首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lipolytic properties of GH are essential for the acute effects on glucose metabolism and insulin sensitivity, whereas its more long-term impact on substrate metabolism is uncertain. The aim of the study was to evaluate the influence of pharmacological antilipolysis on substrate metabolism during constant and continued GH exposure. Seven adult GH-deficient (GHD) patients were studied twice in a double-blind randomized order: 1) after 4 wk of acipimox treatment (250 mg, orally, three times daily) and 2) after 4 wk of placebo treatment. Daily GH replacement was continued throughout both study periods. At the end of each period glucose and lipid oxidation rates were assessed by indirect calorimetry, and the protein oxidation rate was estimated by urinary excretion of urea. Endogenous glucose production and whole body protein metabolism were assessed by isotope dilution techniques using tritiated glucose and stable phenylalanine and tyrosine isotopes, respectively. GH and IGF-I levels were not different between periods, whereas FFA and glycerol levels were distinctly suppressed after 4 wk of pharmacological antilipolysis [FFA, 256 +/- 63 (acipimox) vs. 596 +/- 69 (placebo) micromol/liter; P = 0.001]. Likewise, plasma levels of total and low density lipoprotein cholesterol as well as triglycerides were significantly reduced after acipimox. Despite this, lipid oxidation rates were identical at the end of the two treatment periods [589 +/- 106 (acipimox) vs. 626 +/- 111 (placebo) kcal/24 h; P = 0.698]. The total and oxidative rates of glucose as well as protein oxidation and urea excretion were identical at the end of the two treatment periods (P > 0.05). Phenylalanine flux, a measure of protein turnover, was increased [34.62 +/- 1.83 (acipimox) vs. 33.15 +/- 1.61 (placebo) micromol/kg.h; P = 0.049] as was phenylalanine incorporation into protein, a measure of protein synthesis [30.79 +/- 1.67 (acipimox) vs. 28.97 +/- 1.51 (placebo) micromol/kg.h; P = 0.035]. The following conclusions were reached: 1) prolonged antilipolysis by means of acipimox stimulates protein turnover without affecting net protein balance; and 2) acipimox in combination with constant GH exposure results in sustained suppression of circulating levels of FFA, glycerol, and triglycerides without a reduction in the rate of lipid oxidation. The site and origin of lipid fuels for oxidation during suppression of lipolysis remain to be determined.  相似文献   

2.
BACKGROUND AND AIMS: The metabolic response to fasting involves an increase in circulating levels of growth hormone (GH) and free fatty acids, and resistance to insulin's actions on glucose metabolism. Stimulation of lipolysis and insulin resistance are well-described effects of GH. The present study was designed to test the degree to which the insulin antagonistic effects of GH on glucose metabolism are mediated through stimulation of lipolysis during fasting. METHODS: Seven normal subjects were examined on three occasions during a 40-h fast with infusion of somatostatin, insulin and glucagon for the final 18 h: (expt. i) with GH replacement, (expt. ii) with GH replacement and antilipolysis with acipimox, and (expt. iii) without GH and with antilipolysis. RESULTS: Basal glucose turnover was significantly reduced by addition of acipimox (rate of disappearance (Rd) glucose (mg/kg/min): 1.91+/-0.08 (expt. i), 1.69+/-0.05 (expt. ii), 1.61+/-0.08 (expt. iii); P<0.01), whereas insulin-stimulated glucose uptake was significantly increased (glucose infusion rate (M-value) (mg/kg/min): 1.66+/-0.22 (expt. i), 2.47+/-0.10 (expt. ii), 2.00+/-0.31 (expt. iii); P<0.05). Addition of GH during inhibition of lipolysis failed to affect basal and insulin-stimulated glucose metabolism significantly. CONCLUSION: Thus, the present data provide strong evidence that the insulin antagonistic effects of GH on fasting glucose metabolism are causally linked to concomitant stimulation of lipolysis.  相似文献   

3.
Reduced fat-free mass (FFM) in GH-deficient (GHD) adults is improved by GH replacement, but the protein metabolic changes are unclear. Using iv [(2)H(3)]leucine and oral l-[(13)C(1)]leucine infusions and dual emission x-ray absorptiometry, we compared leucine kinetics and body composition in eight GHD adults and eight healthy controls in the fasted and fed states, before and after 2 wk and 6 months of GH replacement. Leucine kinetics were not different between pretreatment GHD subjects and controls. After 2 wk of GH treatment, leucine oxidation decreased in the GHD subjects compared with baseline values [fasted, 41 +/- 6 vs. 30 +/- 5 micromol/kg FFM.h (P < 0.01); fed, 49 +/- 3 vs. 41 +/- 3.6 micromol/kg FFM.h (P < 0.05)], leucine balance improved [fasted, -14 +/- 4 vs. -3.5 +/- 3 micromol/kg FFM.h (P < 0.01); fed, 65 +/- 10 vs. 72 +/- 7 micromol/kg FFM.h (P = 0.07)], and protein synthesis increased [fasted, 116 +/- 5 vs. 131 +/- 6 micromol/kg FFM.h (P < 0.05); fed, 103 +/- 6 vs. 116 +/- 6 micromol/kg FFM.h (P < 0.05)]. After 6 months of GH treatment, these changes were not maintained in the fed state. The five GHD subjects with decreased FFM at baseline showed a significant increase after 6 months of GH treatment (P < 0.05). GH replacement in GHD acutely improves protein balance by stimulating synthesis and inhibiting catabolism. After 6 months, protein kinetics reached a new homeostasis to maintain the net gain in FFM.  相似文献   

