays a vital role in DNA double-strand break repair (DSBR). Variants in the XRCC3 gene might result in altered protein structure or function which may influence DSBR efficiency and lead to cancer. Numerous epidemiological studies have been conducted to evaluate the association between XRCC3 polymorphisms and bladder cancer risk. However, the results of these previous studies have been inconsistent. To derive a more precise estimation of the association, we performed a meta-analysis of all available studies relating XRCC3 polymorphisms and bladder cancer. All studies published up to April 2013 on the association between XRCC3 polymorphisms and bladder cancer risk were identified by searching electronic databases PubMed, EMBASE, and Chinese Biomedical Literature databases. The association between the XRCC3 polymorphisms and bladder cancer risk was assessed by odds ratios (ORs) together with their 95 % confidence intervals (CIs). A total of 16 case–control studies met the inclusion criteria and were selected. With respect to C18067T polymorphism, significant increased bladder cancer risk was found when all eligible studies were pooled into the meta-analysis (TT vs. CC: OR?=?1.174, 95%CI?=?1.033–1.335, P?=?0.014 and recessive model TT vs. TC?+?CC: OR?=?1.147, 95 %CI?=?1.020–1.290, P?=?0.022, respectively). The results were still significant after excluding the Hardy–Weinberg equilibrium violation studies (TT vs. CC: OR?=?1.178, 95 %CI?=?1.036–1.339, P?=?0.013 and recessive model TT vs. TC?+?CC: OR?=?1.144, 95 %CI?=?1.017–1.287, P?=?0.025, respectively). In subgroup analysis by ethnicity, significant elevated risk was found among Asians (dominant model TT?+?TC vs. CC: OR?=?1.285, 95 %CI?=?1.012–1.631). In the subgroup analyses according to smoking status, no significant association was detected in all genetic comparison models. With respect to A17893G and A4541G polymorphisms, no significant association with bladder cancer risk was observed in the overall and subgroup analyses. This meta-analysis suggests that the XRCC3 C18067T polymorphism was associated with increased bladder cancer risk especially among Asians. However, the XRCC3 A17893G and A4541G polymorphisms may not play important roles in bladder carcinogenesis. Further studies with larger sample sizes are needed to validate our finds.  相似文献   

6.
Objective: A number of studies have reported the association of "XPA", "XPC", "XPD/ERCC2" gene polymorphisms with lung cancer risk. However, the results were conflict. To clarify the impact of polymorphisms of "XPA", "XPC", "XPD/ERCC2", on lung cancer risk, a meta-analysis was performed in this study. Methods: The electronic databases PubMed and Embase were retrieved for studies included in this meta-analysis by "XPA", "XPC", "XPD/ERCC2", "lung", "cancer/neoplasm/tumor/carcinoma", "polymorphism" (An upper date limit of October, 31, 2009). A meta-analysis was performed to evaluate the relationship among XPA, XPC and XPD polymorphism and lung cancer risks. Results: A total of 31 publications retrieved from Pubmed and Embase included in this study. XPC A939C CC genotype increased lung cancer risk in total population (recessive genetic model: OR=1.23, 95% CI:1.05-1.44; homozygote comparison: OR=1.21,95%CI:1.02-1.43and CC vs. CA contrast: OR=1.25,95%CI:1.06-1.48), except in Asians. XPD A751C, 751C allele and CC genotype also increased lung cancer risk in total population and in Caucasians (recessive genetic model: Total population: OR=1.20, 95%CI:1.07-1.35). No significant correlation was found between XPD A751C and lung cancer risk in Asians and African Americans. XPD G312A AA genotype increased lung cancer risk in total population, in Asians and Caucasians(recessive genetic model: Total population: OR=1.20, 95%CI: 1.06-1.36). No significant association was found between XPA G23A, XPC C499T, XPD C156A and lung cancer risk. Conclusion: Our results suggest that the polymorphisms in XPC and XPD involve in lung cancer risks. XPA polymorphisms is less related to lung cancer risk.  相似文献   

