首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A prototype sampling system for measuring respirator workplace protection factors (WPFs) was developed. Methods for measuring the concentration of contaminants inside respirators have previously been described; however, these studies have typically involved continuous sampling of aerosols. Our work focuses on developing an intermittent sampling system designed to measure the concentration of gases and vapors during inspiration. This approach addresses two potential problems associated with continuous sampling: biased results due to lower contaminant concentrations and high humidity in exhaled air. The system consists of a pressure transducer circuit designed to activate a pair of personal sampling pumps during inspiration based on differential pressure inside the respirator. One pump draws air from inside the respirator while the second samples the ambient air. Solid granular adsorbent tubes are used to trap the contaminants, making the approach applicable to a large number of gases and vapors. Laboratory testing was performed using a respirator mounted on a headform connected to a breathing machine producing a sinusoidal flow pattern with an average flow rate of 20 L/min and a period of 3 seconds. The sampling system was adjusted to activate the pumps when the pressure inside the respirator was less than -0.1 inch H(2)O. Quantitative fit-tests using human subjects were conducted to evaluate the effect of the sampling system on respirator performance. A total of 299 fit-tests were completed for two different types of respirators (half- and full-facepiece) from two different manufacturers (MSA and North). Statistical tests showed no significant differences between mean fit factors for respirators equipped with the sampling system versus unmodified respirators. Field testing of the prototype sampling system was performed in livestock production facilities and estimates of WPFs for ammonia were obtained. Results demonstrate the feasibility of this approach and will be used in developing improved instrumentation for measuring WPFs.  相似文献   

2.
A new system was used to determine the workplace protection factors (WPF) for dust and bioaerosols in agricultural environments. The field study was performed with a subject wearing an N95 filtering facepiece respirator while performing animal feeding, grain harvesting and unloading, and routine investigation of facilities. As expected, the geometric means (GM) of the WPFs increased with increasing particle size ranging from 21 for 0.7-1 microm particles to 270 for 5-10 microm particles (p < 0.001). The WPF for total culturable fungi (GM = 35) was significantly greater than for total culturable bacteria (GM = 9) (p = 0.01). Among the different microorganism groups, the WPFs of Cladosporium, culturable fungi, and total fungi were significantly correlated with the WPFs of particles of the same sizes. As compared with the WPFs for dust particles, the WPFs for bioaerosols were found more frequently below 10, which is a recommended assigned protection factor (APF) for N95 filtering facepiece respirators. More than 50% of the WPFs for microorganisms (mean aerodynamic diameter < 5 microm) were less than the proposed APF of 10. Even lower WPFs were calculated after correcting for dead space and lung deposition. Thus, the APF of 10 for N95 filtering facepiece respirators seems inadequate against microorganisms (mean aerodynamic size < 5 microm). These results provide useful pilot data to establish guidelines for respiratory protection against airborne dust and microorganisms on agricultural farms. The method is a promising tool for further epidemiological and intervention studies in agricultural and other similar occupational and nonoccupational environments.  相似文献   

3.
This study compared workplace protection factors (WPFs) for five different contaminants (endotoxin, fungal spores, (1→3)-β-D-glucan, total particle mass, and total particle number) provided by an N95 elastomeric respirator (ER) and an N95 filtering facepiece respirator (FFR). We previously reported size-selective WPFs for total particle numbers for the ER and FFR, whereas the current article is focused on WPFs for bioaerosols and total particle mass. Farm workers (n = 25) wore the ER and FFR while performing activities at eight locations representing horse farms, pig barns, and grain handling facilities. For the determination of WPFs, particles were collected on filters simultaneously inside and outside the respirator during the first and last 15 min of a 60-min experiment. One field blank per subject was collected without actual sampling. A reporting limit (RL) was established for each contaminant based on geometric means (GMs) of the field blanks as the lowest possible measurable values. Depending on the contaminant type, 38-48% of data points were below the RL. Therefore, a censored regression model was used to estimate WPFs (WPF(censored)). The WPF(censored) provided by the two types of respirators were not significantly different. In contrast, significant differences were found in the WPF(censored) for different types of contaminants. GMs WPFs(censored) for the two types of respirators combined were 154, 29, 18, 19, and 176 for endotoxin, fungal spore count, (1→3)-β-D-glucan, total particle mass, and total particle number, respectively. The WPF(censored) was more strongly associated with concentrations measured outside the respirator for endotoxin, fungal spores, and total particle mass except for total particle number. However, when only data points with outside concentrations higher than 176×RL were included, the WPFs increased, and the association between the outside concentrations and the WPFs became weaker. Results indicate that difference in WPFs observed between different contaminants may be attributed to differences in the sensitivity of analytical methods to detect low inside concentrations, rather than the nature of particles (biological or non-biological).  相似文献   

