首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examine the osteogenicity of a sponge biomaterial consisting of a biodegradable mixture of gelatin and beta-tricalcium phosphate (betaTCP) that bound bone morphogenetic protein 2 (BMP-2) in critical-sized bone defects in rats. Gelatin-betaTCP sponges containing either phosphate buffered saline or incorporating BMP-2 are implanted into 5 mm diameter bone defects created in rat mandibles. We assess the defects biweekly for 8 weeks following implantation. There is significantly higher osteoinductive activity and significantly more Gla-osteocalcin content at bone-defect healing sites treated with gelatin-betaTCP sponges incorporating BMP-2 than there is in those treated with sponges that did not contain BMP-2. Histologically, new bone that contains bone marrow and that is connected to the original bone almost entirely replaces the regenerated bone. These results show that biodegradable gelatin-betaTCP incorporating BMP-2 is osteogenic enough to promote healing in large bone defects.  相似文献   

2.
Takahashi Y  Yamamoto M  Tabata Y 《Biomaterials》2005,26(23):4856-4865
Biodegradable gelatin sponges at different contents of beta-tricalcium phosphate (beta-TCP) were fabricated to allow bone morphogenetic protein (BMP)-2 to incorporate into them. The in vivo osteoinduction activity of the sponges incorporating BMP-2 was investigated, while their in vivo profile of BMP-2 release was evaluated. The sponges prepared had an interconnected pore structure with an average pore size of 200 microm, irrespective of the beta-TCP content. The in vivo release test revealed that BMP-2 was released in vivo at a similar time profile, irrespective of the beta-TCP content. The in vivo time period of BMP-2 retention was longer than 28 days. When the osteoinduction activity of gelatin or gelatin-beta-TCP sponges incorporating BMP-2 was studied following the implantation into the back subcutis of rats in terms of histological and biochemical examinations, homogeneous bone formation was histologically observed throughout the sponges, although the extent of bone formation was higher in the sponges with the lower contents of beta-TCP. On the other hand, the level of alkaline phosphatase activity and osteocalcin content at the implanted sites of sponges decreased with an increase in the content of beta-TCP. The gelatin sponge exhibited significantly higher osteoinduction activity than that of any gelatin-beta-TCP sponge, although every sponge with or without beta-TCP showed a similar in vivo profile of BMP-2 release. In addition, the in vitro collagenase digestion experiments revealed that the gelatin-beta-TCP sponge collapsed easier than the gelatin sponge without beta-TCP incorporation. These results suggest that the maintenance of the intrasponge space necessary for the osteoinduction is one factor contributing to the osteoinduction extent of BMP-2-incorporating sponges.  相似文献   

3.
Segmental defect regeneration has been a clinical challenge. Current tissue-engineering approach using porous biodegradable scaffolds to delivery osteogenic cells and growth factors demonstrated success in facilitating bone regeneration in these cases. However, due to the lack of mechanical property, the porous scaffolds were evaluated in non-load bearing area or were stabilized with stress-shielding devices (bone plate or external fixation). In this paper, we tested a scaffold that does not require a bone plate because it has sufficient biomechanical strength. The tube-shaped scaffolds were manufactured from poly(propylene) fumarate/tricalcium phosphate (PPF/TCP) composites. Dicalcium phosphate dehydrate (DCPD) were used as bone morphogenetic protein-2 (BMP-2) carrier. Twenty-two scaffolds were implanted in 5mm segmental defects in rat femurs stabilized with K-wire for 6 and 15 weeks with and without 10 microg of rhBMP-2. Bridging of the segmental defect was evaluated first radiographically and was confirmed by histology and micro-computer tomography (microCT) imaging. The scaffolds in the BMP group maintained the bone length throughout the duration of the study and allow for bridging. The scaffolds in the control group failed to induce bridging and collapsed at 15 weeks. Peripheral computed tomography (pQCT) showed that BMP-2 does not increase the bone mineral density in the callus. Finally, the scaffold in BMP group was found to restore the mechanical property of the rat femur after 15 weeks. Our results demonstrated that the load-bearing BMP-2 scaffold can maintain bone length and allow successfully regeneration in segmental defects.  相似文献   

