首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a high resolution, quantitative, two-dimensional optical film scanner for use with a commercial high sensitivity radiochromic film (RCF) for measuring single fraction external-beam radiotherapy dose distributions. The film scanner was designed to eliminate artifacts commonly observed in RCF dosimetry. The scanner employed a stationary light source and detector with a moving antireflective glass film platen attached to a high precision computerized X-Y translation stage. An ultrabright red light emitting diode (LED) with a peak output at 633 nm and full width at half maximum (FWHM) of 16 nm was selected as the scanner light source to match the RCF absorption peak. A dual detector system was created using two silicon photodiode detectors to simultaneously measure incident and transmitted light. The LED light output was focused to a submillimeter (FWHM 0.67 mm) spot size, which was determined from a scanning knife-edge technique for measuring Gaussian optical beams. Data acquisition was performed with a 16-bit A/D card in conjunction with commercial software. The linearity of the measured densities on the scanner was tested using a calibrated neutral-density step filter. Sensitometric curves and three IMRT field scans were acquired with a spatial resolution of 1 mm for both radiographic film and RCF. The results were compared with measurements taken with a commercial diode array under identical delivery conditions. The RCF was rotated by 90 deg and rescanned to study orientation effects. Comparison between the RCF and the diode array measurements using percent dose difference and distance-to-agreement criteria produced average passing rates of 99.0% using 3%/3 mm criteria and 96.7% using 2%/2 mm criteria. The same comparison between the radiographic film and diode array measurements resulted in average passing rates 96.6% and 91.6% for the above two criteria, respectively. No measurable light-scatter or interference scanner artifacts were observed. The RCF rotated by 90 deg showed no measurable orientation effect. A scan of a 15 x 15 cm2 area with 1 mm resolution required 22 min to acquire. The LED densitometer provides an accurate film dosimetry system with 1 mm or better resolution. The scanner eliminates the orientation dependence of RCF dosimetry that was previously reported with commercial flatbed scanners.  相似文献   

2.
Radiochromic film is tested for its broad-band response to ultraviolet (UV) B (290-320 nm) and A (320 nm400 nm), visible and infrared radiation produced by a solar simulator and examined for dosimetry in ultraviolet radiation. Results show that MD-55-2 radiochromic film in solar and fluorescent light sources responds almost exclusively to broad-band UVA radiation with negligible colouration from UVB, visible and low level infrared radiation. A second order polynomial function approximates the change in optical density at 660 nm wavelength for film colouration with exposure to UVA from white light fluorescent and solar UV with exposures measured with a dedicated UVA dosimeter. Using a double exposure technique as used in radiation dosimetry where the film is firstly irradiated to a known UV dose, radiochromic film can be used as a quantitative measure of UVA exposure.  相似文献   

3.
This study evaluates the performance of the Nikon Coolscan 9000 ED film scanner for high-gradient radiochromic film dosimetry. As a reference for comparison, analogue experiments were performed on the Epson Expression 10000XL flatbed scanner. Based on these results, a dosimetric protocol was established for the Nikon scanner and its overall performance for high-gradient dosimetry was evaluated. The Nikon scanner demonstrated a high sensitivity for radiochromic film dosimetry, resulting in more contrast in the digitized image. The scanner's optics also demonstrated excellent stability and did not necessitate warm-up scans prior to data acquisition. Moreover, negative effects of temperature changes of the film inside the scanner were shown to be limited. None of the digitized images showed significant disturbances by moiré-patterns, by virtue of the absence of a glass plate for film positioning. However, scanner response was found to vary considerably across the reading area, requiring an optical density-dependent correction procedure to be incorporated into the scanning protocol. The main limitation of the Nikon Coolscan 9000 ED transmission scanner remains its film size restriction to 6.2 × 20 cm2. Nevertheless, its excellent characteristics render it the preferential tool for high-gradient radiochromic film dosimetry in applications limited to small film sizes, such as dosimetry in the build-up region.  相似文献   