4.
OBJECTIVE: Insulin resistance is a frequent consequence of GH replacement therapy but patients on GH replacement therapy often also have replacement of other hormone deficiencies which theoretically could modify the metabolic effects of GH. In particular, cortisol replacement if given in supra physiologic doses immediately before the evaluation of insulin sensitivity could influence insulin sensitivity. The aim of this study was thus to evaluate the effect of morning cortisol replacement given prior to a euglycaemic clamp combined with infusion of [3-(3)H]glucose and indirect calorimetry on glucose and lipid metabolism. METHODS: Ten GH/ACTH-deficient adults received, in a double-blind manner, either cortisol (A) or placebo (B) before the clamp whereas five GH-deficient-ACTH-sufficient adults participated in a control (C) clamp experiment. All subjects received GH replacement therapy. RESULTS: Serum cortisol levels were significantly higher after cortisol than after placebo (324+/-156 vs 132+/-136 mmol/l; P=0.006) and similar to controls (177+/-104 mmol/l). As a measure of the biological effect of cortisol, eosinophil leukocyte counts in peripheral blood decreased (164+/-91 x 10(9)/l vs 216+/-94 x 10(9)/l; P=0.04). Cortisol replacement had no significant effect on insulin-stimulated glucose uptake (11.8+/-1.8 vs 13.2+/-3.9 micromol/kg min), either on glucose oxidation or on glucose storage. There was also no significant effect of cortisol on fasting endogenous glucose production and no effect was seen on serum free fatty acid concentrations. CONCLUSION: Administration of cortisol in the morning before a clamp cannot explain the insulin resistance seen with GH replacement therapy.  相似文献   

5.
Acute effects of ghrelin administration on glucose and lipid metabolism   总被引:11,自引:0,他引:11  
CONTEXT: Ghrelin infusion increases plasma glucose and nonesterified fatty acids, but it is uncertain whether this is secondary to the concomitant release of GH. OBJECTIVE: Our objective was to study direct effects of ghrelin on substrate metabolism. DESIGN: This was a randomized, single-blind, placebo-controlled two-period crossover study. SETTING: The study was performed in a university clinical research laboratory. PARTICIPANTS: Eight healthy men aged 27.2 +/- 0.9 yr with a body mass index of 23.4 +/- 0.5 kg/m(2) were included in the study. INTERVENTION: Subjects received infusion of ghrelin (5 pmol x kg(-1) x min(-1)) or placebo for 5 h together with a pancreatic clamp (somatostatin 330 microg x h(-1), insulin 0.1 mU x kg(-1) x min(-1), GH 2 ng x kg(-1) x min(-1), and glucagon 0.5 ng.kg(-1) x min(-1)). A hyperinsulinemic (0.6 mU x kg(-1) x min(-1)) euglycemic clamp was performed during the final 2 h of each infusion. RESULTS: Basal and insulin-stimulated glucose disposal decreased with ghrelin [basal: 1.9 +/- 0.1 (ghrelin) vs. 2.3 +/- 0.1 mg x kg(-1) x min(-1), P = 0.03; clamp: 3.9 +/- 0.6 (ghrelin) vs. 6.1 +/- 0.5 mg x kg(-1) x min(-1), P = 0.02], whereas endogenous glucose production was similar. Glucose infusion rate during the clamp was reduced by ghrelin [4.0 +/- 0.7 (ghrelin) vs. 6.9 +/- 0.9 mg.kg(-1) x min(-1); P = 0.007], whereas nonesterified fatty acid flux increased [131 +/- 26 (ghrelin) vs. 69 +/- 5 micromol/min; P = 0.048] in the basal period. Regional lipolysis (skeletal muscle, sc fat) increased insignificantly with ghrelin infusion. Energy expenditure during the clamp decreased after ghrelin infusion [1539 +/- 28 (ghrelin) vs. 1608 +/- 32 kcal/24 h; P = 0.048], but the respiratory quotient did not differ. Minor but significant elevations in serum levels of GH and cortisol were observed after ghrelin infusion. CONCLUSIONS: Administration of exogenous ghrelin causes insulin resistance in muscle and stimulates lipolysis; these effects are likely to be direct, although a small contribution of GH and cortisol cannot be excluded.  相似文献   