4.
The objective of this study was to investigate the feasibility of biodegradable gelatin hydrogels as the controlled-release carrier of bone morphogenetic protein-2 (BMP-2) to enhance bone regeneration at a skull defect of nonhuman primates. Hydrogels with 3 different water contents were prepared through glutaraldehyde crosslinking of gelatin with an isoelectric point of 9.0 under varied reaction conditions. A critical-sized defect (6 mm in diameter) was prepared at the skull bone of skeletally mature cynomolgus monkeys, and gelatin hydrogels incorporating various doses of BMP-2 were applied to the defects. When the bone regeneration was evaluated by soft radiography and bone mineral density (BMD) examinations, the gelatin hydrogel incorporating BMP-2 exhibited significantly higher osteoinduction activity than did an insoluble bone matrix that incorporated BMP-2 (one of the best osteoinduction systems), although the activity depended on the water content of hydrogels. BMD enhancement was highest for the gelatin hydrogel that had a water content of 97.8 wt% among all types of hydrogels. Moreover, the gelatin hydrogel enabled BMP-2 to induce the bone regeneration in nonhuman primates even at low doses. We conclude that the controlled release of BMP-2 for a certain time period was essential to inducing the osteoinductive potential of BMP-2.  相似文献   

5.
The objective of this study is to investigate the feasibility of a biodegradable hydrogel of gelatin as the controlled release carrier of bone morphogenetic protein-2 (BMP-2) suitable for enhancement of bone regeneration at a segmental bone defect. Hydrogels with three different water contents were prepared through glutaraldehyde crosslinking of gelatin with an isoelectric point of 9.0 under varied reaction conditions. Segmental critical-sized defects (20 mm) were created at the ulnar bone of skeletally mature New Zealand white rabbits, and gelatin hydrogels incorporating BMP-2 (17 microg/hydrogel) were implanted into the defects. When bone regeneration was evaluated by soft x-ray observation and bone mineral density (BMD) measurement, the gelatin hydrogels incorporating BMP- 2 exhibited significantly high osteoinduction activity compared with that of free BMP-2, although the activity depended on the water content of the hydrogels. Significantly higher BMD enhancement was observed in the gelatin hydrogel with a water content of 97.8 wt% than that with the lower or higher water content. We concluded that the biodegradable gelatin hydrogel is a promising controlled release carrier of BMP-2 for bone regeneration at the segmental bone defect.  相似文献   

6.
We investigated the efficiency of basic fibroblast growth factor (b-FGF) released from a gelatin sponge in the regeneration of tracheal cartilage. A 1-cm gap was made in the midventral portion of each of 10 consecutive cervical tracheal cartilages (rings 4 to 13) in 15 experimental dogs. In the control group (n = 5), the resulting gap was left blank. In the gelatin group (n = 5), a gelatin sponge alone was implanted in the gap. In the b-FGF group (n = 5), a gelatin sponge containing 100 mug b-FGF solution was implanted in the gap. We euthanatized one of the five dogs in each group at 1 month after implantation and one at 3 months and examined the implant sites macroscopically and microscopically. In the control and gelatin groups, no regenerated cartilage was observed in the tracheal cartilage gap at 1 or 3 months. The distances between the cartilage stumps had shrunk. In the b-FGF group, fibrous cartilage had started to regenerate from both host cartilage stumps at 1 month. At 3 months, regenerated fibrous cartilage filled the gap and had connected each of the stumps. The regenerated cartilage was covered with regenerated perichondrium originating from the host perichondrium. Shrinkage of the distance between the host cartilage stumps was not observed in the b-FGF group. We succeeded in inducing cartilage regeneration in the gaps in canine tracheal cartilage rings by using the slow release of b-FGF from a gelatin sponge. The regenerated cartilage induced by b-FGF was fibrous cartilage.  相似文献   

7.
This work evaluated gelatin microparticles and biodegradable composite scaffolds for the controlled release of bone morphogenetic protein-2 (BMP-2) in vitro and in vivo. Gelatin crosslinking (10 and 40mM glutaraldehyde), BMP-2 dose (6 and 60ng BMP-2 per mg dry microparticles), buffer type (phosphate buffered saline (PBS) and collagenase-containing PBS), and gelatin type (acidic and basic) were investigated for their effects on BMP-2 release. Release profiles were also observed using poly(lactic-co-glycolic acid) (PLGA) microparticles with varying molecular weights (8300 and 57,500). In vitro and in vivo studies were conducted using radiolabeled BMP-2; the chloramine-T method was preferred over Bolton-Hunter reagent for radioiodination with this system. BMP-2 release from PLGA microparticles resulted in a moderate burst release followed by minimal cumulative release, while BMP-2 release from gelatin microparticles exhibited minimal burst release followed by linear release kinetics in vitro. Growth factor dose had a small effect on its normalized release kinetics probably because of an equilibrium between gelatin-bound and unbound BMP-2. Differences in release from acidic and basic gelatin microparticles may result from the different pretreatment conditions used for gelatin synthesis. The in vitro release kinetics for both gelatin microparticles alone and within composite scaffolds were dependent largely on the extent of gelatin crosslinking; varying buffer type served to confirm that controlled release relies on enzymatic degradation of the gelatin for controlled release. Finally, in vivo studies with composite scaffolds exhibited minimal burst and linear release up to 28 days. In summary, dose effects on BMP-2 release were found to be minimal while varying gelatin type and release medium can alter release kinetics. These results demonstrate that a systematic control of BMP-2 delivery from gelatin microparticles can be achieved by altering the extent of basic gelatin crosslinking.  相似文献   