7.
Rare germline variants in mismatch repair genes have been linked to hereditary nonpolyposis colorectal cancer; however, it is unknown whether common polymorphisms in these genes alter the risk of colorectal cancer. To examine the association between common variants in mismatch repair genes and colorectal cancer, we conducted a case-cohort study within the CLUE II cohort. Four single nucleotide polymorphisms in 3 mismatch repair genes (MSH3 R940Q, MSH3 T1036A, MSH6 G39E and MLH1 I219V) were genotyped in 237 colorectal cancer cases and a subcohort of 2,189 participants. Incidence rate ratios (RRs) and 95% confidence intervals (95% CIs) for each polymorphism were estimated. The MSH3 1036A variant was found to be associated with an increased risk of colorectal cancer (RR=1.28, 95% CI: 0.94-1.74 and RR=1.65, 95% CI: 1.01-2.70 for the AT and TT genotypes, respectively, with p(trend)=0.02), particularly proximal colon cancer. Although the MSH3 940Q variant was only weakly associated with colorectal cancer overall (p(trend)=0.07), it was associated with a significant increased risk of proximal colon cancer (RR=1.69, 95% CI: 1.10-2.61 and RR=2.68, 95% CI: 0.96-7.47 for the RQ and QQ genotypes, respectively with p(trend)=0.005). Processed meat intake appeared to modify the association between the MSH3 polymorphisms and colorectal cancer (p(interaction) < 0.10 for both). No association was observed with the MSH6 and MLH1 polymorphisms overall. This study suggests that common polymorphisms in the mismatch repair gene, MSH3, may increase the risk of colorectal cancer, especially proximal colon cancer.  相似文献   

8.
OBJECTIVES: Nucleotide excision repair enzymes remove bulky damage caused by environmental agents, including carcinogenic polycyclic aromatic hydrocarbons found in cigarette smoke, a risk factor for colorectal adenoma. Among participants randomized to the screening arm of the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, we studied the risk of advanced colorectal adenoma in relation to cigarette smoking and selected single nucleotide polymorphisms (SNP) in the nucleotide excision repair pathway.METHODS: Cases (n = 772) were subjects with left-sided advanced adenoma (>1 cm in size, high-grade dysplasia, or villous characteristics). Controls (n = 777) were screen-negative for left-sided polyps by sigmoidoscopy. DNA was extracted from blood samples and 15 common nonsynonymous SNPs in seven-nucleotide excision repair genes [XPC, RAD23B (hHR23B), CSB (ERCC6), XPD (ERCC2), CCNH, XPF (ERCC4), and XPG (ERCC5)] were genotyped.RESULTS: None of the studied SNPs were independently associated with advanced adenoma risk. Smoking was related to adenoma risk and XPC polymorphisms (R492H, A499V, K939Q) modified these effects (P(interaction) from 0.03-0.003). Although the three XPC variants were in linkage disequilibrium, a multivariate logistic regression tended to show independent protective effects for XPC 499V (P(trend) = 0.06), a finding supported by haplotype analysis (covariate-adjusted global permutation P = 0.03).CONCLUSIONS: Examining a spectrum of polymorphic variants in nucleotide excision repair genes, we found evidence that smoking-associated risks for advanced colorectal adenoma are modified by polymorphisms in XPC, particularly haplotypes containing XPC 499V.  相似文献   

9.
DNA repair gene XRCC1 and XPD polymorphisms and risk of prostate cancer.   总被引:11,自引:0,他引:11  
The X-ray repair cross-complementing group 1 (XRCC1) and xeroderma pigmentosum group D (XPD) genes are involved in base excision repair and nucleotide excision repair of DNA repair pathways, respectively. A growing body of evidence suggests that XRCC1 and XPD are important in environmentally induced cancers, and polymorphisms in both genes have been identified. To determine whether the XRCC1 (codon Arg399Gln) and XPD (codon Asp312Asn and codon Lys751Gln) polymorphisms are associated with prostate cancer susceptibility, we genotyped these polymorphisms in a primarily Caucasian sample of 506 sibships (n = 1,117) ascertained through a brother with prostate cancer. Sibships were analyzed with a Cox proportional hazards model with age at prostate cancer diagnosis as the outcome. Of the three polymorphisms investigated, only the XPD codon 312 Asn/Asn genotype had an odds ratio (OR) significantly different from one (OR, 1.61; 95% CI, 1.03-2.53). Analyses stratified by the clinical characteristics of affected brothers in the sibship did not reveal any significant heterogeneity in risk. In exploring two-way gene interactions, we found a markedly elevated risk for the combination of the XPD codon 312 Asn/Asn and XRCC1 codon 399 Gln/Gln genotypes (OR, 4.81; 95% CI, 1.66-13.97). In summary, our results suggest that the XPD codon 312 Asn allele may exert a modest positive effect on prostate cancer risk when two copies of the allele are present, and this effect is enhanced by the XRCC codon 399 Gln allele in its recessive state.  相似文献   