4.
Han DH 《Industrial health》2002,40(4):328-334
Workplace protection factor (WPF) means a measure of the actual protection of respirator provided in the workplace when correctly worn. While fit factor (FF) represents a quantitative measure of the fit of a particular respirator to an individual and it is determined in the laboratory. To evaluate the relationship between WPF and FF is very important since FF may or may not be taken advantage of estimating WPF. Outside and inside Fe concentrations for three brand N95 filtering facepieces were collected on 14 workers/three respirator combinations in the welding workplace. The WPF measurements on the samples of the three respirator brands worn by 14 workers were observed to range from 2.2 to 132.9 with a geometric mean of 15.9 and a geometric standard deviation of 2.63. Respirator performances as measured by the WPF differed significantly among different respirator brands (p<0.05). In this study, correlations were found between the WPF measurements and the FF data for all samples of the three respirators (R2=0.38). The percentage of Fe particles having a smaller fraction than 1.1 microm diameter was observed as 71.6% of the total.  相似文献   

5.
This study evaluated the workplace performance of an N95 filtering facepiece, air-purifying respirator in a steel foundry. Air samples were collected inside and outside respirators worn by workers who were properly trained and qualitatively fit tested. For most workers, three or four pairs of air samples were collected on each of 2 days. The 49 valid sample sets were analyzed for iron, silicon, and zirconium. Only iron was present in sufficient concentrations to perform workplace protection factor (WPF) calculations. Individual WPF measurements ranged from 5 to 753. The geometric mean of the distribution was 119 with a lower 5th percentile value of 19. Time-weighted average WPFs (WPF(TWA)) were also calculated for each day for each worker as an estimate of the protection an individual might receive with daily respirator use. The WPF(TWA) values ranged from 15 for the worker with the single WPF value of 5, to a high of 684. The distribution of WPF(TWA) had a geometric mean of 120 and a lower 5th percentile of 22. Both data treatments indicate this respirator's performance was consistent with the assigned protection factor of 10 typically used for half facepiece respirators. The respirator provided adequate protection as used in this study. All contaminant concentrations inside the respirator were well below the relevant occupational exposure limits. Data collected also illustrate the dynamic nature of faceseal leakage in the workplace.  相似文献   

6.
To assess performances of N95 respirators for Health Care Workers (HCWs) in a simulated health-care setting, we measured the Simulated Workplace Protection Factors (SWPFs) in real-time from the volunteers. A total of 49 study subjects, wearing 3 M respirator Model N95 1860 and 1860S, were fit tested using the OSHA Exercise Regimen. The test subjects were asked to perform simulated scenarios, including patient assessments, suction, and intravenous injection (IV) treatment. Two TSI PortaCount instruments continuously measured concentrations in the respirator and the room concentration. For Quantitative Fit Testing (QNFT), 36 out of 49 (73.5%) passed the fit factor (FF) criteria set at 100 and 13 (26.5%) failed. The results of QNFT were found to have a low correlation with SWPF, with R2=0.32. The geometric means (GM) and geometric standard deviations (GSD) of SWPF were 68.8 (1.1) for those subjects who passed and 39.6 (1.3) for those who failed. Real-time assessments of SWPF showed that lower SWPFs were; moving head up and down, and bending at the waist. This study identifies the needs for providing different sizes of respirators for HCWs and the importance of performing fit tests for HCWs regularly. And particular movements were identified as attributing factors affecting more on SWPFs.  相似文献   