6.
There is controversy about the effect of replacement GH on insulin action in adult hypopituitary patients. GH replacement calculated from weight leads to unacceptable side effects in some patients. Recent studies suggest it should be individually titrated in adults using serum IGF-I levels. We have assessed the effect of titrated GH replacement on peripheral and hepatic insulin action in 13 adult-onset hypopituitary patients (8 males and 5 females; ages 47 +/- 10 yr, mean duration of hypopituitarism 6 yr) with confirmed GH deficiency (GHD; maximum GH <5 mU/liter during insulin induced hypoglycemia), ACTH deficiency, and normal glucose tolerance. All patients were on stable hydrocortisone replacement (15 mg with breakfast, 5 mg with evening meal) for at least 2 months before the trial. Insulin action was assessed by the euglycemic hyperinsulinemic glucose clamp technique (1 mU/kg x min) before and after 6 months of GH therapy. GH was started at 0.8 IU sc daily and titrated monthly until the serum IGF-I increased to within 1-2 SD of the mean of normal age-matched controls. Body mass index did not change significantly during the 6 months of GH therapy. Fasting plasma glucose and HbA1c increased significantly after 6 months (5.2 +/- 0.0 vs. 5.5 +/- 0.0 mmol/liter, P < 0.0001, and 4.5 +/- 0.1 vs. 4.7 +/- 0.1%, P < 0.0005, respectively). There was no increase in fasting serum insulin (51.6 +/- 10.2 vs. 60.0 +/- 10.2 pmol/liter, P = 0.12). Exogenous glucose infusion rates required to maintain euglycemia were similar after GH (23.0 +/- 0.4 vs. 21.1 +/- 0.3 micromol/kg x min, P = 0.6). Endogenous glucose production in the fasting state was also unchanged following GH (11.8 +/- 0.7 vs.12.3 +/- 0.9 micromol/kg x min, P = 0.5) and suppressed to a similar extent following insulin (4.4 +/- 0.8 vs. 5.5 +/- 0.8 micromol/kg x min, P = 0.3). In summary, GH therapy for 6 months, with serum IGF-I maintained in the upper physiological range, increased fasting plasma glucose and HbA1c. There was no effect on peripheral or hepatic insulin sensitivity. Patients receiving GH therapy require long-term monitoring of glucose tolerance.  相似文献   

7.
Treatment for HIV-1 infection is often complicated by a lipodystrophy syndrome associated with insulin resistance and an elevated rate of lipolysis. In eight HIV-1 infected men with lipodystrophy syndrome, we studied the effects of replacement of protease inhibitor (PI) by abacavir on insulin sensitivity and lipolysis by hyperinsulinemic euglycemic clamp and on fat distribution assessed by dual-energy x-ray absorptiometry and computed tomography scan.Glucose metabolism and lipolysis were assessed by tracer dilution employing [6,6-(2)H(2)]glucose and [(2)H(5)]glycerol, respectively. Data are expressed as mean +/- sd or 95% confidence interval (CI), as appropriate.There were no significant changes in fat distribution assessed by dual-energy x-ray absorptiometry and computed tomography scan at wk 36 and wk 96. The fasting total glucose production decreased from 16.1 +/- 2.5 at study entry by 1.1 (range, -2.1 to -0.1) to 15.0 +/- 1.5 micromol/kg.min after PI withdrawal at wk 36 (n = 8). In an analysis restricted to the patients on treatment at wk 96 (n = 6), the decrease was 0.9 (range, -2.1 to 0.3) micromol/kg.min. During insulin infusion, glucose oxidation (as percent of total glucose disposal) increased from 36.8 +/- 12.7% by 11.0% (range, 1.3-20.8) to 47.9 +/- 13.9% in the wk 36 analysis. In the analysis restricted to the patients on treatment at wk 96 (n = 6) the increase was 7.7 (-4.0 to 19.4)%. Fasting lipolysis decreased from 2.7 +/- 0.6 micromol/kg.min by 0.9 (-1.6 to -0.2) to 1.8 +/- 0.3 micromol/kg.min in the wk-96 analysis (n = 6).The replacement of the studied PIs by abacavir in severe lipodystrophic HIV-1-infected patients results in a marked reduction of lipolysis. In contrast, fasting glucose production and insulin-stimulated glucose oxidation improve moderately, whereas insulin-stimulated glucose disposal and fat distribution do not change.  相似文献   