10.

Background  

Colorectal cancer (CRC), which has become especially prevalent in developed countries, is currently the third highest cause of cancer mortality in Taiwan. Mutation of the adenomatous polyposis coli (APC) gene, a tumour suppressor, is thought to be an early event in colorectal tumourigenesis. To date, however, no large-scale screening for APC gene variants in Chinese subjects has been performed. The present study was undertaken to identify APC gene variants that are significantly associated with the occurrence of CRC in Taiwanese subjects.  相似文献   

11.
Genetic polymorphisms in DNA repair genes and risk of lung cancer   总被引:47,自引:0,他引:47  
Polymorphisms in DNA repair genes may be associated with differences in the repair efficiency of DNA damage and may influence an individual's risk of lung cancer. The frequencies of several amino acid substitutions in XRCC1 (Arg194Trp, Arg280His and Arg399Gln), XRCC3 (Thr241Met), XPD (Ile199Met, His201Tyr, Asp312Asn and Lys751Gln) and XPF (Pro379Ser) genes were studied in 96 non-small-cell lung cancer (NSCLC) cases and in 96 healthy controls matched for age, gender and cigarette smoking. The XPD codon 312 Asp/Asp genotype was found to have almost twice the risk of lung cancer when the Asp/Asn + Asn/Asn combined genotype served as reference [odds ratio (OR) 1.86, 95% confidence interval (CI), 1.02-3.40]. In light cigarette smokers (less than the median of 34.5 pack-years), the XPD codon 312 Asp/Asp genotype was more frequent among cases than in controls and was associated with an increased risk of NSCLC. Compared with the Asn/Asn carriers, the OR in light smokers with the Asp/Asn genotype was 1.70 (CI0.35 0.43-6.74) and the OR in those with the Asp/Asp genotype was 5.32 (CI0.35-21.02) (P trend = 0.01). The 312 Asp/Asp genotype was not associated with lung cancer risk in never-smokers or heavy smokers (>34.5 pack-years). The XPD-312Asp and -751Lys polymorphisms were in linkage disequilibrium in the group studied; this finding was further supported by pedigree analysis of four families from Utah. The XPD 312Asp amino acid is evolutionarily conserved and is located in the seven-motif helicase domain of the RecQ family of DNA helicases. Our results indicate that these polymorphisms in the XPD gene should be investigated further for the possible attenuation of DNA repair and apoptotic functions and that additional molecular epidemiological studies are warranted to extend these findings.  相似文献   

12.
In this study we determined the effect of single nucleotide polymorphisms in the XPG gene on DNA repair and breast cancer susceptibility. Ninety individuals, with previously studied DNA repair rate at 24 hr of 2 types of UV-specific cyclobutane pyrimidines dimers (CPDs) in skin were genotyped for XPG polymorphism at codon 1104 (exon 15 G>C; Asp > His). The repair rate of TT=C dimer was similar in both wild-type GG homozygotes and GC heterozygotes, whereas, for TT=T, dimer repair was non-significantly (Student's t-test, p = 0.34) lower in GC heterozygotes than wild-type GG homozygotes. Genotyping of 220 breast cancer cases and 308 controls for the same single nucleotide polymorphism in exon 15 of the XPG gene exhibited marginally significant increased frequency of the variant allele (chi(2) 3.84, p = 0.05; OR 1.33, 95% CI 1.0-1.8) in cases (C-allele 0.29) compared to controls (C-allele 0.24). Combined heterozygote and variant homozygote genotype frequency was also higher in cases than controls (chi(2) 4.79, p = 0.03; OR 1.50, 95%CI 1.04-2.16).  相似文献   