7.
This study evaluated workplace performance of a full facepiece, negative pressure, air-purifying respirator with P100 filters in a lead refining plant. Air samples for lead were collected inside and outside the respirators worn by workers who were properly trained and quantitatively fit tested. Trained observers assisted in the study to ensure sample validity. Three to four pairs of air samples per day were collected from each worker for a total of 52 valid sample sets. Lead was found on all the outside samples, and concentrations were below the detection limit for all but one of the inside samples. The single measurable inside sample yielded a workplace protection factor (WPF) of 297. WPFs for the rest of the samples were estimated using the assumption that lead was present at the detection limit for the in-facepiece samples. Calculated WPFs were rounded down to the nearest 100 then subjected to a rank and percentile function. The 5th percentile WPF was approximately 900 using this approach. These WPFs exceed the assigned protection factor (APF) of 50 for this respirator class recommended by the National Institute for Occupational Safety and Health and listed by the Occupational Safety and Health Administration. These results support the APF of 50 for this respirator and indicate the respirator provided adequate protection as used in this study.  相似文献   

8.
Fitting characteristics of eighteen N95 filtering-facepiece respirators   总被引:2,自引:0,他引:2  
Four performance measures were used to evaluate the fitting characteristics of 18 models of N95 filtering-facepiece respirators: (1) the 5th percentile simulated workplace protection factor (SWPF) value, (2) the shift average SWPF value, (3) the h-value, and (4) the assignment error. The effect of fit-testing on the level of protection provided by the respirators was also evaluated. The respirators were tested on a panel of 25 subjects with various face sizes. Simulated workplace protection factor values, determined from six total penetration (face-seal leakage plus filter penetration) tests with re-donning between each test, were used to indicate respirator performance. Five fit-tests were used: Bitrex, saccharin, generated aerosol corrected for filter penetration, PortaCount Plus corrected for filter penetration, and the PortaCount Plus with the N95-Companion accessory. Without fit-testing, the 5th percentile SWPF for all models combined was 2.9 with individual model values ranging from 1.3 to 48.0. Passing a fit-test generally resulted in an increase in protection. In addition, the h-value of each respirator was computed. The h-value has been determined to be the population fraction of individuals who will obtain an adequate level of protection (i.e., SWPF >/=10, which is the expected level of protection for half-facepiece respirators) when a respirator is selected and donned (including a user seal check) in accordance with the manufacturer's instructions without fit-testing. The h-value for all models combined was 0.74 (i.e., 74% of all donnings resulted in an adequate level of protection), with individual model h-values ranging from 0.31 to 0.99. Only three models had h-values above 0.95. Higher SWPF values were achieved by excluding SWPF values determined for test subject/respirator combinations that failed a fit-test. The improvement was greatest for respirator models with lower h-values. Using the concepts of shift average and assignment error to measure respirator performance yielded similar results. The highest level of protection was provided by passing a fit-test with a respirator having good fitting characteristics.  相似文献   

9.
A study was conducted at a mineral sands separation plant to evaluate the workplace performance of half-mask filter cartridge respirators. Inhalation exposure was estimated by measuring the dust and radioactivity concentration inside the respirator while it was worn or hanging around the worker's neck. The program protection factor was determined by simultaneously measuring inside-mask and ambient (outside-mask) concentrations. A total of 27 tests were conducted, covering three brands of half-mask respirators; facial hair on test subjects ranged from clean-shaven to bearded. Program protection factors varied from 1.8 to 13 for dust exposure and 2.5 to 21 for radioactivity exposure. The geometric mean program protection factor over all tests was 5.1 (geometric standard deviation [GSD] = 1.7) for dust exposure and 7.5 (GSD = 1.7) for radioactivity exposure. A minimum program protection factor of 3.5 could be applied to ambient airborne concentration data to obtain a conservative, but more realistic, estimate of inhalation exposure on a worker category basis.  相似文献   