8.
Methionyl-GH (met-GH) infusions inhibit the GH response to GH-releasing hormone (GHRH). Met-GH infusions induce lipolysis with a rise of plasma FFA that are known to suppress GH release, but the met-GH inhibition of the GH response to GHRH occurs also when lipolysis is pharmacologically blocked by acipimox. In addition, the inhibition of GH release might be due to an enhanced release of hypothalamic somatostatin. The aim of this study was to evaluate the effect of a met-GH infusion on the GH response to GHRH when lipolysis and hypothalamic somatostatin release are pharmacologically blocked. Twelve normal subjects, randomly allocated to two groups (A and B), received GHRH (50 micrograms, iv) at 1300 h after a 4-h saline infusion or met-GH infusion (80 ng/kg.min). To block lipolysis and hypothalamic somatostatin release, subjects in group B received acipimox, an antilipolytic agent (500 mg), and pyridostigmine, an acetylcholinesterase inhibitor (60 mg), during the 6 h before iv GHRH. GHRH induced a clear GH release during saline infusion in both groups, significantly higher in group B (43.6 +/- 4.8 micrograms/L) than in group A (20.1 +/- 6.1 micrograms/L; P less than 0.02 vs. A), and only a slight increase during met-GH infusions (10.4 +/- 4.1 micrograms/L in group A; 16.7 +/- 4.2 micrograms/L in group B; P = NS). These data indicate that the GH response to GHRH is inhibited by met-GH infusions when peripheral lipolysis and hypothalamic somatostatin release are pharmacologically blocked, suggesting the possibility of autoinhibition of GH at the pituitary level.  相似文献   

9.
The consequences of GH deficiency during conditions in which endogenous GH release is acutely stimulated are largely unknown. Short-term fasting constitutes a robust GH stimulus, but the metabolic significance of GH during fasting is uncertain. To address both of these issues, we therefore evaluated the effect of GH on substrate metabolism during fasting in adults with GH deficiency. Seven hypopituitary GH-deficient patients were each studied twice during a 40-h fast: once with GH replacement continued and once with GH discontinued during the fast. After 40 h of fasting, protein synthesis and turnover were higher with than without GH replacement [phenylalanine incorporation (micromol/kg fat free mass/h): 36.6 +/- 1.2 (GH) vs. 32.8 +/- 1.4, P < 0.05; phenylalanine flux (micromol/kg fat free mass/h): 41.3 +/- 1.0 (GH) vs. 38.0 +/- 1.8, P < 0.05]. During continued GH replacement, urea excretion decreased during nighttime [urea excretion (mmol/24 h): 269 +/- 51 (GH) vs. 390 +/- 69, P < 0.05], and a significant decline in urea-N synthesis rate was found [urea-N synthesis rate (mmol/h): 14.7 +/- 1.6 (GH) vs. 21.1 +/- 2.2, P < 0.01]. GH replacement was associated with increased lipid oxidation [lipid oxidation (mg/kg per min): 0.91 +/- 0.07 (GH) vs. 0.70 +/- 0.03, P < 0.05]. Finally, continuation of GH induced moderate elevations in plasma glucose levels without significant changes in total glucose turnover or oxidation. In summary, continued GH substitution during fasting conserves nitrogen, which involves stimulation or maintenance of protein synthesis. Our data support the importance of GH replacement in hypopituitary adults.  相似文献   

10.
To determine whether glucagon stimulates lipolysis in adipose tissue, seven healthy young male volunteers were studied, with indwelling microdialysis catheters placed sc in abdominal adipose tissue. Subjects were studied three times: 1) during euglucagonemia (EG; glucagon infusion rate, 0.5 ng/kg.min); 2) during hyperglucagonemia (HG; (glucagon infusion rate, 1.5 ng/kg.min); and 3) during EG and a concomitant glucose infusion mimicking the glucose profile from the day of HG (EG+G). Somatostatin (450 microg/h) was infused to suppress hormonal secretion, and replacement doses of insulin and GH were administered. Sampling was done every 30 min for 420 min. Baseline circulating values of insulin, C-peptide, glucagon, GH, glycerol, and free fatty acids were comparable in all three conditions. During EG and EG+G, plasma glucagon was maintained at fasting level (20-40 ng/L); whereas, during HG, it increased (110-130 ng/L). Interstitial concentrations of glycerol were similar in the three conditions [30,870 +/- 5,946 (EG) vs. 31,074 +/- 7,092 (HG) vs. 29,451 +/- 6,217 (EG+G) micromol/L.120 min, P = 0.98]. Plasma glycerol (ANOVA, P = 0.5) and free fatty acids (ANOVA, P = 0.3) were comparable during the different glucagon challenges. We conclude that HG per se does not increase interstitial glycerol (and thus lipolysis) in abdominal sc adipose tissue; nor does modest hyperglycemia, during basal insulinemia and glucagonemia, influence indices of abdominal sc lipolysis.  相似文献   