4.
The trend towards conformal, intensity modulated radiotherapy treatments has established the need for a true integrating dosimeter. In traditional radiotherapy, radiographic film dosimetry is commonly used. The accuracy and reproducibility of film optical density as an indicator of dose is influenced by several variables, including the chemical processing conditions. As a result radiochromic film, with all the advantages of radiographic film but without the need for chemical processing, has increased in popularity, although the low-dose sensitivity of radiochromic film does remain a disadvantage for some experiments. Several studies have investigated the reproducibility of radiochromic film results, but none have specifically addressed the well-known directional dependence seen with traditional radiographic film. In this study, the directional dependence of radiographic (Kodak X-omat V) and radiochromic (Gafchromic) films were measured. It was found that both films over responded when exposed parallel to the central axis of the beam as opposed to perpendicular exposure. An attempt is made to explain the reason for the responses of both films in terms of spectral effects and the air gap between the phantom segments. Although radiographic film exposed parallel rather than perpendicular to the central axis of the beam exhibits a measured difference in film response at depth, this over response does not occur when the extent of the film is restricted to a small region at the centre of the phantom (in this case an air gap is not introduced across the phantom). This suggests that it is the air gap rather than the orientation of the film that is the cause of the over response. Furthermore, when film occupies a slice through the entire phantom an over response occurs for both radiographic and radiochromic film, indicating that spectral effects are not the cause.  相似文献   

5.
6.
In this study, a measurement protocol is presented that improves the precision of dose measurements using a flat-bed document scanner in conjunction with two new GafChromic film models, HS and Prototype A EBT exposed to 6 MV photon beams. We established two sources of uncertainties in dose measurements, governed by measurement and calibration curve fit parameters contributions. We have quantitatively assessed the influence of different steps in the protocol on the overall dose measurement uncertainty. Applying the protocol described in this paper on the Agfa Arcus II flat-bed document scanner, the overall one-sigma dose measurement uncertainty for an uniform field amounts to 2% or less for doses above around 0.4 Gy in the case of the EBT (Prototype A), and for doses above 5 Gy in the case of the HS model GafChromic film using a region of interest 2 X 2 mm2 in size.  相似文献   

7.
Le Y  Ali I  Dempsey JF  Williamson JF 《Medical physics》2006,33(12):4622-4634
Radiochromic film (RCF) has been shown to be a precise and accurate two-dimensional dosimeter for acute exposure radiation fields. However, "temporal history" mismatch between calibration and brachytherapy films due to RCF dose-rate effects could introduce potentially large uncertainties in low dose-rate (LDR) brachytherapy absolute dose measurement. This article presents a quantitative evaluation of the precision and accuracy of a laser scanner-based RCF-dosimetry system and the effect of the temporal history mismatch in LDR absolute dose measurement. MD-55-2 RCF was used to measure absolute dose for a low dose-rate 137Cs brachytherapy source using both single- and double-exposure techniques. Dose-measurement accuracy was evaluated by comparing RCF to Monte Carlo photon-transport simulation. The temporal history mismatch effect was investigated by examining dependence of RCF accuracy on irradiation-to-densitometry time interval. The predictions of the empirical cumulative dose superposition model (CDSM) were compared with measurements. For the double-exposure technique, the agreement between measurement and Monte Carlo simulation was better than 4% in the 3-60 Gy dose range with measurement precisions (coverage factor k = 1) of <2% and <6% for the doses greater or less than 3 Gy, respectively. The overall uncertainty (k = 1) of dose rate/air-kerma strength measurements achievable by this dosimetry system for a spatial resolution of 0.1 mm is less than 4% for doses greater than 5 Gy. The measured temporal history mismatch systematic error is about 1.8% for a 48 h postexposure time when using the double exposure technique and agrees with CDSM's prediction qualitatively. This work demonstrates that the model MD-55-2 RCF detector has the potential to support quantitative dose measurements about LDR brachytherapy sources with precision and accuracy better than that of previously described dosimeters. The impacts of this work on the future use of new type of RCF were also discussed.  相似文献   

8.
9.
In this study, we present three significant artifacts that have the potential to negatively impact the accuracy and precision of film dosimetry measurements made using GAFCHROMIC EBT radiochromic film when read out with CCD flatbed scanners. Films were scanned using three commonly employed instruments: a Macbeth TD932 spot densitometer, an Epson Expression 1680 CCD array scanner, and a Microtek ScanMaker i900 CCD array scanner. For the two scanners we assessed the variation in optical density (OD) of GAFCHROMIC EBT film with scanning bed position, angular rotation of the film with respect to the scan line direction, and temperature inside the scanner due to repeated scanning. Scanning uniform radiochromic films demonstrated a distinct bowing effect in profiles in the direction of the CCD array with a nonuniformity of up to 17%. Profiles along a direction orthogonal to the CCD array demonstrated a 7% variation. A strong angular dependence was found in measurements made with the flatbed scanners; the effect could not be reproduced with the spot densitometer. An IMRT quality assurance film was scanned twice rotating the film 90' between the scans. For films scanned on the Epson scanner, up to 12% variation was observed in unirradiated EBT films rotated between 0 degrees and 90 degrees, which decreased to approximately 8% for EBT films irradiated to 300 cGy. Variations of up to 80% were observed for films scanned with the Microtek scanner. The scanners were found to significantly increase the film temperature with repeated scanning. Film temperature between 18 and 33 degrees C caused OD changes of approximately 7%. Considering these effects, we recommend adherence to a strict scanning protocol that includes: maintaining the orientation of films scanned on flatbed scanners, limiting scanning to the central portion of the scanner bed, and limiting the number of consecutive scans to minimize changes in OD caused by film heating.  相似文献   

