首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent progress in drug delivery systems for anticancer agents   总被引:4,自引:0,他引:4  
Recent progress in understanding the molecular basis of cancer brought out new materials such as oligonucleotides, genes, peptides and proteins as a source of new anticancer agents. Due to their macromolecular properties, however, new strategies of delivery for them are required to achieve their full therapeutic efficacy in clinical setting. Development of improved dosage forms of currently marketed anticancer drugs can also enhance their therapeutic values. Currently developed delivery systems for anticancer agents include colloidal systems (liposomes, emulsions, nanoparticles and micelles), polymer implants and polymer conjugates. These delivery systems have been able to provide enhanced therapeutic activity and reduced toxicity of anticancer agents mainly by altering their pharmacokinetics and biodistribution. Furthermore, the identification of cell-specific receptor/antigens on cancer cells have brought the development of ligand- or antibody-bearing delivery systems which can be targeted to cancer cells by specific binding to receptors or antigens. They have exhibited specific and selective delivery of anticancer agents to cancer. As a consequence of extensive research, clinical development of anticancer agents utilizing various delivery systems is undergoing worldwide. New technologies and multidisciplinary expertise to develop advanced drug delivery systems, applicable to a wide range of anticancer agents, may eventually lead to an effective cancer therapy in the future.  相似文献   

2.
Background: Limited accessibility of drugs to the tumor tissues, the requirement of high doses, intolerable cytotoxicity, the development of multiple drug resistance and non-specific targeting are obstacles to the clinical use of cancer drugs and cancer therapy. Objective: Drug delivery through carrier systems to cancerous tissue is no longer simply wrapping up cancer drugs in a new formulation for different routes of delivery, rather the focus is on targeted cancer therapy. Methods: This review summarizes the exploitation of drug-loaded nanocarrier conjugates with various targeting moieties for the delivery and targeting of anticancer drugs and describes the current status of and challenges in the field of nanocarrier-aided drug delivery and drug targeting. Conclusion: The discovery of targeting ligand to cancer cells and the development of ligand-targeted therapy will help us to improve therapeutic efficacy and reduce side effects. Unlike other forms of therapy, it will allow us to maintain quality of life for patients, while efficiently attacking the cancer tissue. It indicates that ligands have a pivotal role in cancer cell targeting.  相似文献   

3.
Over the past decade, nanoparticle-based therapeutic modalities have become promising strategies in cancer therapy. Selective delivery of anticancer drugs to the lesion sites is critical for elimination of the tumor and an improved prognosis. Innovative design and advanced biointerface engineering have promoted the development of various nanocarriers for optimized drug delivery. Keeping in mind the biological framework of the tumor microenvironment, biomembrane-camouflaged nanoplatforms have been a research focus, reflecting their superiority in cancer targeting. In this review, we summarize the development of various biomimetic cell membrane-camouflaged nanoplatforms for cancer-targeted drug delivery, which are classified according to the membranes from different cells. The challenges and opportunities of the advanced biointerface engineering drug delivery nanosystems in cancer therapy are discussed.  相似文献   

4.
The low efficacy and high toxicity of chemotherapy have been driving increasing attention on development of combined anticancer therapy technique. In the current work, graphene oxide (GO)-hybridized nanogels (AGD) were developed for delivery of an anticancer drug (doxorubicin (DOX)), which simultaneously presented photothermal therapeutic effects against cancer cells. AGD nanogels were fabricated by in situ incorporating GO nanoplatelets into a biodegradable polymer (alginate) via a double emulsion approach using a disulfide molecule as crosslinker, followed by DOX encapsulation via electrostatic interactions. The nanogels released DOX drug in an accelerated way under both acidic and reducible conditions mimicking extracellular tumor microenvironments and intracellular compartments. The stimulative release controllability of the nanogels improved the DOX internalization and long-term drug accumulation inside A549 cells (an adenocarcinoma human alveolar basal epithelial cell line), which, together with their photothermal effect, resulted in a good anticancer cytotoxicity, indicating their promising potential for combinative anticancer therapy.  相似文献   

5.
In the last two decades an extensive research on the employment of ultrasounds in anticancer therapy has been noticed. So far ultrasounds have been widely used in medicine for diagnostic purposes (ultrasonography), but their great therapeutic potential and the development of polymer based antineoplastic drug carriers have persuaded many investigators to start research on the employment of ultrasounds in anticancer therapy. A new therapeutic concept based on the controlled drug's molecules release from their transporting polymer carriers has been proposed. Cavitation, a phenomenon characteristic for the action of ultrasounds, is used to destroy polymeric drug carriers and for drug release in target sites. The sonodynamic therapy (SDT) which utilizes ultrasonic waves for "acoustic drug activation" leading to the enhancement of cytotoxic activity of some drugs has also been developed. Furthermore, a long standing research on ultrasounds resulted in a new concept based on hyperthermia. This method of cancer treatment does not require any chemotherapeutic agent to be applied.  相似文献   