11.
To investigate the effect of a sustained (7-d) decrease in plasma free fatty acid (FFA) concentration in individuals genetically predisposed to develop type 2 diabetes mellitus (T2DM), we studied the effect of acipimox, a potent inhibitor of lipolysis, on insulin action and adipocytokine concentrations in eight normal glucose-tolerant subjects (aged 40 +/- 4 yr, body mass index 26.5 +/- 0.8 kg/m(2)) with at least two first-degree relatives with T2DM. Subjects received an oral glucose tolerance test (OGTT) and 120 min euglycemic insulin clamp (80 mU/m(2).min) with 3-[(3)H] glucose to quantitate rates of insulin-mediated whole-body glucose disposal (Rd) and endogenous (primarily hepatic) glucose production (EGP) before and after acipimox, 250 mg every 6 h for 7 d. Acipimox significantly reduced fasting plasma FFA (515 +/- 64 to 285 +/- 58 microm, P < 0.05) and mean plasma FFA during the OGTT (263 +/- 32 to 151 +/- 25 microm, P < 0.05); insulin-mediated suppression of plasma FFA concentration during the insulin clamp also was enhanced (162 +/- 18 to 120 +/- 15 microm, P < 0.10). Following acipimox, fasting plasma glucose (5.1 +/- 0.1 vs. 5.2 +/- 0.1 mm) did not change, whereas mean plasma glucose during the OGTT decreased (7.6 +/- 0.5 to 6.9 +/- 0.5 mm, P < 0.01) without change in mean plasma insulin concentration (402 +/- 90 to 444 +/- 102 pmol/liter). After acipimox Rd increased from 5.6 +/- 0.5 to 6.8 +/- 0.5 mg/kg.min (P < 0.01) due to an increase in insulin-stimulated nonoxidative glucose disposal (2.5 +/- 0.4 to 3.5 +/- 0.4 mg/kg.min, P < 0.05). The increment in Rd correlated closely with the decrement in fasting plasma FFA concentration (r = -0.80, P < 0.02). Basal EGP did not change after acipimox (1.9 +/- 0.1 vs. 2.0 +/- 0.1 mg/kg.min), but insulin-mediated suppression of EGP improved (0.22 +/- 0.09 to 0.01 +/- 0.01 mg/kg.min, P < 0.05). EGP during the insulin clamp correlated positively with the fasting plasma FFA concentration (r = 0.49, P = 0.06) and the mean plasma FFA concentration during the insulin clamp (r = 0.52, P < 0.05). Plasma adiponectin (7.1 +/- 1.0 to 7.2 +/- 1.1 microg/ml), resistin (4.0 +/- 0.3 to 3.8 +/- 0.3 ng/ml), IL-6 (1.4 +/- 0.3 to 1.6 +/- 0.4 pg/ml), and TNFalpha (2.3 +/- 0.3 to 2.4 +/- 0.3 pg/ml) did not change after acipimox treatment.We concluded that sustained reduction in plasma FFA concentration in subjects with a strong family history of T2DM increases peripheral (muscle) and hepatic insulin sensitivity without increasing adiponectin levels or altering the secretion of other adipocytokines by the adipocyte. These results suggest that lipotoxicity already is well established in individuals who are genetically predisposed to develop T2DM and that drugs that cause a sustained reduction in the elevated plasma FFA concentration may represent an effective modality for the prevention of T2DM in high-risk, genetically predisposed, normal glucose-tolerant individuals despite the lack of an effect on adipocytokine concentrations.  相似文献   

12.
To test the hypothesis that GH-induced insulin resistance is mediated by an increase in FFA levels we assessed insulin sensitivity after inhibiting the increase in FFA by a nicotine acid derivative, Acipimox, in nine GH-deficient adults receiving GH replacement therapy. The patients received in a double blind fashion either Acipimox (500 mg) or placebo before a 2-h euglycemic (plasma glucose, 5.5 +/- 0.2 mmol/liter) hyperinsulinemic (serum insulin, 28.7 +/- 6.3 mU/liter) clamp in combination with indirect calorimetry and infusion of [3-(3)H]glucose. Acipimox decreased fasting FFA by 88% (P = 0.012) and basal lipid oxidation by 39% (P = 0.015) compared with placebo. In addition, the insulin-stimulated lipid oxidation was 31% (P = 0.0077) lower during Acipimox than during placebo. Acipimox increased insulin-stimulated total glucose uptake by 36% (P = 0.021) compared with placebo, which mainly was due to a 47% (P = 0.015) increase in glucose oxidation. GH induced insulin resistance is partially prevented by inhibition of lipolysis by Acipimox.  相似文献   