10.
Hupe O  Brunzendorf J 《Medical physics》2006,33(11):4085-4094
A procedure that allows the improved extraction of the dose information based on the multicolor scanning of the radiochromic film is presented. The basic principle is the determination of the dose values from each color channel of the digital film image in RGB format by applying a nonlinear calibration function. The best estimate of the dose is then a weighted mean of the dose values derived from each color channel. The weighting factors are determined in such a way that the noise in the two-dimensional dose profile is at the minimum. The calculation of the weighting factors is presented; they are chosen to be proportional to the signal-to-noise ratio, Si/v(i)2, in all three color channels, i=red, green, or blue. The data reduction can be fully computerized, including the "cleaning" of the digital image from dust and scratches. It is highly reproducible, which is important for quality assurance, and easy to use. Our novel evaluation procedure combines the good response in the low dose range of the red color with the extended dose range of the blue and green color channels (response up to 10,000 Gy), making use of one single, steady evaluation function. Therefore, a smooth evaluation is possible in a wide dose range. For the interpretation of measurements with the radiochromic films the spatial inhomogeneity of the film's response to ionizing radiation is very important. Investigations on both film types, HS and MD55-2, as well as on the new EBT film have been carried out.  相似文献   

11.
The purpose of this study was to investigate the value of a commercially available flatbed scanner for film dosimetry with radiochromic film for external radiotherapy. The EPSON Pro 1680 Expression scanner was examined as a densitometer for two-dimensional film dosimetry with Gafchromic EBT film. An accurate and efficient scanning procedure was established. Possible drift and warm-up effects of the scanner were studied and the direct physical influence of the scanner light on the radiochromic film was assessed. Next, we investigated the scan field uniformity. Also, we examined if the accuracy of radiochromic film was improved by subtracting the optical density of the unirradiated blank film from the optical density of the irradiated film. To assess the accuracy of Gafchromic EBT film when the EPSON scanner was used as a densitometer, the depth dose of a 2 x 15 cm(2) field and the in-plane and cross-plane profiles of a 15 x 15 cm(2) field were measured and compared with diamond detector measurements. When taking consecutive scans, we found that the optical density taken from the first scan was about 1% higher than the optical density taken from subsequent scans. We attribute this to the warming up of the lamp of the scanner. Longer-term drift of the scanner was found to be absent. We found that the use of a correction matrix was necessary to correct for the non-uniform scanner response over the scan field. Subtracting the optical density of the unirradiated blank film from the irradiated film improves the precision of the Gafchromic EBT film. Depth dose and profile measurements with Gafchromic EBT film and the diamond detector are in agreement within 2.5%. The EPSON Pro 1680 Expression scanner is an excellent tool for accurate two-dimensional film dosimetry with Gafchromic EBT film provided that some precautions and corrections are taken into account.  相似文献   

12.
13.
The Fletcher Suit Delclos (FSD) ovoids employed in intracavitary brachytherapy (ICB) for cervical cancer contain shields to reduce dose to the bladder and rectum. Many treatment planning systems (TPS) do not include the shields and other ovoid structures in the dose calculation. Instead, TPSs calculate dose by summing the dose contributions from the individual sources and ignoring ovoid structures such as the shields. The goal of this work was to calculate the dose distribution with Monte Carlo around a Selectron FSD ovoid and compare these calculations with radiochromic film (RCF) and normoxic polymer gel dosimetry. Monte Carlo calculations were performed with MCNPX 2.5.c for a single Selectron FSD ovoid with and without shields. RCF measurements were performed in a plane parallel to and displaced laterally 1.25 cm from the long axis of the ovoid. MAGIC gel measurements were performed in a polymethylmethacrylate phantom. RCF and MAGIC gel were irradiated with four 33 microGy m2 h(-1) Cs-137 pellets for a period of 24 h. Results indicated that MCNPX calculated dose to within +/- 2% or 2 mm for 98% of points compared with RCF measurements and to within +/- 3% or 3 mm for 98% of points compared with MAGIC gel measurements. It is concluded that MCNPX 2.5.c can calculate dose accurately in the presence of the ovoid shields, that RCF and MAGIC gel can demonstrate the effect of ovoid shields on the dose distribution and the ovoid shields reduce the dose by as much as 50%.  相似文献   