8.
The objective of this study is to evaluate the activity of gelatin hydrogels incorporating combined stromal cell-derived factor-1 (SDF-1) and bone morphogenetic protein-2 (BMP-2) on the in vivo bone regeneration at an ulna critical-sized defect and subcutaneous site of rats, and compared with that of those incorporating either SDF-1 or BMP-2. The similar release profile of SDF-1 and BMP-2 from the hydrogels was observed with or without the combination of BMP-2 and SDF-1, respectively. An enhanced bone regeneration by the hydrogels incorporating combined SDF-1 and BMP-2 was observed. In addition, the implantation of hydrogels incorporating combined SDF-1 and BMP-2 enhanced the expression level of CXC chemokine cell-surface receptor-4 (Cxcr4), Runt-related factor-2 (Runx2), and Osteocalcin genes. The experiments with green fluorescent protein (GFP)-positive Chimeric mice revealed that the recruitment of bone marrow-derived cells was promoted and a vascular-like structure together with strong accumulation of CD31- and CD34-positive cells was observed at the site of hydrogels incorporating combined SDF-1 and BMP-2 implanted. In addition, a large fraction of CD29- and CD44-positive non-hematopoietic cells was detected. It is concluded that the combined release of SDF-1 and BMP-2 enhanced the recruitment of osteogenic cells and angiogenesis, resulting in the synergistic effect on bone regeneration.  相似文献   

9.
Current therapies for tissue regeneration rely on the presence or direct delivery of growth factors to sites of repair. Bone morphogenetic protein-2 (BMP-2), combined with a carrier (usually collagen), is clinically proven to induce new bone formation during spinal fusion and nonunion repair. However, due to BMP-2's short half-life and its diffusive properties, orders of magnitude above physiological levels are required to ensure effectiveness. In addition, a high dose of this multifunctional growth factor is known to induce adverse effects in patients. To circumvent these challenges, we proposed and tested a new approach for BMP-2 delivery, by controlling BMP activity via carrier binding and localized proteolysis. BMP-2 was covalently bound to gelatin through site-specific enzymatic crosslinking using a microbial transglutaminase. Binding of BMP-2 to gelatin can completely switch off BMP-2 activity, as evidenced by loss of its transdifferentiating ability toward C2C12 promyoblasts. When gelatin sequestered BMP-2 is incubated with either microbial collagenase or tissue-derived matrix metalloproteinases, BMP-2 activity is fully restored. The activity of released BMP-2 correlates with the protease activity in a dose- and time-dependent manner. This observation suggests a novel way of delivering BMP-2 and controlling its activity. This improved delivery method, which relies on a physiological feedback, should enhance the known potential of this and other growth factors for tissue repair and regeneration.  相似文献   

10.
We investigated the efficiency of bone morphogenetic protein (BMP)-2 released slowly from gelatin sponge for tracheal cartilage regeneration. A 1-cm gap was made in the mid-ventral portion of each of 10 consecutive tracheal cartilages. In the control group (n = 4), the resulting gap was left untreated. In the gelatin group (n = 4), plain gelatin was implanted in the gap. In the BMP-2 group (n = 4), gelatin containing 100 microg BMP-2 was implanted. We euthanatized all dogs in each group at 1, 3, 6, and 12 months after the implantation, respectively, and then examined the implant site macro- and microscopically. In the BMP-2 group, regenerated fibrous cartilage and newly formed bone were observed at 1 and 12 months. Regenerated cartilage was observed at the ends of the host cartilage stumps, with newly formed bone in the middle portion. The gaps were filled with regenerated cartilage and newly formed bone. At 3 and 6 months, regenerated cartilage, but not newly formed bone, was evident. The regenerated cartilage was covered with perichondrium and showed continuity with the host cartilage. We succeeded in inducing cartilage regeneration and new bone formation in canine trachea by slow release of 100 microg BMP-2 from gelatin.  相似文献   