13.
It is unknown whether resistance to insulin- or exercise-stimulated glucose uptake reflects a spatially uniform or nonuniform decrease in glucose uptake within skeletal muscle. We compared the distributions of muscle glucose uptake and blood flow in eight patients with type 1 diabetes (age 24 +/- 1 yr, body mass index 22.0 +/- 0.8 kg/m2) and seven age- and weight-matched normal subjects using positron emission tomography, [18F]-fluoro-deoxy-glucose, and [15O]-water. Both groups were studied during euglycemic hyperinsulinemia and one-legged exercise. Heterogeneity was evaluated by calculating relative dispersion (SD divided by mean * 100%) of glucose uptake (RD(g)) and flow (RD(f)) in all pixels within a region of interest in femoral muscle. At rest insulin-stimulated glucose uptake was significantly lower in the type 1 diabetic patients (42 +/- 7 micromol/kg per min) than in the normal subjects (78 +/- 9 micromol/kg per min, P < 0.001), while muscle blood flows were similar (26 +/- 1 vs. 31 +/- 3 ml/kg muscle per min, respectively). The exercise-induced increment in glucose uptake but not in blood flow was also significantly lower in the type 1 diabetic patients than in the normal subjects. Heterogeneity of glucose uptake but not of blood flow was greater in the insulin-resistant type 1 diabetic patients both at rest (RD(g) 31 +/- 1 vs. 25 +/- 2%, patients with type 1 diabetes vs. normal subjects, P < 0.05) and during exercise, compared with normal subjects (27 +/- 1 vs. 21 +/- 2%, respectively, P < 0.05). Exercise increased both glucose uptake and blood flow several-fold and significantly decreased both RD(g) and RD(f). Heterogeneity of RD(g), was inversely associated with total glucose uptake (r = -0.54, P < 0.001, pooled data) and was highest in the most insulin-resistant patients. We concluded that both glucose uptake and blood flow are characterized by heterogeneity in human skeletal muscle, whose magnitude is inversely proportional to respective mean values. This implies that an increase in glucose uptake in human skeletal muscle is not a phenomenon, by which each unit increases its glucose uptake by a fixed amount but rather a spatially heterogeneous process.  相似文献   

14.
beta 2 adrenergic receptors ( beta 2 ARs) are important mediators of lipolysis. The beta 2 AR gene is highly polymorphic. To determine the contribution of beta 2 AR polymorphisms to variability in whole body lipolysis, we compared basal and terbutaline-stimulated lipolytic rates (Ra) using tracer techniques in 14 healthy, non-obese males (n=7) and females (n=7) who were homozygous for Cys-19/Arg16/Gln27 or Arg-19/Gly16/Glu27 haplotypes. Fasting (overnight) Ra values were higher in females compared to males. Mean+/-SD Ra, Ra/body weight, Ra/fat free mass, Ra/fat, and Ra/energy expenditure rates in males and females were 155+/-46 vs 311+/-111 micromol/min (P=.007); 2.0+/-0.61 vs 5.2+/-2.3 micromol/(min kg) (P=.006); 2.5+/-0.75 vs 7.8+/-3.4 micromol/(min kg) (P=.003); 10+/-3.7 vs 17+/-7.4 micromol/(min kg) (P=.09); and 144+/-45.5 vs 392+/-111 micromol/d (P=.0001), respectively. Mean+/-SD basal glycerol concentrations were higher in females compared to males: 62+/-5.6 vs 36+/-17 micromol/L (P=.003). Basal glycerol concentrations and Ra values were similar by beta2 AR haplotype. Basal glucose and insulin concentrations tended to be higher in males compared to females and were similar by haplotype. Terbutaline-stimulated changes in glycerol concentrations were variable and are not related to either sex or haplotype. We conclude that compared to haplotype, sex is a more important determinant of basal lipolysis after a 12-hour fast in healthy, non-obese individuals.  相似文献   

15.
BACKGROUND: Although insulin resistance in thyroid hormone excess is well documented, information on insulin action in hypothyroidism is limited. METHODS: To investigate this, a meal was given to 11 hypothyroid (HO; aged 45 +/- 3 yr) and 10 euthyroid subjects (EU; aged 42 +/- 4 yr). Blood was withdrawn for 360 min from veins (V) draining the anterior abdominal sc adipose tissue and the forearm and from the radial artery (A). Blood flow (BF) in adipose tissue was measured with 133Xe and in forearm with strain-gauge plethysmography. Tissue glucose uptake was calculated as (A-V)glucose(BF), lipoprotein lipase as (A-V)Triglycerides(BF), and lipolysis as [(V-A)glycerol(BF)]-lipoprotein lipase. RESULTS: The HO group had higher glucose and insulin levels than the EU group (P < 0.05). In HO vs. EU after meal ingestion (area under curve 0-360 min): 1) BF (1290 +/- 79 vs. 1579 +/- 106 ml per 100 ml tissue in forearm and 706 +/- 105 vs. 1340 +/- 144 ml per 100 ml tissue in adipose tissue) and glucose uptake (464 +/- 74 vs. 850 +/- 155 micromol per 100 ml tissue in forearm and 208 +/- 42 vs. 406 +/- 47 micromol per 100 ml tissue in adipose tissue) were decreased (P < 0.05), but fractional glucose uptake was similar (28 +/- 6 vs. 33 +/- 6% per minute in forearm and 17 +/- 4 vs. 14 +/- 3% per minute in adipose tissue); 2) suppression of lipolysis by insulin was similar; and 3) plasma triglycerides were elevated (489 +/- 91 vs. 264 +/- 36 nmol/liter.min, P < 0.05), whereas adipose tissue lipoprotein lipase (42 +/- 11 vs. 80 +/- 21 micromol per 100 ml tissue) and triglyceride clearance (45 +/- 10 vs. 109 +/- 21 ml per 100 ml tissue) were decreased in HO (P < 0.05). CONCLUSIONS: In hypothyroidism: 1) glucose uptake in muscle and adipose tissue is resistant to insulin; 2) suppression of lipolysis by insulin is not impaired; and 3) hypertriglyceridemia is due to decreased clearance by the adipose tissue.  相似文献   