6.
《Drug discovery today》2022,27(12):103386
Inorganic nanoparticles for drug delivery in cancer treatment offer many potential advantages because they can maximize therapeutic effect through targeting ligands while minimizing off-target side-effects through drug adsorption and infiltration. Although inorganic nanoparticles were introduced as drug carriers, they have emerged as having the capacity for combined therapeutic capabilities, including anticancer effects through cytotoxicity, suppression of oncogenes and cancer cell signaling pathway inhibition. The most promising advanced strategies for cancer therapy are as synergistic platforms for RNA interference (siRNA, miRNA, shRNA) and as synergistic drug delivery agents for the inhibition of cancer cell signaling pathways. The present work summarizes relevant current work, the promise of which is suggested by a projected compound annual growth rate of ~ 20% for drug delivery alone.  相似文献   

7.
Background: Therapeutic peptides have great potential as anticancer agents owing to their ease of rational design and target specificity. However, their utility in vivo is limited by low stability and poor tumor penetration. Objective: The authors review the development of peptide inhibitors with potential for cancer therapy. Peptides that arrest the cell cycle by mimicking CDK inhibitors or induce apoptosis directly are discussed. Methods: The authors searched Medline for articles concerning the development of therapeutic peptides and their delivery. Results/conclusion: Inhibition of cancer cell proliferation directly using peptides that arrest the cell cycle or induce apoptosis is a promising strategy. Peptides can be designed that interact very specifically with cyclins and/or cyclin-dependent kinases and with members of apoptotic cascades. Use of these peptides is not limited by their design, as a rational approach to peptide design is much less challenging than the design of small molecule inhibitors of specific protein–protein interactions. However, the limitations of peptide therapy lie in the poor pharmacokinetic properties of these large, often charged molecules. Therefore, overcoming the drug delivery hurdles could open the door for effective peptide therapy, thus making an entirely new class of molecules useful as anticancer drugs.  相似文献   

8.
At present, brain tumor is among the most challenging diseases to treat and the therapy is limited by the lack of effective methods to deliver anticancer agents across the blood-brain barrier (BBB). BBB is a selective barrier that separates the circulating blood from the brain extracellular fluid. In its neuroprotective function, BBB prevents the entry of toxins, as well as most of anticancer agents and is the main impediment for brain targeted drug delivery approaches. Nanotechnology-based delivery systems provide an attractive strategy to cross the BBB and reach the central nervous system (CNS). The incorporation of anticancer agents in various nanovehicles facilitates their delivery across the BBB. Moreover, a more powerful tool in brain tumor therapy has relied surface modifications of nanovehicles with specific ligands that can promote their passage through the BBB and favor the accumulation of the drug in CNS tumors. This review describes the physiological and anatomical features of the brain tumor and the BBB, and summarizes the recent advanced approaches to deliver anticancer drugs into brain tumor using nanobiotechnology-based drug carrier systems. The role of specific ligands in the design of functionalized nanovehicles for targeted delivery to brain tumor is reviewed. The current trends and future approaches in the CNS delivery of therapeutic molecules to tumors are also discussed.  相似文献   

9.
Bladder cancer is the ninth most common malignancy in the world featuring very high gender variability in occurrence. Current options for bladder cancer therapy include surgery, immunotherapy, chemotherapy and radiotherapy with a trend towards multimodal treatments. However, successful management remains a challenge for urologists and oncologists because of the high risk for recurrence and progression. Particularly in the field of bladder cancer chemotherapy, efficacy of treatment might be improved by advanced drug delivery strategies aimed at prolonged residence time within the bladder cavity and increased permeability of the bladder wall during intravesical instillation. Moreover, a deeper understanding of the biology of bladder carcinogenesis and malignant progression stimulated the development of a new generation of anticancer drugs for targeted therapies that might result in increased treatment specificity together with lower toxic potential and higher therapeutic indices. This review discusses the available strategies for ‘targeted therapy’, focusing on molecular targets, and for ‘controlled delivery’, comprising all other approaches towards improved drug delivery.  相似文献   

