首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Protein Phosphatase 2A (PP2A) is an important and ubiquitously expressed serine threonine phosphatase and regulates the function by dephosphorylating many critical cellular molecules like Akt, p53, c-Myc and β-catenin. It plays a critical role in cellular processes, such as cell proliferation, signal transduction and apoptosis. Structurally, it is multifarious as it is composed of catalytic, scaffold and regulatory subunits. The catalytic and scaffold subunits have two isoforms and the regulatory subunit has four different families containing different isoforms. The regulatory subunit is the most diverse with temporal and spatial specificity. PP2A undergoes post-translational modifications (i.e. phosphorylation and methylation), which in turn, regulates its enzymatic activity. Aberrant expression, mutations and somatic alterations of the PP2A scaffold and regulatory subunits have been observed in various human malignancies, including lung, breast, skin and colon cancer, highlighting its role as a ‘tumor suppressor’. This review is focused on the structural complexity of serine/threonine phosphatase PP2A and summarizes its expression pattern in cancer. Additionally, the PP2A interacting and regulatory proteins and substrates are also discussed. Finally, the mouse models developed to understand the biological role of PP2A subunits in an in vivo model system are also reviewed in this article.  相似文献   

9.
10.
Theileria parasites infect and transform bovine lymphocytes resulting in tumors with metastatic/invasive potential. Importantly, cellular transformation is reversed upon drug-induced parasite death, and the infected lymphocyte dies of apoptosis within 48 hours. Theileria-dependent transformation leads to the constitutive activation of c-Jun NH2-terminal kinase (both JNK1 and JNK2) and permanent induction of activator protein-1. Inactivation of JNK (following transfection of dominant-negative mutants, or treatment with a JNK-specific inhibitor) leads to lymphocyte apoptosis, suggesting an antiapoptotic role for JNK activation in Theileria-induced B cell transformation. Theileria-induced JNK activation also leads to constitutive c-Jun phosphorylation, and inhibition of c-Jun and activator protein-1 transactivation following the expression of a dominant-negative mutant of c-Jun sensitizes Theileria-transformed B cells to apoptosis, but does not significantly affect their proliferation. Thus, JNK activation and c-Jun induction have overlapping, but nonidentical antiapoptotic roles in Theileria-induced B cell transformation. Increased sensitivity to apoptosis may be related to the fact that the expression levels of antiapoptotic proteins such as Mcl-1 and c-IAP are reduced upon c-Jun inhibition. In addition, decreased c-Jun expression correlates with the impaired ability of transfected B cells to degrade synthetic matrix in vitro, and their injection into lymphoid mice gives rise to significantly less and smaller tumors. Combined, these data argue for a role for JNK and c-Jun induction in the survival and metastasis of Theileria-transformed B cells. The similarity between Theileria-transformed B cells with human B lymphomas argues that exploiting the reversible nature of Theileria-induced transformation could throw light on the mechanisms underlying human malignancies.  相似文献   

11.
Protein serine/threonine phosphatase 2A (PP2A) activity must be tightly controlled to maintain cell homeostasis. Here, we report the identification of a previously uncharacterized mammalian protein, type 2A-interacting protein (TIP), as a novel regulatory protein of PP2A and the PP2A-like enzymes PP4 and PP6. TIP is a ubiquitously expressed protein and parallels the distribution of the PP2A catalytic subunit. Unlike its role in yeast, TIP does not interact with the mammalian homolog of type 2A-associated protein of 42 kDa (Tap42), alpha4, but instead associates with PP2A, PP4 and PP6 catalytic subunits independently of mammalian target of rapamycin kinase activity. Interestingly, the 20 kDa TIP splice variant TIP_i2, which lacks amino acids 173-272 of TIP's C-terminus, does not interact with PP2A; this finding indicates that residues 173-272 are important for the assembly of the TIP.phosphatase complex. In contrast to purified PP2A holoenzymes, TIP.PP2A complexes are devoid of phosphatase activity. Furthermore, alterations in the cellular levels of TIP influence the phosphorylation state of a specific protein substrate of ataxia-telangiectasia mutated (ATM)/ATM- and Rad3-related (ATR) kinases. Elevated levels of TIP result in an increase in the phosphorylation state of this protein substrate, whereas TIP-depleted cells exhibit a significant decrease in this protein's phosphorylation state, which is reversed by treatment with the PP2A inhibitor okadaic acid. These results indicate TIP is a novel inhibitory regulator of PP2A and implicate a role for TIP.PP2A complexes within the ATM/ATR signaling pathway controlling DNA replication and repair.  相似文献   