14.
Video cameras are used in many film digitization and teleradiology systems. However, the density range of medical radiographs often exceeds the dynamic range of the camera, and all diagnostic information in the original image may not be captured. Information in both the high and low density areas of the film can be captured in a single video frame if the transmitted luminance range of the radiograph is reduced. This can be accomplished by spatially modulating the back illumination of the film such that areas of lesser density receive less illumination while areas of greater density receive greater illumination. In this work, the use of a video monitor is shown to be an effective means to provide spatially modulated light for compressing the transmitted luminance range and thereby expanding the apparent dynamic range of the video camera. A simple computer-interfaced video feedback system that determines the appropriate compression mask and a scheme for linearization of system response are described. This system provides an interactive means for control of the degree of range compression.  相似文献   

15.
We present an evaluation of the precision and accuracy of image-based radiochromic film (RCF) dosimetry performed using a commercial RCF product (Gafchromic MD-55-2, Nuclear Associates, Inc.) and a commercial high-spatial resolution (100 microm pixel size) He-Ne scanning-laser film-digitizer (Personal Densitometer, Molecular Dynamics, Inc.) as an optical density (OD) imaging system. The precision and accuracy of this dosimetry system are evaluated by performing RCF imaging dosimetry in well characterized conformal external beam and brachytherapy high dose-rate (HDR) radiation fields. Benchmarking of image-based RCF dosimetry is necessary due to many potential errors inherent to RCF dosimetry including: a temperature-dependent time evolution of RCF dose response; nonuniform response of RCF; and optical-polarization artifacts. In addition, laser-densitometer imaging artifacts can produce systematic OD measurement errors as large as 35% in the presence of high OD gradients. We present a RCF exposure and readout protocol that was developed for the accurate dosimetry of high dose rate (HDR) radiation sources. This protocol follows and expands upon the guidelines set forth by the American Association of Physicists in Medicine (AAPM) Task Group 55 report. Particular attention is focused on the OD imaging system, a scanning-laser film digitizer, modified to eliminate OD artifacts that were not addressed in the AAPM Task Group 55 report. RCF precision using this technique was evaluated with films given uniform 6 MV x-ray doses between 1 and 200 Gy. RCF absolute dose accuracy using this technique was evaluated by comparing RCF measurements to small volume ionization chamber measurements for conformal external-beam sources and an experimentally validated Monte Carlo photon-transport simulation code for a 192Ir brachytherapy source. Pixel-to-pixel standard deviations of uniformly irradiated films were less than 1% for doses between 10 and 150 Gy; between 1% and 5% for lower doses down to 1 Gy and 1% and 1.5% for higher doses up to 200 Gy. Pixel averaging to form 200-800 microm pixels reduces these standard deviations by a factor of 2 to 5. Comparisons of absolute dose show agreement within 1.5%-4% of dose benchmarks, consistent with a highly accurate dosimeter limited by its observed precision and the precision of the dose standards to which it is compared. These results provide a comprehensive benchmarking of RCF, enabling its use in the commissioning of novel HDR therapy sources.  相似文献   

16.
GafChromic (MD-55-2) radiochromic film has become increasingly popular for medical applications and has proven to be useful for brachytherapy dosimetry. To measure the absolute dose near a brachytherapy source, the response of the proposed detector in the measurement conditions relative to the response of the detector in calibration conditions must be known. MD-55-2 radiochromic film has been exposed in four different photon beams, a 30 and 40 kVp tungsten anode x-ray beam, a 75 kVp orthovoltage therapy beam, and a 60Co teletherapy beam to measure the relative detector response. These measurements were combined with coupled photon/electron Monte Carlo transport calculations to determine the absolute detector response. The Los Alamos National Laboratory Monte Carlo transport code MCNP4B2 was used. The measured relative response of this batch of MD-55-2 film varies from 8.79 mOD/Gy, measured for the 60Co beam, by as much as 42% for the low-energy x-ray beams. However, the absolute detector response varies from 4.32 mOD/Gy for the 60Co beam by, at most, only 6.3%. In this work we demonstrate that the absolute detector response of MD-55-2 radiochromic film is a constant and independent of beam quality. Further, this work shows that MCNP4B2 accurately simulates the energy response and geometry artifacts of the radiochromic film.  相似文献   