10.
This study investigates two different methods (random effects model and 5th percentile) for determining the performance of three types of respiratory protective devices (elastomeric N95 respirators, N95 filtering-facepiece respirators, and surgical masks) during a simulated workplace test. This study recalculated the protection level of three types of respiratory protective devices using the random effects model, compared the two methods with each other and the APF of 10 for half-facepiece respirators, and determined the value of each of the fit test protocols in attaining the desired level of simulated workplace protection factor (SWPF). Twenty-five test subjects with varying face sizes tested 15 models of elastomeric N95 respirators, 15 models of N95 filtering-facepiece respirators, and 6 models of surgical masks. Simulated workplace testing was conducted using a TSI PORTACOUNT Plus model 8020 and consisted of a series of seven exercises. Six simulated workplace tests were performed with redonning of the respirator/mask occurring between each test. Each of the six tests produced an SWPF. To determine the level of protection provided by the respiratory protective devices, a 90% lower confidence limit for the simulated workplace protection factor (SWPF(LCL90%)) and the 5th percentile of simulated workplace protection factor were computed. The 5th percentile method values could be up to seven times higher than the SWPF(LCL90%) values. Without fit testing, all half-facepiece N95 respirators had a 5th percentile of 4.6 and an SWPF(LCL90%) value of 2.7. N95 filtering-facepiece respirators as a class had values of 3.3 and 2.0, respectively, whereas N95 elastomeric respirators had values of 7.3 and 4.6, respectively. Surgical masks did not provide any protection, with values of 1.2 and 1.4, respectively. Passing either the Bitrex, saccharin, or Companion fit test resulted in the respirators providing the expected level of protection with 5th percentiles greater than or equal to 10 except when passing the Bitrex test with N95 filtering-facepiece respirators, which resulted in a 5th percentile of only 7.9. No substantial difference was seen between the three fit tests. All of the SWPF(LCL90%) values after passing a fit test were less than 10. The random model method provides a more conservative estimate of the protection provided by a respirator because it takes into account both between- and within-wearer variability.  相似文献   

11.
A recent study was conducted to compare five fit test methods for screening out poor-fitting N95 filtering-facepiece respirators. Eighteen models of NIOSH-certified, N95 filtering-facepiece respirators were used to assess the fit test methods by using a simulated workplace protection factor (SWPF) test. The purpose of this companion study was to investigate the effect of subject characteristics (gender and face dimensions) and respirator features on respirator fit. The respirator features studied were design style (folding and cup style) and number of sizes available (one size fits all, two sizes, and three sizes). Thirty-three subjects participated in this study. Each was measured for 12 face dimensions using traditional calipers and tape. From this group, 25 subjects with face size categories 1 to 10 tested each respirator. The SWPF test protocol entailed using the PortaCount Plus to determine a SWPF based on total penetration (face-seal leakage plus filter penetration) while the subject performed six simulated workplace movements. Six tests were conducted for each subject/respirator model combination with redonning between tests. The respirator design style (folding style and cup style) did not have a significant effect on respirator fit in this study. The number of respirator sizes available for a model had significant impact on respirator fit on the panel for cup-style respirators with one and two sizes available. There was no significant difference in the geometric mean fit factor between male and female subjects for 16 of the 18 respirator models. Subsets of one to six face dimensions were found to be significantly correlated with SWPFs (p < 0.05) in 16 of the 33 respirator model/respirator size combinations. Bigonial breadth, face width, face length, and nose protrusion appeared the most in subsets (five or six) of face dimensions and their multiple linear regression coefficients were significantly different from zero (p < 0.05). Lip length was found in only one subset. The use of face length and lip length as the criteria to define the current half-facepiece respirator fit test panel may need to be reconsidered when revising the panel. Based on the findings from this and previous studies, face length and face width are recommended measurements that should be used for defining the panel for half-facepiece respirators.  相似文献   

12.
This study, part of the Survey of Painters and Repairers of Auto bodies by Yale (SPRAY), evaluated the effectiveness of respiratory protection against exposure to aliphatic polyisocyanates. A total of 36 shops were assessed for respiratory protection program completeness; 142 workers were measured for respirator fit factor (FF) using PortaCount Plus respirator fit tester. Twenty-two painters from 21 shops were sampled using NIOSH method 5525 to determine the workplace protection factor (WPF) of negative pressure, air-purifying half-facepiece respirators equipped with organic vapor cartridges and paint prefilters during spray-painting and priming activities. Only 11 shops (30%) had written respiratory protection programs. Eighty percent of all fit tested workers passed the test on the first try with FF >or= 100, and 92% passed the second test after respirator use training. Overall geometric mean (GM) FF was 1012 for all fit tested workers. Significant differences on pass rate (92% vs. 72%) and on FF (1990 vs. 736) were found between previously fit tested workers vs. nontested workers. Twenty-nine WPF samples were collected. The outside facepiece GM concentration of total isocyanate group (NCO) was 378.4 micro g NCO/m(3) with 96% concentrations exceeding the U.K. short-term exposure limit, 70 micro g NCO/m(3), but no in-facepiece concentrations exceeded the limit. The GM WPF of total NCO was 319 (GSD 4) and the 5th percentile was 54. WPF of total NCO was positively correlated with the duration of painting task. FF positively correlated with WPF when FF was 450. We conclude that negative pressure, air-purifying half-facepiece respirators equipped with organic vapor cartridges and paint prefilters provide effective protection against isocyanate exposure in spray and priming operations if workers are properly trained and fitted.  相似文献   