12.
Jun, the oncoprotein   总被引:27,自引:0,他引:27  
Vogt PK 《Oncogene》2001,20(19):2365-2377
Cellular Jun (c-Jun) and viral Jun (v-Jun) can induce oncogenic transformation. For this activity, c-Jun requires an upstream signal, delivered by the Jun N-terminal kinase (JNK). v-Jun does not interact with JNK; it is autonomous and constitutively active. v-Jun and c-Jun address overlapping but not identical sets of genes. Whether all genes essential for transformation reside within the overlap of the v-Jun and c-Jun target spectra remains to be determined. The search for transformation-relevant targets of Jun is moving into a new stage with the application of DNA microarrays technology. Genetic screens and functional tests remain a necessity for the identification of genes that control the oncogenic phenotype.  相似文献   

13.
Yokoyama N  Miller WT 《Oncogene》2001,20(42):6057-6065
In this study, we report that the Src substrate Cas (p130 Crk-associated substrate) associates with protein phosphatase 2A (PP2A), a serine/threonine phosphatase. We investigated this interaction in cells expressing a temperature-sensitive mutant form of v-Src. v-Src activation (by shifting cells from the nonpermissive to the permissive temperature) led to an increase in the tyrosine phosphorylation of v-Src and Cas, as well as in the association between v-Src and Cas. v-Src has previously been shown to bind to PP2A and to phosphorylate the catalytic subunit of PP2A, resulting in inhibition of phosphatase activity. We found that the association between v-Src and PP2A decreased as cells were shifted to the permissive temperature. In contrast, the levels of PP2A that co-immunoprecipitated with Cas increased when v-Src was activated. We obtained similar results in pull-down experiments with immobilized Microcystin, a PP2A inhibitor. Serine/threonine phosphorylation of Cas has previously been shown to occur in a cell cycle regulated matter. Treatment of NIH3T3 cells with okadaic acid, a PP2A inhibitor, augments the serine/threonine phosphorylation of Cas that occurs at mitosis. Furthermore, PP2A dephosphorylates serine residues on Cas in vitro. Taken together, our results suggest that PP2A may be involved in the cell cycle-specific dephosphorylation of Cas.  相似文献   

14.
Xu W  Yuan X  Jung YJ  Yang Y  Basso A  Rosen N  Chung EJ  Trepel J  Neckers L 《Cancer research》2003,63(22):7777-7784
AKT, a serine/threonine kinase that promotes cell survival, can be activated by overexpression of the receptor tyrosine kinase ErbB2. Conversely, down-regulation of ErbB2 inhibits AKT activation. Here, we identify PP1 as a serine/threonine phosphatase that associates with and dephosphorylates AKT in breast cancer cells, and we show that ErbB2 inhibits PP1-dependent dephosphorylation of AKT. Inhibition of ErbB2 by either the HSP (heat shock protein) 90 inhibitor geldanamycin or the ErbB inhibitor ZD1839 in SKBR3 cells, a human breast cancer cell line overexpressing ErbB2 protein, induces a rapid and dramatic decrease in AKT activity. Decreased AKT activity occurs many hours before the HSP90-dependent decline of AKT protein but is correlated with loss of AKT phosphorylation. Decreased AKT phosphorylation is not due to blockade of AKT activation or to preferential HSP90-mediated degradation of phosphorylated AKT. Instead, it is caused by increased AKT dephosphorylation. Sensitivity to a panel of phosphatase inhibitors suggests involvement of the phosphatase PP1 in this process. In vitro phosphatase assay (using PP1 immunoprecipitated from COS7 cells transiently transfected with the wild-type protein, as well as purified PP1) confirmed that AKT is a substrate of PP1. Furthermore, endogenous PP1 and AKT associate with each other in SKBR3. However, the phosphatase is phosphorylated and its activity is suppressed (determined by in vitro assay). In contrast, ErbB2 inhibition abrogates PP1 phosphorylation and restores its activity (measured by its ability to dephosphorylate AKT in vitro). Finally, transient overexpression of constitutively active PP1 in SKBR3 cells promotes marked dephosphorylation of endogenous AKT protein. These data indicate that ErbB2 acts to preserve the phosphorylation, and hence to prolong the activation, of AKT kinase by repressing the activity of the phosphatase PP1. ErbB2 thus functions to regulate AKT kinase by simultaneously promoting its activation while inhibiting its inactivation.  相似文献   