13.
Genetic variations in the XPD gene may increase cancer susceptibility by affecting the capacity for DNA repair. Several studies have investigated this possibility; however, the conclusions remain controversial. Therefore, we did a systematic review and executed a meta-analysis to explore the association. From 56 studies, a total of 61 comparisons included 25,932 cases and 27,733 controls concerning the Lys 751Gln polymorphism; 35 comparisons included 16,781 cases and 18,879 controls in the case of Asp 312 Asn were reviewed. In this analysis, small associations of the XPD Lys 751 Gln polymorphism with cancer risk for esophageal cancer [for Lys/Gln versus Lys/Lys: odds ratio (OR), 1.34; 95% confidence interval (95% CI), 1.10-1.64; for Gln/Gln versus Lys/Lys: OR, 1.61; 95% CI, 1.16-2.25] and acute lymphoblastic leukemia (for Gln/Gln versus Lys/Lys: OR, 1.83; 95% CI, 1.21-2.75) are revealed. Overall, individuals with the Gln/Gln genotype have a small cancer risk compared with Lys/Lys genotype for the reviewed cancer in total (OR, 1.10; 95% CI, 1.03-1.16). Subtle but significant cancer risk was observed for the XPD Asp 312 Asn polymorphism in bladder cancer (for Asp/Asn versus Asp/Asp: OR, 1.24; 95% CI, 1.06-1.46). No significant associations were found for other cancers separately and all the reviewed cancer in total assessed for the Asp 312 Asn polymorphism. Our study suggests that XPD is a candidate gene for cancer susceptibility regardless of environmental factors.  相似文献   

14.

Purpose.

DNA mismatch repair (MMR) maintains genomic stability and mediates cellular response to DNA damage. We aim to demonstrate whether MMR genetic variants affect overall survival (OS) in pancreatic cancer.

Materials and Methods.

Using the Sequenom method in genomic DNA, we retrospectively genotyped 102 single-nucleotide polymorphisms (SNPs) of 13 MMR genes from 706 patients with pancreatic adenocarcinoma seen at The University of Texas MD Anderson Cancer Center. Association between genotype and OS was evaluated using multivariable Cox proportional hazard regression models.

Results.

At a false discovery rate of 1% (p ≤ .0015), 15 SNPs of EXO1, MLH1, MSH2, MSH3, MSH6, PMS2, PMS2L3, TP73, and TREX1 in patients with localized disease (n = 333) and 6 SNPs of MSH3, MSH6, and TP73 in patients with locally advanced or metastatic disease (n = 373) were significantly associated with OS. In multivariable Cox proportional hazard regression models, SNPs of EXO1, MSH2, MSH3, PMS2L3, and TP73 in patients with localized disease, MSH2, MSH3, MSH6, and TP73 in patients with locally advanced or metastatic disease, and EXO1, MGMT, MSH2, MSH3, MSH6, PMS2L3, and TP73 in all patients remained significant predictors for OS (p ≤ .0015) after adjusting for all clinical predictors and all SNPs with p ≤ .0015 in single-locus analysis. Sixteen haplotypes of EXO1, MLH1, MSH2, MSH3, MSH6, PMS2, PMS2L3, RECQL, TP73, and TREX1 significantly correlated with OS in all patients (p ≤ .001).

Conclusion.

MMR gene variants may have potential value as prognostic markers for OS in pancreatic cancer patients.  相似文献   