16.
Low activity of hepatic lipase (HL) has been associated with high levels of triglycerides and high density lipoproteins, but the association of the HL promoter variants with insulin sensitivity has not been investigated. Therefore, in this study, the relationship of the G-250A promoter variant of the HL gene to the rates of insulin-stimulated glucose uptake measured by the hyperinsulinemic euglycemic clamp was investigated in 110 control subjects (82 men and 28 women, aged 50.7+/-7.6 [mean+/-SD] years, body mass index 26. 1+/-3.6 kg/m(2)) and in 105 first-degree relatives (65 men and 40 women, aged 47.8+/-16.0 years, body mass index 26.9+/-5.3 kg/m(2)) of 34 families with familial combined hyperlipidemia (FCHL). The A-250 allele of the HL promoter was associated with low rates of insulin-stimulated whole-body nonoxidative glucose disposal in control subjects (41.1+/-12.7 micromol. kg(-1). min(-1) in subjects with the G-250G genotype, 36.9+/-13.1 micromol. kg(-1). min(-1) in subjects with the G-250A genotype, and 29.9+/-13.5 micromol. kg(-1). min(-1) in subjects with the A-250A genotype; P=0.012 adjusted for age and sex) and with low rates of insulin-stimulated whole-body glucose oxidation in FCHL family members (16.7+/-4.2 versus 15.0+/-4. 4 versus 14.1+/-4.4 micromol. kg(-1). min(-1), P=0.024). In addition, the A-250 allele was associated with high levels of fasting insulin (P=0.047), very low density lipoprotein cholesterol (P=0.007), and total (P=0.009) and very low density lipoprotein (P=0.005) triglycerides in control subjects and with high levels of low density lipoprotein triglycerides (P=0.001) in FCHL family members (n=340). We conclude that the G-250A promoter variant of the HL gene is associated with dyslipidemia and insulin resistance. Mechanisms via which this polymorphism could affect insulin sensitivity remain to be elucidated.  相似文献   

17.
We tested whether FFAs influence glucose uptake by human peripheral tissues in vivo. Whole body glucose uptake, FFA turnover, energy expenditure and substrate oxidation rates, forearm glucose and FFA uptake, and nonoxidative glycolysis (net release of alanine and lactate) were measured in 14 normal male subjects in the basal state (0-240 min; serum insulin, approximately 5 microU/mL) and during euglycemic hyperinsulinemia (240-360 min; approximately 75 microU/mL) on 2 separate occasions, once during elevation of plasma FFA by infusions of Intralipid and heparin (plasma FFA, 4.6 +/- 0.1 vs. 4.2 +/- 0.4 mmol/L; 180-240 vs. 300-360 min) and once during infusion of saline (plasma FFA, 0.50 +/- 0.07 vs. 0.02 +/- 0.07 mmol/L, respectively). In the basal state, whole body glucose disposal remained unchanged, but the fate of glucose was significantly altered toward diminished oxidation (7.3 +/- 0.8 vs. 5.6 +/- 0.5 mumol/kg.min; P less than 0.05, saline vs. Intralipid) and increased nonoxidative glycolysis (P less than 0.05). Elevation of plasma FFA significantly increased forearm glucose uptake (1.0 +/- 0.6 vs. 2.4 +/- 0.7 mumol/kg.min; P less than 0.01) and nonoxidative glycolysis (net release of alanine and lactate, 0.4 +/- 0.5 vs. 1.2 +/- 0.4 mumol glucose equivalents/kg.min; P less than 0.05). During hyperinsulinemia, FFA decreased whole body glucose disposal (38 +/- 2 vs. 30 +/- 3 mumol/kg.min; P less than 0.001) due to a decrease in glucose oxidation (13 +/- 1 vs. 7 +/- 1 mumol/kg.min; P less than 0.01, saline vs. Intralipid), and forearm glucose uptake (31 +/- 4 vs. 24 +/- 6 mumol/kg.min; P less than 0.01, saline vs. Intralipid). Under these conditions, 7 +/- 2% and 3 +/- 1% (P less than 0.05) of forearm glucose uptake could be accounted for by nonoxidative glycolysis in the Intralipid and saline studies, respectively. In summary, 1) elevation of plasma FFA concentrations suppresses the rate of carbohydrate oxidation to a rate that, both basally and during hyperinsulinemia, is similar to that reported for insulin-independent glucose oxidation in the brain; 2) basally, forearm glucose uptake is increased by FFA; and 3) during hyperinsulinemia, FFA inhibit glucose uptake by forearm tissues. We conclude that the interaction between glucose and FFA fuels in human forearm tissues is dependent upon the ambient insulin concentration; the increase in basal glucose uptake would be compatible with the increase need of glucose for FFA reesterification; the decrease in insulin-stimulated glucose uptake supports operation of the glucose-FFA cycle in human forearm tissues.  相似文献   