15.
The antihypertensive drug amiloride is being considered as a tactic to improve cancer therapy including that for chronic myelogenous leukemia. In this study, we show that amiloride modulates the alternative splicing of various cancer genes, including Bcl-x, HIPK3, and BCR/ABL, and that this effect is not mainly related to pH alteration, which is a known effect of the drug. Splice modulation involved various splicing factors, with the phosphorylation state of serine-arginine-rich (SR) proteins also altered during the splicing process. Pretreatment with okadaic acid to inhibit protein phosphatase PP1 reversed partially the phosphorylation levels of SR proteins and also the amiloride-modulated yields of Bcl-xs and HIPK3 U(-) isoforms. Genome-wide detection of alternative splicing further revealed that many other apoptotic genes were regulated by amiloride, including APAF-1, CRK, and SURVIVIN. Various proteins of the Bcl-2 family and MAPK kinases were found to be involved in amiloride-induced apoptosis. Moreover, the effect of amiloride on mRNA levels of Bcl-x was demonstrated to translate to the protein levels. Cotreatment of K562 and BaF3/Bcr-AblT315I cells with amiloride and imatinib induced more loss of cell viability than either agent alone. Our findings suggest that amiloride may offer a potential treatment option for chronic myelogenous leukemia either alone or in combination with imatinib.  相似文献   

16.
17.
Aoki M  Sobek V  Maslyar DJ  Hecht A  Vogt PK 《Oncogene》2002,21(46):6983-6991
Genetic analysis of beta-catenin-induced oncogenic transformation in chicken embryo fibroblasts (CEF) revealed the following prerequisites for oncogenicity: (1) removal of the N terminal phosphorylation sites targeted by glycogen synthase kinase 3beta (GSK3beta), (2) retention of the N terminal transactivation domain, and (3) retention of the armadillo repeats. The C terminal transactivation domain played an ancillary role in the transformation of CEF. There was a rough correlation between the transforming activity of various beta-catenin constructs and their transactivation of the TOPFLASH reporter. Expression levels of the candidate target genes of beta-catenin-LEF, cyclin D1 and myc were not correlated with each other or with the transforming activity of beta-catenin constructs. A new target gene, coding for inositol hexakisphosphate kinase 2 (IP6K2) was identified. Its expression showed concordance with the transforming activity of beta-catenin constructs.  相似文献   

18.
Protein phosphatase 2A (PP2A) is a multimeric serine/threonine phosphatase that can dephosphorylate multiple kinases. It is generally considered to be a cancer suppressor as its inhibition can induce phosphorylation and activation of substrate kinases that mainly accelerate growth. We previously reported that cantharidin, an active constituent of a traditional Chinese medicine, potently and selectively inhibited PP2A, yet efficiently repressed the growth of pancreatic cancer cells through activation of the c-Jun N-terminal kinase (JNK) pathway. This suggested that activation of kinase pathways might also be a potential strategy for cancer therapy. In this study, we have confirmed that the basal activity of the phospatidylinositol 3-kinase (PI3K)/JNK/activator protein 1 (AP-1) pathway promoted pancreatic cancer cell growth when stimulated by growth factors. Interestingly, although treatment with the PP2A inhibitors, cantharidin or okadaic acid (OA), amplified the PI3K-dependent activation of JNK, cell growth was repressed. We therefore hypothesised that a specific level of activity of the JNK pathway might be required to maintain the promitogenic function, as both repression and overactivation of JNK could inhibit cell proliferation. It was found that the JNK-dependent growth inhibition was independent of the activation of AP-1, but dependent on the repression of Akt. Although the PP2A inhibitors triggered overactivation of JNK and inhibited cell growth, excessively activated protein kinase C (PKC) improved cell survival. Combined treatment with a PP2A inhibitor and a PKC inhibitor produced a synergistic effect, which indicates a potentially promising therapeutic approach to pancreatic cancer treatment.  相似文献   

19.
20.
Akt phosphorylates and regulates Pdcd4 tumor suppressor protein   总被引:3,自引:0,他引:3  
Programmed cell death 4 (Pdcd4) is a tumor suppressor protein that interacts with eukaryotic initiation factor 4A and inhibits protein synthesis. Pdcd4 also suppresses the transactivation of activator protein-1 (AP-1)-responsive promoters by c-Jun. The Akt (protein kinase B) serine/threonine kinase is a key mediator of phosphoinositide 3-kinase pathway involved in the regulation of cell proliferation, survival, and growth. Because Pdcd4 has two putative Akt phosphorylation sites at Ser(67) and Ser(457), we investigated whether Akt phosphorylates and regulates Pdcd4. Our results show that Akt specifically phosphorylates Ser(67) and Ser(457) residues of Pdcd4 in vitro and in vivo. We further show that phosphorylation of Pdcd4 by Akt causes nuclear translocation of Pdcd4. Using luciferase assay, we show that phosphorylation of Pdcd4 by Akt also causes a significant decrease of the ability of Pdcd4 to interfere with the transactivation of AP-1-responsive promoter by c-Jun.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号