15.
DNA repair polymorphisms and cancer risk in non-smokers in a cohort study   总被引:12,自引:0,他引:12  
Environmental carcinogens contained in air pollution, such as polycyclic aromatic hydrocarbons, aromatic amines or N-nitroso compounds, predominantly form DNA adducts but can also generate interstrand cross-links and reactive oxygen species. If unrepaired, such lesions increase the risk of somatic mutations and cancer. Our study investigated the relationships between 22 polymorphisms (and their haplotypes) in 16 DNA repair genes belonging to different repair pathways in 1094 controls and 567 cancer cases (bladder cancer, 131; lung cancer, 134; oral-pharyngeal cancer, 41; laryngeal cancer, 47; leukaemia, 179; death from emphysema and chronic obstructive pulmonary disease, 84). The design was a case-control study nested within a prospective investigation. Among the many comparisons, few polymorphisms were associated with the diseases at the univariate analysis: XRCC1-399 Gln/Gln variant homozygotes [odds ratios (OR) = 2.20, 95% confidence intervals (CI) = 1.16-4.17] and XRCC3-241 Met/Met homozygotes (OR = 0.51, 95% CI = 0.27-0.96) and leukaemia. The recessive model in the stepwise multivariate analysis revealed a possible protective effect of XRCC1-399Gln/Gln in lung cancer (OR = 0.22, 95% CI = 0.05-0.98), and confirmed an opposite effect (OR = 2.47, 95% CI = 1.02-6.02) in the leukaemia group. Our results also suggest that the XPD/ERCC1-GAT haplotype may modulate leukaemia (OR = 1.28, 95% CI = 1.02-1.61), bladder cancer (OR = 1.38, 95% CI = 1.06-1.79) and possibly other cancer risks. Further investigations of the combined effects of polymorphisms within these DNA repair genes, smoking and other risk factors may help to clarify the influence of genetic variation in the carcinogenic process.  相似文献   

16.
Although the etiology of primary brain tumors is largely unknown, prior studies suggest that DNA repair polymorphisms may influence risk of glioma. Altered DNA repair is also likely to affect the risk of meningioma and acoustic neuroma, but these tumors have not been well studied. We estimated the risk of glioma (n = 362), meningioma (n = 134), and acoustic neuroma (n = 69) in non-Hispanic whites with respect to 36 single nucleotide polymorphisms from 26 genes involved in DNA repair in a hospital-based, case–control study conducted by the National Cancer Institute. We observed significantly increased risk of meningioma with the T variant of GLTSCR1 rs1035938 (ORCT/TT = 3.5; 95% confidence interval: 1.8–6.9; Ptrend .0006), which persisted after controlling for multiple comparisons (P = .019). Significantly increased meningioma risk was also observed for the minor allele variants of ERCC4 rs1800067 (Ptrend .01); MUTYH rs3219466 (Ptrend .02), and PCNA rs25406 (Ptrend .03). The NBN rs1805794 minor allele variant was associated with decreased meningioma risk (Ptrend .006). Risk of acoustic neuroma was increased for the ERCC2 rs1799793 (Ptrend .03) and ERCC5 rs17655 (Ptrend .05) variants and decreased for the PARP1 rs1136410 (Ptrend .03). Decreased glioma risk was observed with the XRCC1 rs1799782 variant (Ptrend .04). Our results suggest that common DNA repair variants may affect the risk of adult brain tumors, especially meningioma.  相似文献   

17.
Chen S  Tang D  Xue K  Xu L  Ma G  Hsu Y  Cho SS 《Carcinogenesis》2002,23(8):1321-1325
X-ray repair cross-complementing group 1 (XRCC1) and xeroderma pigmentosum group D (XPD) are mainly involved in base excision repair (BER) and nucleotide excision repair (NER) of DNA repair pathways, respectively. Polymorphisms of DNA repair gene XRCC1 and XPD has recently been identified, and there is a growing body of evidence that these polymorphisms may have some phenotypic significance. To investigate the role of XRCC1 polymorphisms (codon 194 and codon 399) and XPD polymorphism (codon 751) in lung cancer, a population-based case-control study of 109 lung cancer patients and 109 healthy control subjects (individually matched on age and gender) in a Chinese population was conducted. XRCC1 and XPD genotypes were identified using PCR-restriction fragments length polymorphism technique. Conditional logistic regression analysis revealed that XRCC1 codon 194Trp/Trp genotype was associated with a borderline increased risk of lung cancer [adjusted odd ratio (OR) = 3.06; confidence interval (CI) 0.94-9.92]. The XPD 751 Lys allele (combined Lys/Lys and Lys/Gln genotypes) was associated with a significantly increased risk of lung cancer (OR = 3.19; CI 1.01-10.07). The risk of lung cancer increased more than additive interaction (adjusted OR = 8.77; CI 1.47-52.31) for the individuals with both putative high-risk genotypes of XRCC1 194 Trp/Trp and XPD 751 Lys allele. Our results suggested that the genotypes of XRCC1 194Trp/Trp and XPD 751 Lys allele might be the risk genotypes for lung cancer in Chinese population.  相似文献   