17.
18.
There is a new radiochromic film, a highly uniform, thin (100-microns) detector whose sensitive layer (6 microns thick) changes from colorless to blue by dye polymerization without processing, upon exposure to ionizing radiation. Because the dose gradients around brachytherapy sources are steep, the high spatial resolution offered by film dosimetry is an advantage over other detectors such as thermoluminescent dosimeters (TLDs). This compares the photon energy dependence of the sensitivities of GafChromic film, silver halide verification film (Kodak X-Omat V Film), and lithium fluoride TLDs (Harshaw), over the photon energy range 28 keV to 1.7 MeV, which is of interest in brachytherapy. Sensitivity of the radiochromic film is observed to decrease by about 30% as effective photon energy decreases from 1710 keV (4-MV x rays) to 28 keV (60-kV x rays, 2-mm A1 filter). In contrast, the sensitivity of verification film increases by 980% and that of LiF TLDs increases by 41%. The variation of the sensitivity of radiochromic film with photon energy is considerably less than that for silver halide film and similar to that for LiF TLDs, but in the opposite direction. Radiochromic film, like LIF TLDs, does not exhibit the drastic sensitivity changes below 127 keV that silver halide film exhibits. Dose distribution in the immediate vicinity of a high activity (370 GBq) brachytherapy 192Ir source has been mapped using radiochromic film and is presented to illustrate the applicability of this new technology to brachytherapy dosimetry.  相似文献   

19.
In this study we investigate radiochromic film dosimetry around air cavities with particular focus on the perturbation of the dose distribution by the film when the film is parallel to the beam axis. We considered a layered polystyrene phantom containing an air cavity as a model for the air-soft tissue geometry that may occur after surgical resection of a paranasal sinus tumour. A radiochromic film type MD-55 was positioned within the phantom so that it intersected the cavity. Two phantom set-ups were examined. In the first case, the air cavity is at the centre of the phantom, thus the film is lying along the central beam axis. In the second case, the cavity and film are located 2 cm offset from the phantom centre and the central beam axis. In order to examine the influence of the film on the dose distribution and to interpret the film-measured results, Monte Carlo simulations were performed. The film was modelled rigorously to incorporate the composition and structure of the film. Two field configurations, a 1 x 10 cm2 field and a 10 x 10 cm2 field, were examined. The dose behind the air cavity is reduced by 6 to 7% for both field configurations when a film that intersects the cavity contains the central beam axis. This is due to the attenuation exerted by the film when photons cross the cavity. Offsetting the beam to the cavity and the film by 2 cm removes the dose reduction behind the air cavity completely. Another result was that the rebuild-up behind the cavity for the 10 x 10 cm2 field, albeit less significant than for the 1 x 10 cm2 field, could only be measured by the film that was placed offset with respect to the central beam axis. Although radiochromic film is approximately soft-tissue equivalent and energy independent as compared to radiographic films, care should be taken in the case of inhomogeneous phantoms when the film intersects air cavities and contains the beam central axis. Errors in dose measurement can be expected distal to the air cavity due to attenuation in the film itself. This attenuation would not occur in the absence of the film. Both experiments and Monte Carlo computations support this conclusion.  相似文献   

20.
Butson MJ  Cheung T  Yu PK 《Medical physics》2006,33(8):2923-2925
Gafchromic XRCT, radiochromic film is assessed over a broad energy range, from kilovoltage to megavoltage x rays for variations in reflected optical density to dose response. A large energy dependence was found with reflected optical density output for the same delivered dose varying from 7.8 +/- 0.35 at 25.5 keV (50 kVp) peaking at 12.1 +/- 0.5 at 54 keV (125 kVp) to 0.975 +/- 0.03 at 2300 keV (10 MV) when normalized to 1 at 1400 keV (6 MV) energy. The response is constant (within 3%) in the 36-69 keV equivalent photon energy range, which corresponds to x-ray tube generating potentials of approximately 100-150 kVp. This matches well with beam qualities for diagnostic computed topography applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号