13.
A workplace protection factor (WPF) for a respirator wearer is the measured concentration of a contaminant outside the respirator divided by the simultaneous concentration of that contaminant inside the respirator. The Occupational Safety and Health Administration (OSHA) proposed an assigned protection factor (APF) of 10 to negative-pressure, half-facepiece, air-purifying respirators (HFAPR), based on the criterion that the 5th percentile of WPF for HFAPR be larger than the APF. This class of half-facepiece respirators includes both filtering facepiece and elastomeric half-mask respirators. Nicas and Neuhaus developed a statistical model for log-normally distributed WPF that separated between-wearer and within-wearer variation. Using results from applying this model to seven studies of HFAPR, they proposed an APF of 5 for this class of respirator, based on the criterion that the 5th percentile of the 5th percentile of individual worker WPF distributions be larger than the APF. In this article, two reasons are suggested for these differing proposals: (1) the Nicas and Neuhaus criterion is inherently more conservative than that of OSHA, and (2) substantially different databases were used to evaluate the two criteria. The Nicas and Neuhaus model is expanded to allow for differences in WPF distributions for different types of HFAPR and different contaminants and for separately estimating within-wearer variation and variation due to measurement error. Appropriate statistical methods are illustrated for implementing these models when some of inside-the-respirator measurements are nondetects. Results from applying this expanded model to two new WPF studies suggest that an APF of 10 would be sufficiently protective in these studies using the OSHA criterion but more marginally so using the Nicas and Neuhaus criterion.  相似文献   

14.
During July 1995 the National Institute for Occupational Safety and Health (NIOSH) began to certify nine new classes of particulate respirators. To determine the level of performance of these respirators, NIOSH researchers conducted a study to (1) measure the simulated workplace performance of 21 N95 respirator models, (2) determine whether fit-testing affected the performance, and (3) investigate the effect of varying fit-test pass/fail criteria on respirator performance. The performance of each respirator model was measured by conducting 100 total penetration tests. The performance of each respirator model was then estimated by determining the 95th percentile of the total penetration through the respirator (i.e., 95% of wearers of that respirator can expect to have a total penetration value below the 95th percentile penetration value). The 95th percentile of total penetrations for each respirator without fit-testing ranged from 6 to 88%. The 95th percentile of total penetrations for all the respirators combined was 33%, which exceeds the amount of total penetration (10%) normally expected of a half-mask respirator. When a surrogate fit test (1% criterion) was applied to the data, the 95th percentile of total penetrations for each respirator decreased to 1 to 16%. The 95th percentile of total penetrations for all the respirators combined was only 4%. Therefore, fit-testing of N95 respirators is necessary to ensure that the user receives the expected level of protection. The study also found that respirator performance was dependent on the value of the pass/fail criterion used in the surrogate fit-test.  相似文献   

15.
N95 filtering facepiece respirators are used by healthcare workers when there is a risk of exposure to airborne hazards during aerosol-generating procedures. Respirator fit-testing is required prior to use to ensure that the selected respirator provides an adequate face seal. Two common fit-test methods can be employed: qualitative fit-test (QLFT) or quantitative fit-test (QNFT). Respiratory protection standards deem both fit-tests to be acceptable. However, previous studies have indicated that fit-test results may differ between QLFT and QNFT and that the outcomes may also be influenced by the type of respirator model. The aim of this study was to determine if there is a difference in fit-test outcomes with our suite of respirators, 3M - 1860S, 1860, AND 1870, and whether the model impacts the fit-test results.