18.
DNA repair has an essential role in protecting the genome from damage by endogenous and environmental agents. Polymorphisms in DNA repair genes and differences in repair capacity between individuals have been widely documented. For colorectal cancer, the loss of mismatch repair gene activity is a key genetic determinant. Nucleotide excision repair (NER), recombination repair (RR) and base excision repair (BER) pathways have critical roles in protection against other cancers, and we wished to investigate their role in colorectal cancer. We have compared the frequency of polymorphisms in the NER genes, XPD, XPF, XPG, ERCC1; in the BER gene, XRCC1; and in the RR gene, XRCC3; in colorectal cancer patients and in a control group. No significant associations were found for any of the NER gene polymorphisms or for the XRCC1 polymorphism. The C allele (position 18067) of the XRCC3 gene was weakly but significantly associated with colorectal cancer (odds ratio 1.52, 95% confidence interval 1.04-2.22, P=0.03). For all patients who were heterozygous for any of the repair genes studied, tumour tissue was investigated for loss of heterozygosity (LOH). Only one example of LOH was found for all the genes examined. From the association and LOH data, we conclude that these genes do not have an important role in protection against colorectal carcinogenesis.  相似文献   

19.
Selected polymorphisms of DNA repair genes and risk of pancreatic cancer   总被引:3,自引:0,他引:3  
BACKGROUND: Genetic variants of DNA repair genes may contribute to pancreatic carcinogenesis. O(6)-methylguanine-DNA methyltransferase (MGMT) is the major protein that removes alkylating DNA adducts, and apurinic/apyrimidinic endonuclease 1 (APE1) and X-ray repair cross-complementing group 1 (XRCC1) play important roles in the base excision repair pathway. METHODS: We investigated the association between polymorphisms of MGMT (Leu(84)Phe and Ile(143)Val), APE1 (Asp(148)Glu), and XRCC1 (Arg(194)Trp and Arg(399)Gln) and risk of pancreatic cancer in a case-control study. Exposure information from 384 patients with primary pancreatic ductal adenocarcinoma and 357 cancer-free healthy controls were collected and genomic DNAs were genotyped for five markers. Controls were frequency matched to patients by age at enrollment (+/-5 years), gender, and race. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) by using unconditional logistic regression models. RESULTS: There was no significant main effect or interaction with smoking of these genetic variants on the risk of pancreatic cancer. However, the XRCC1(194) polymorphism had a significant interaction with the APE1(148) (p=0.005) or MGMT(84) polymorphism (p=0.02) in modifying the risk of pancreatic cancer. CONCLUSIONS: This study suggests that polymorphisms of genes involved in the repair of alkylating DNA adduct and DNA base damage may play a role in modulating the risk of pancreatic cancer. Larger studies are required to validate these preliminary findings. The mechanism of the combined genotype effects remains to be elucidated.  相似文献   

20.
Aim: The distribution of DNA repair gene XRCC1 and XRCC3 genotypes was used to assess the potential influence of genetic polymorphisms on risk of colorectal cancer, and interactions with other factors. Methods: a 1:2 matched case-control study was conducted with 485 cases and 970 controls. XRCC1 and XRCC2 genotype polymorphisms were based upon duplex polymerase-chain-reaction with the confronting-two-pairprimer (PCR-CTPP) method. Results:The XRCC1 399Cln allele polymorphism was found to be associated with an increased colorectal cancer risk, while an non-significant inversely association was noted for XRCC3 241Thr/Thr genotype. We also found that individuals with the XRCC1 399 Gln and XRCC3 241Met alleles had an elevated risk, while XRCC3241Thr/Thr was proctective. Conclusion: This study is the first to provide evidence of importance of XRCC1 and XRCC3 gene polymorphisms for risk of colorectal cancer in the Chinese population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号