11.
The regeneration of large bone defects is a common and significant clinical problem. Limitations associated with existing treatments such as autologous bone grafts and allografts have increased the need for synthetic bone graft substitutes. The objective of this study was to evaluate the capacity of novel hollow hydroxyapatite (HA) microspheres to serve as a carrier for controlled release of bone morphogenetic-2 (BMP2) in bone regeneration. Hollow HA microspheres (106–150 μm) with a high surface area (>100 m2 g?1) and a mesoporous shell wall (pore size 10–20 nm) were created using a glass conversion technique. The release of BMP2 from the microspheres into a medium composed of diluted fetal bovine serum in vitro was slow, but it occurred continuously for over 2 weeks. When implanted in rat calvarial defects for 3 or 6 weeks, the microspheres loaded with BMP2 (1 μg per defect) showed a significantly better capacity to regenerate bone than those without BMP2. The amount of new bone in the defects implanted with the BMP2-loaded microspheres was 40% and 43%, respectively, at 3 and 6 weeks, compared to 13% and 17%, respectively, for the microspheres without BMP2. Coating the BMP2-loaded microspheres with a biodegradable polymer, poly(lactic-co-glycolic acid), reduced the amount of BMP2 released in vitro and, above a certain coating thickness, significantly reduced bone regeneration in vivo. The results indicate that these hollow HA microspheres could provide a bioactive and osteoconductive carrier for growth factors in bone regeneration.  相似文献   

12.
Nonunion is a common complication in open fractures and other severe bone injuries. Recombinant human bone morphogenetic protein-2 (rhBMP-2) delivered on a collagen sponge enhances healing of fractures. However, the burst release of rhBMP-2 necessitates supra-physiological doses of rhBMP-2 to achieve a robust osteogenic effect, which introduces risk of ectopic bone formation and severe inflammation and increases the cost. Although the concept that the ideal pharmacokinetics for rhBMP-2 includes both a burst and sustained release is generally accepted, investigations into the effects of the release kinetics on new bone formation are limited. In the present study, biodegradable polyurethane (PUR) and PUR/microsphere [PUR/poly(lactic-co-glycolic acid)] composite scaffolds with varying rhBMP-2 release kinetics were compared to the collagen sponge delivery system in a critical-sized rat segmental defect model. Microcomputed tomography analysis indicated that a burst followed by a sustained release of rhBMP-2 from the PUR scaffolds regenerated 50% more new bone than the collagen sponge loaded with rhBMP-2, whereas a sustained release without the burst did not form significantly more bone than the scaffold without rhBMP-2. This study demonstrated that the putative optimal release profile (i.e., burst followed by sustained release) for rhBMP-2 can be achieved using PUR scaffolds, and that this enhanced pharmacokinetics regenerated more bone than the clinically available standard of care in a critical-sized defect in rat femora.  相似文献   

13.
Bone regeneration often requires harvesting of autologous bone with significant potential morbidity and cost. Recombinant human bone morphogenetic protein (rhBMP)-2 has been approved by the U.S. Food and Drug Administration for specific regenerative indications. However, administration of exogenous growth factors has many drawbacks. The objective of the present proof-of-concept study was to determine whether immobilized anti-BMP-2 antibodies (Abs) could capture endogenous BMP-2 in local sites to mediate osteogenesis, a strategy we refer to as antibody-mediated osseous regeneration (AMOR). We have generated a murine anti-BMP-2 monoclonal antibody library, which was tested along with commercially available Abs in vitro and in vivo for their ability to mediate AMOR. In vitro studies demonstrated that only some anti-BMP-2 Abs tested formed immune complexes with BMP-2, which can bind to BMP cellular receptor, whereas other BMP-2/anti-BMP-2 complexes failed to bind. To investigate whether anti-BMP-2 Abs were able to mediate AMOR in vivo, anti-BMP-2 Abs were immobilized on absorbable collagen sponge (ACS) and surgically placed in rat calvarial defects. Microcomputed tomography analysis of live animals at 2, 4, and 6 weeks demonstrated that some anti-BMP-2 Abs immobilized on ACS mediated significant bone regeneration, whereas other clones did not mediate any bone regeneration. In situ BMP-2 and osteocalcin expression was investigated by immunohistochemistry. Results demonstrated higher BMP-2 and osteocalcin expression in sites with increased bone regeneration. Results provide first evidence for the ability of anti-BMP2 Abs to form an immune complex with endogenous BMP-2 and mediate bone regeneration in vivo, suggesting a promising therapeutic method for tissue engineering.  相似文献   