Subjects were recruited from residential care facilities. Each participant was assigned a respirator and underwent sequential QLFT and QNFT fit-tests and the results (either pass or fail) were recorded. To ascertain the degree of agreement between the two fit-tests, a Kappa (Κ) statistic was conducted as per the American National Standards Institute (ANSI) respiratory protection standard. The pass-fail rates were stratified by respirator model and a Kappa statistic was calculated for each to determine effect of model on fit-test outcomes.

We had 619 participants and the aggregate Κ statistic for all respirators was 0.63 which is below the suggested ANSI threshold of 0.70. There was no statistically significant difference in results when stratified by respirator model.

QNFT and QLFT produced different fit-test outcomes for the three respirator models examined. The disagreement in outcomes between the two fit-test methods with our suite of N95 filtering facepiece respirators was approximately 12%. Our findings may benefit other healthcare organizations that use these three respirators.  相似文献   


16.
The National Institute for Occupational Safety and Health (NIOSH), recognizing the difficulties inherent in using old military data to define modern industrial respirator fit test panels, recently completed a study to develop an anthropometric database of the measurements of heads and faces of civilian respirator users. Based on the data collected, NIOSH researchers developed two new panels for fit testing half-facepiece and full-facepiece respirators. One of the new panels (NIOSH bivariate panel) uses face length and face width. The other panel is based on principal component analysis (PCA) to identify the linear combination of facial dimensions that best explains facial variations. The objective of this study was to investigate the correlation between respirator fit and the new NIOSH respirator fit test panel cells for various respirator sizes. This study was carried out on 30 subjects that were selected in part using the new NIOSH bivariate panel. Fit tests were conducted on the test subjects using a PORTACOUNT device and three exercises. Each subject was tested with three replications of four models of P-100 half-facepiece respirators in three sizes. This study found that respirator size significantly influenced fit within a given panel cell. Face size categories also matched the respirator sizing reasonably well, in that the small, medium, and large face size categories achieved the highest geometric mean fit factors in the small, medium, and large respirator sizes, respectively. The same pattern holds for fit test passing rate. Therefore, a correlation was found between respirator fit and the new NIOSH bivariate fit test panel cells for various respirator sizes. Face sizes classified by the PCA panel also followed a similar pattern with respirator fit although not quite as consistently. For the LANL panel, however, both small and medium faces achieved best fit in small size respirators, and large faces achieved best fit in medium respirators. These findings support the selection of the facial dimensions for developing the new NIOSH bivariate respirator fit test panel.  相似文献   

17.
Fifteen subjects underwent three replicates of quantitative respirator fit-testing with N95 filtering facepiece respirators that were donned with the upper strap high on the occiput, as per the manufacturers’ donning instructions. Each fit-test was immediately followed by repeat fit-testing with the upper strap downwardly displaced to the level of the ear sulcus to determine any change in fit factors that might occur with upper strap downward slippage. A total of 35/45 (78%) initial fit-tests had a passing score (fit factor ≥100) with the top strap high on the occiput and 33/35 (94%) of these passed subsequent fit-testing after the top strap was displaced downward to the ear sulcus. Geometric mean fit factors for the initial passed fit-tests, and following downward strap displacement, were 217±1.6 and 207±1.9, respectively (p = 0.64). Downward displacement of the top strap did not significantly impact fit factors of N95 FFRs that had previously passed fit-testing.  相似文献   