10.
Receptor-mediated tumor targeting has received major attention in the field of cancer drug delivery in the past few years. Receptors, as molecular target has opened new opportunities for cellular or intracellular targeting of drug loaded delivery systems conjugated with targeting moieties i.e. ligand. This receptor mediated targeting of cancer drug through nano carrier systems to cancerous tissue offer protection and improves the pharmacokinetics of various drugs and help to overcome the systemic toxicity and adverse effects that result from the non-selective nature of most current cancer therapeutic agents. The article reviews the scope of receptor mediated targeting of anticancer drug loaded in various nanocarriers and also summarize recent perspective and challenges in the field of nanocarrier-aided drug delivery and drug targeting for cancer therapy.  相似文献   

11.
Parhi P  Mohanty C  Sahoo SK 《Drug discovery today》2012,17(17-18):1044-1052
Combination therapy for the treatment of cancer is becoming more popular because it generates synergistic anticancer effects, reduces individual drug-related toxicity and suppresses multi-drug resistance through different mechanisms of action. In recent years, nanotechnology-based combination drug delivery to tumor tissues has emerged as an effective strategy by overcoming many biological, biophysical and biomedical barriers that the body stages against successful delivery of anticancer drugs. The sustained, controlled and targeted delivery of chemotherapeutic drugs in a combination approach enhanced therapeutic anticancer effects with reduced drug-associated side effects. In this article, we have reviewed the scope of various nanotechnology-based combination drug delivery approaches and also summarized the current perspective and challenges facing the successful treatment of cancer.  相似文献   

12.
Lung cancer poses one of the most significant challenges to modern medicine, killing thousands every year. Current therapy involves surgical resection supplemented with chemotherapy and radiotherapy due to high rates of relapse. Shortcomings of currently available chemotherapy protocols include unacceptably high levels of systemic toxicity and low accumulation of drug at the tumor site. Loco-regional delivery of nanocarriers loaded with anticancer agents has the potential to significantly increase efficacy, while minimizing systemic toxicity to anticancer agents. Local drug administration at the tumor site using nanoparticulate drug delivery systems can reduce systemic toxicities observed with intravenously administered anticancer drugs. In addition, this approach presents an opportunity for sustained delivery of anticancer drug over an extended period of time. Herein, the progress in the development of locally administered nanomedicines for the treatment of lung cancer is reviewed. Administration by inhalation, intratumoral injection and means of direct in situ application are discussed, the benefits and drawbacks of each modality are explored.  相似文献   

13.
Background: Therapeutic peptides have great potential as anticancer agents owing to their ease of rational design and target specificity. However, their utility in vivo is limited by low stability and poor tumor penetration. Objective: The authors review the development of peptide inhibitors with potential for cancer therapy. Peptides that inhibit signal transduction cascades are discussed. Methods: The authors searched Medline for articles concerning the development of therapeutic peptides and their delivery. Results/conclusion: Given our current knowledge of protein sequences, structures and interaction interfaces, therapeutic peptides that inhibit interactions of interest are easily designed. These peptides are advantageous because they are highly specific for the interaction of interest, and they are much more easily developed than small molecule inhibitors of the same interactions. The main hurdle to application of peptides for cancer therapy is their poor pharmacokinetic and biodistribution parameters. Therefore, successful development of peptide delivery vectors could potentially make possible the use of this new and very promising class of anticancer agents.  相似文献   

14.
15.
16.
Arsenic trioxide (As2O3, ATO) has limited therapeutic benefit to treat solid tumors, whether used alone or in combination. Nanoscale drug delivery vehicles have great potential to overcome the limitation of the utility of ATO by rapid renal clearance and dose-limiting toxicity. Polymeric materials ranging from gelatin foam to synthetic polymers such as poly(vinyl alcohol) were developed for vascular embolic or chemoembolic applications. Recently, we have introduced sevelamer, an oral phosphate binder, as a new polymeric embolic for vascular interventional therapy. In this paper, sevelamer arsenite nanoparticle with a polygonal shape and a size of 50–300 nm, synthesized by anionic exchange from sevelamer chloride, was developed as a Pi-responsive bifunctional drug carrier and embolic agent for chemoembolization therapy. At the same arsenic dosage, sevelamer arsenite-induced severer tumor necrosis than ATO on the VX2 cancer model. In vitro tests evidenced that Pi deprivation by sevelamer could enhance ATO’s anticancer effect. The results showed that ATO in Pi starvation reduced cell viability, induced more apoptosis, and diminished the mitochondrial membrane potential (Δψm) of cells since Pi starvation helps ATO to further down-regulate Bcl-2 expression, up-regulate Bax expression, enhance the activation of caspase-3 and increase the release of cytochrome c, and the production of excessive reactive oxygen species (ROS). Sevelamer arsenite not only plays a Pi-activated nano-drug delivery system but also integrated anticancer drug with embolic for interventional therapy. Therefore, our results presented a new administration route of ATO as well as an alternative chemoembolization therapy.  相似文献   