14.
Bone morphogenetic proteins (BMPs) are biologically active molecules capable of inducing new bone formation, and show potential for clinical use in bone defect repair. However, an ideal system for delivering BMPs that can potentiate their bone-inducing ability and provide initial mechanical strength and scaffold for bone ingrowth has not yet been developed. In this study, to construct a carrier/scaffold system for BMPs, we combined two biomaterials: interconnected-porous calcium hydroxyapatite ceramics (IP-CHA), and the synthetic biodegradable polymer poly D,L,-lactic acid-polyethyleneglycol block co-polymer (PLA-PEG). We used a rabbit radii model to evaluate the bone-regenerating efficacy of rhBMP-2/PLA-PEG/IP-CHA composite. At 8 weeks after implantation, all bone defects in groups treated with 5 or 20 microg of BMP were completely repaired with sufficient strength. Furthermore, using this carrier scaffold system, we reduced the amount of BMP necessary for such results to about a tenth of the amount needed in previous studies, probably due to the superior osteoconduction ability of IP-CHA and the optimal drug delivery system provided by PLA-PEG, inducing new bone formation in the interconnected pores. The present findings indicate that the synthetic biodegradable polymer/IP-CHA composite is an excellent combination carrier/scaffold delivery system for rhBMP-2, and that it strongly promotes the clinical effects of rhBMP-2 in bone tissue regeneration.  相似文献   

15.

Aim of the study

Cartilage has a limited capacity for healing after trauma. Autologous chondrocyte implantation is widely used for the treatment of patients with focal damage to articular cartilage. Chondrocytes are isolated from biopsy specimen, cultured in monolayers on plastic then transplanted over the cartilage defect. However, chondrocyte amplification on plastic triggers their dedifferentiation. This phenomenon is characterized by loss of expression of type II collagen, the most abundant cartilage protein. The challenge for autologous chondrocyte implantation is to provide patients with well-differentiated cells. The aim of the present study was to test the capability of bone morphogenetic protein (BMP)-2 to promote redifferentiation of human chondrocytes after their expansion on plastic.

Materials and methods

Chondrocytes extracted from nasal cartilage obtained after septoplasty were serially cultured in monolayers. After one, two or three passages, BMP-2 was added to the culture medium. The cellular phenotype was characterized at the gene level by using RT-PCR. The expression of genes coding for type II procollagen with the ratio of IIB/IIA forms, aggrecan, Sox9, osteocalcin and type I procollagen was monitored.

Results

Our results show that BMP-2 can stimulate chondrogenic expression of the chondrocytes amplified on plastic, without inducing osteogenic expression. However, this stimulatory effect decreases with the number of passages.

Conclusion

The efficiency of autologous chondrocyte implantation could be improved by using chondrocytes treated with BMP-2 during their in vitro preparation.  相似文献   

16.
Because cardiomyocytes lose their ability to divide after birth, any subsequent cell loss or dysfunction results in pathologic cardiac rhythm initiation or impulse conduction. Strategies to restore and control the electrophysiological activity of the heart may, therefore, greatly affect the regeneration of cardiac tissue functionality. Using lentivirus-derived particles to regulate the bone morphogenetic protein-2 (BMP-2) gene expression in a pristinamycin- or gaseous acetaldehyde-inducible manner, we demonstrated the adjustment of cardiomyocyte electrophysiological characteristics. Complementary metal oxide semiconductor-based high-density microelectrode arrays (HD-MEAs) were used to monitor the electrophysiological activity of neonatal rat cardiomyocytes (NRCs) cultured as monolayers (NRCml) or as microtissues (NRCmt). NRCmt more closely resembled heart tissue physiology than did NRCml and could be conveniently monitored using HD-MEAs because of their ability to detect low-signal events and to sub-select the region of interest, namely, areas where the microtissues were placed. Cardiomyocyte-forming microtissues, transduced using lentiviral vectors encoding BMP-2, were capable of restoring myocardial microtissue electrical activity. We also engineered NRCmt to functionally couple within a cardiomyocyte monolayer, thus showing pacemaker-like activity upon local regulation of transgenic BMP-2 expression. The controlled expression of therapeutic transgenes represents a crucial advance for clinical interventions and gene-function analysis.  相似文献   