18.
Respiratory protection is offered to American workers in a variety of ways to guard against potential inhalation hazards. Two of the most common ways are elastomeric N95 respirators and N95 filtering-facepiece respirators. Some in the health care industry feel that surgical masks provide an acceptable level of protection in certain situations against particular hazards. This study compared the performance of these types of respiratory protection during a simulated workplace test that measured both filter penetration and face-seal leakage. A panel of 25 test subjects with varying face sizes tested 15 models of elastomeric N95 respirators, 15 models of N95 filtering-facepiece respirators, and 6 models of surgical masks. Simulated workplace testing was conducted using a TSI PORTACOUNT Plus model 8020, and consisted of a series of seven exercises. Six simulated workplace tests were performed with redonning of the respirator/mask occurring between each test. The results of these tests produced a simulated workplace protection factor (SWPF). The geometric mean (GM) and the 5th percentile values of the SWPFs were computed by category of respiratory protection using the six overall SWPF values. The level of protection provided by each of the three respiratory protection types was compared. The GM and 5th percentile SWPF values without fit testing were used for the comparison, as surgical masks were not intended to be fit tested. The GM values were 36 for elastomeric N95 respirators, 21 for N95 filtering-facepiece respirators, and 3 for surgical masks. An analysis of variance demonstrated a statistically significant difference between all three. Elastomeric N95 respirators had the highest 5th percentile SWPF of 7. N95 filtering-facepiece respirators and surgical masks had 5th percentile SWPFs of 3 and 1, respectively. A Fisher Exact Test revealed that the 5th percentile SWPFs for all three types of respiratory protection were statistically different. In addition, both qualitative (Bitrex and saccharin) and quantitative (N95-Companion) fit testing were performed on the N95 filtering- and elastomeric-facepiece respirators. It was found that passing a fit test generally improves the protection afforded the wearer. Passing the Bitrex fit test resulted in 5th percentile SWPFs of 11.1 and 7.9 for elastomeric and filtering-facepiece respirators, respectively. After passing the saccharin tests, the elastomeric respirators provided a 5th percentile of 11.7, and the filtering-facepiece respirators provided a 5th percentile of 11.0. The 5th percentiles after passing the N95-Companion were 13.0 for the elastomeric respirators and 20.5 for the filtering-facepiece respirators. The data supports fit testing as an essential element of a complete respiratory protection program.  相似文献   

19.
Respirator fit testing is necessary before entering hazardous working environments to ensure that the respirator, when worn, satisfies a minimum fit and that the wearer knows when the respirator fits properly. In the many countries that do not have fit testing or total inward leakage regulations (including Korea), however, many workers wearing respirators may be potentially exposed to hazardous environments. It is necessary to suggest a useful tool to provide an alternative for fit testing in these countries. This study was conducted to evaluate fitting performance for quarter-mask respirators, and fit factors in facial size categories based on face lengths and lip lengths of the wearers. A total of 778 subjects (408 males, 370 females) were fit tested for three quarter masks: Sejin Co. SK-6 (Ulsan, Korea), Yongsung Co. YS-2010 S (Seoul, Korea), and 3 M Co. Series 7500 Medium (MN, USA) masks with a PortaCount 8020 (TSI Co., USA). A facial dimension survey of the subjects was conducted to develop facial size categories, on the basis of face length and lip length. Geometric mean fit factors (GMFFs) of Series 7500 Medium were found to be the highest of the three respirators. All of the respirators were more suitable for males than females in fitting performance. The Series 7500 Medium fitted a large number of the males tested, since the GMFFs for males were above 100 for every box of facial size categories, and high pass proportion rates were shown at an individual fit factor level of 100. The YS-2010 S provides an adequate fit for males in a limited range of facial dimensions. The Series 7500 Medium is more limited in providing adequate fit for females at specific facial dimensions than for males. For adequate fitting performance, the SK-6 is not preferentially recommended for Korean male and female workers due to low GMFFs and pass proportions. The result of this study indicates that after more accurate studies are performed, facial size categories, on the basis of facial dimensions, could be a useful tool to assist in the selection of adequately fitting respirators for workers in the countries having no fit testing requirements.  相似文献   

20.
Performance capability of respirators has traditionally been evaluated by testing components of the respirator (e.g., filter efficiency), facepiece fit, total inward leakage, or some other measure of performance evaluated under laboratory conditions. In recent years, increased emphasis has been placed on development of test methods suitable for evaluating respirator performance in the workplace. The goal of such testing is to evaluate the level of protection provided by respirators in the work environment. The AIHA Respiratory Protection Committee believes that workplace testing of respirators has the potential to be an excellent tool for increasing knowledge about the effectiveness of respiratory protection. However, a number of technical issues remain to be addressed before optimal test protocols and data analysis methods can be defined. The progress made to date in workplace testing will be reviewed, and broader discussion about key elements that must be considered when developing guidelines for testing respirators in the workplace will be initiated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号