17.
Micelles are colloidal particles with a size around 5–100 nm which are currently under investigation as carriers for hydrophobic drugs in anticancer therapy. Currently, five micellar formulations for anticancer therapy are under clinical evaluation, of which Genexol-PM has been FDA approved for use in patients with breast cancer. Micelle-based drug delivery, however, can be improved in different ways. Targeting ligands can be attached to the micelles which specifically recognize and bind to receptors overexpressed in tumor cells, and chelation or incorporation of imaging moieties enables tracking micelles in vivo for biodistribution studies. Moreover, pH-, thermo-, ultrasound-, or light-sensitive block copolymers allow for controlled micelle dissociation and triggered drug release. The combination of these approaches will further improve specificity and efficacy of micelle-based drug delivery and brings the development of a ‘magic bullet’ a major step forward.  相似文献   

18.
Despite decades of research, progress in cancer chemotherapy is relatively slow, hampered, in part, by the lack of appropriate mechanisms to deliver anticancer drugs selectively to tumor tissues. This is a challenging task, as various cellular, anatomical and physiological barriers impede effective delivery of drugs to tumors. Systemic or oral administration can cause severe toxicity, which limits the therapeutic potential of anticancer drugs. Therefore, the most important goal of drug delivery is to minimize the exposure of normal tissues to these drugs while maintaining their therapeutic concentration in tumors. Furthermore, the risk of subtherapeutic dosing of anticancer drugs is significant as tumors may develop drug resistance as a result of biochemical changes, drug export mechanisms, or limitations in mechanisms of cellular drug importation. As the field of cancer nanomedicine advances, it is anticipated that many drug delivery-related issues concerning cancer chemotherapeutics will be resolved. This review discusses the current status of nanoparticle-mediated cancer drug delivery, challenges to its utilization, and potential implications of its use in cancer therapy.  相似文献   

19.
Exosomes have recently emerged as a promising drug delivery system with low immunogenicity, high biocompatibility, and high efficacy of delivery. We demonstrated earlier that macrophage-derived exosomes (exo) loaded with a potent anticancer agent paclitaxel (PTX) represent a novel nanoformulation (exoPTX) that shows high anticancer efficacy in a mouse model of pulmonary metastases. We now report the manufacture of targeted exosome-based formulations with superior structure and therapeutic indices for systemic administration. Herein, we developed and optimized a formulation of PTX-loaded exosomes with incorporated aminoethylanisamide-polyethylene glycol (AA-PEG) vector moiety to target the sigma receptor, which is overexpressed by lung cancer cells. The AA-PEG-vectorized exosomes loaded with PTX (AA-PEG-exoPTX) possessed a high loading capacity, profound ability to accumulate in cancer cells upon systemic administration, and improved therapeutic outcomes. The combination of targeting ability with the biocompatibility of exosome-based drug formulations offers a powerful and novel delivery platform for anticancer therapy.  相似文献   

20.
Drug delivery is an interdisciplinary and independent field of research and is gaining the attention of pharmaceutical researchers, medical doctors and industry. A safe and targeted drug delivery could improve the performance of some classic medicines already on the market, and moreover, will have implications for the development and success of new therapeutic strategies such as anticancer drug delivery, peptide and protein delivery and gene therapy. In the last decade, several drug-delivery technologies have emerged and a fascinating part of this field is the development of nanoscale drug delivery devices. Nanoparticles (NPs) have been developed as an important strategy to deliver conventional drugs, recombinant proteins, vaccines and more recently, nucleotides. NPs and other colloidal drug-delivery systems modify the kinetics, body distribution and drug release of an associated drug. This review article focuses on the potential of nanotechnology in medicine and discusses different nanoparticulate drug-delivery systems including polymeric NPs, ceramic NPs, magnetic NPs, polymeric micelles and dendrimers as well as their applications in therapeutics, diagnostics and imaging. FROM THE CLINICAL EDITOR: This comprehensive review focuses on different nanoparticulate drug-delivery systems including polymeric NPs, ceramic NPs, magnetic NPs, polymeric micelles and dendrimers as well as their applications in therapeutics, diagnostics and imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号