17.
Yang HS  La WG  Bhang SH  Kim HJ  Im GI  Lee H  Park JH  Kim BS 《Tissue engineering. Part A》2011,17(13-14):1809-1818
Microfracture of cartilage induces migration of bone-marrow-derived mesenchymal stem cells. However, this treatment often results in fibrocartilage regeneration. Growth factors such as bone morphogenetic protein (BMP)-2 induce the differentiation of bone-marrow-derived mesenchymal stem cells into chondrocytes, which can be used for hyaline cartilage regeneration. Here, we tested the hypothesis that long-term delivery of BMP-2 to cartilage defects subjected to microfracture results in regeneration of high-quality hyaline-like cartilage, as opposed to short-term delivery of BMP-2 or no BMP-2 delivery. Heparin-conjugated fibrin (HCF) and normal fibrin were used as carriers for the long- and short-term delivery of BMP-2, respectively. Rabbit articular cartilage defects were treated with microfracture combined with one of the following: no treatment, fibrin, short-term delivery of BMP-2, HCF, or long-term delivery of BMP-2. Eight weeks after treatment, histological analysis revealed that the long-term delivery of BMP-2 group (microfracture + HCF + BMP-2) showed the most staining with alcian blue. A biochemical assay, real-time polymerase chain reaction assay and Western blot analysis all revealed that the long-term delivery of BMP-2 group had the highest glucosaminoglycan content as well as the highest expression level of collagen type II. Taken together, the long-term delivery of BMP-2 to cartilage defects subjected to microfracture resulted in regeneration of hyaline-like cartilage, as opposed to short-term delivery or no BMP-2 delivery. Therefore, this method could be more convenient for hyaline cartilage regeneration than autologous chondrocyte implantation due to its less invasive nature and lack of cell implantation.  相似文献   

18.
丁琛  刘浩 《中国组织工程研究》2016,20(16):2384-2390
BACKGROUND: Bionic structure is one of the most important goals of scaffold design in tissue engineering. However, the majority of the bionic scaffolds do not have the capacity of sustained release of growth factors.  相似文献   

19.
The effects of recombinant human bone morphogenetic protein (rhBMP)-2 and a novel carrier, PLGA-coated gelatin sponge (PGS), on bone defect repair was examined. A 1.5 cm unilateral segmental bone defect was created in the ulnar diaphysis of a Japanese white rabbit. In an initial study, defects were either treated with PGS impregnated with various concentrations of rhBMP-2 (0, 0.1, 0.4 and 1 mg/cm(3)) or left untreated. Defect healing was assessed by radiographic union rate, and biomechanical properties of regenerated bones were determined at 16 weeks postoperatively. In a second study, defects were implanted with PGS with or without rhBMP-2, and histologically observed at postoperative weeks 8 and 16. Radiographic union rate increased the dose-dependently at an early time point. All defects treated with rhBMP-2 (0.4 and 1 mg/cm(3)) were radiographically repaired. Mechanical properties of regenerated bones were restored in a dose-dependent manner. Neither ulnae left untreated nor implanted PGS alone showed radiographic union. Longitudinal alignment of lamellar structure was observed histologically at 16 weeks, indicating that remodeling of regenerated bone was complete. Implanted PGS was almost completely resorbed by 8 weeks, and no abnormalities were observed in the surrounding soft tissue. These results suggest that PGS is a promising carrier for rhBMP-2.  相似文献   

20.
A functionally graded apatite (fg-HAp) with body fluid permeability was developed from bovine bone. The tissue reaction of fg-HAp and its efficacy as a scaffold for recombinant human bone morphogenetic protein-2 (BMP-2) were evaluated histomorphometrically, and a component of permeable fluid into the fg-HAp was analyzed by immunoblotting assay. The fg-HAp block (27 mm(3)) combined with and without BMP-2 (5 microg) was implanted subcutaneously in 4-week-old Wistar rats. Histological examination showed that the surface and bulk degradations of the fg-HAp proceeded extensively and giant cells appeared on the fg-HAp at 2 weeks. Body fluid permeation was found inside the fg-HAp, and the fluid component was immunopositive for albumin. In addition, albumin was detected as a main component among proteins collected from the in vivo implanted fg-HAp. The bioabsorption of the fg-HAp was accelerated as BMP-2-induced bone matured. Histomorphometrical analysis at 4 weeks in the BMP-2/fg-HAp implant showed 59.0% in the total volume of bone and marrow. These results indicate that fg-HAp is an innovative, bioabsorbable bioceramic with fluid permeability characteristic, and may become a biointegrated scaffold for bone engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号