18.
GH release is increased by reducing circulating free fatty acids (FFAs). Aging is associated with decreased plasma GH concentrations. We evaluated GH releasing capacity in nine healthy elderly men after administration of GH-releasing peptide 2 (GHRP-2), with or without pretreatment with the antilipolytic drug acipimox, and compared the GHRP-2-induced GH release with the response to GHRH. The area under the curve (AUC) of the GH response after GHRP-2 alone was 4.8 times higher compared with GHRH alone (1834 +/- 255 vs. 382 +/- 78 microg/L.60 min, P: < 0.001). Acipimox, which reduced FFAs from 607 micromol/L to 180 micromol/L, increased the GH AUC to 1087 after GHRH and to 2956 microg/L.60 min after GHRP-2 (P: < 0.01). The AUC after acipimox/GHRP-2 were positively correlated with the AUC after GHRP-2 alone (r = 0.93, P: < 0.01); this was also observed between acipimox/GHRH and GHRH alone (r = 0.73, P: = 0.03). Significant negative correlations were observed between basal FFAs and AUC after GHRH or GHRP-2 after combining the data with and without acipimox (r = 0.58, P: = 0.01 and r = 0.48, P: = 0.04, respectively), and between basal FFAs and GH at t = 0 (r = -0.44, P: = 0.001). Interestingly, GHRP-2 administration was followed by a significant early rise in plasma FFAs by 60% (P = 0.01), indicating an acute lipolytic effect. In conclusion, reduction of circulating FFAs strongly enhances GHRP-2-stimulated GH release in elderly men. The data indicate that the decreased GH release associated with aging can be reversed by acipimox and that the pituitary GH secretory capacity in elderly men is still sufficient.  相似文献   

19.
CONTEXT: Pegvisomant is a specific GH receptor antagonist that is able to normalize serum IGF-I concentrations in most patients with acromegaly. The impact of pegvisomant on insulin sensitivity and substrate metabolism is less well described. PATIENTS AND METHODS: We assessed basal and insulin-stimulated (euglycemic clamp) substrate metabolism in seven patients with active acromegaly before and after 4-wk pegvisomant treatment (15 mg/d) in an open design. RESULTS: After pegvisomant, IGF-I decreased, whereas GH increased (IGF-I, 621 +/- 82 vs. 247 +/- 33 microg/liter, P = 0.02; GH, 5.3 +/- 1.5 vs. 10.8 +/- 3.3 microg/liter, P = 0.02). Basal serum insulin and plasma glucose levels decreased after treatment (insulin, 54 +/- 5.9 vs. 42 +/- 5.3 pmol/liter, P = 0.001; glucose, 5.7 +/- 0.1 vs. 5.3 +/- 0.0 mmol/liter, not significant), whereas palmitate kinetics were unaltered. During the clamp, the glucose infusion rate increased after pegvisomant (3.1 +/- 0.5 vs. 4.4 +/- 0.6 mg/kg.min, P = 0.02), whereas the suppression of endogenous glucose production tended to increase (0.7 +/- 0.0 vs. 0.5 +/- 0.1 mg/kg.min, not significant). Total resting energy expenditure decreased after pegvisomant treatment (1703 +/- 109 vs. 1563 +/- 101 kcal/24 h, P = 0.03), but the rate of lipid oxidation did not change significantly. CONCLUSIONS: 1) Pegvisomant treatment for 4 wk improves peripheral and hepatic insulin sensitivity in acromegaly. 2) This is associated with a decrease in resting energy expenditure, whereas free fatty acid metabolism is unaltered. 3) The data support the important direct effects of GH on glucose metabolism and add additional benefits to pegvisomant treatment for acromegaly.  相似文献   

20.
Reduced aerobic capacity is a prominent manifestation among patients with GH deficiency (GHD). Exercise training may improve the physiological capacity to undertake aerobic activity. The ability of patients with GHD to participate in and benefit from a structured program of aerobic exercise with or without replacement recombinant human GH (rhGH) was investigated. We examined the effect of aerobic training on cycle ergometers in a double-blind crossover trial. Ten patients with GHD trained for 3 months with rhGH (6 microg/kg.d) or placebo, stopped both exercise and drug for 2 months, and resumed training for another 3 months with the other agent. Peak oxygen uptake (VO(2)peak) and ventilation threshold (VeT) were measured during a progressive cycle ergometer test to fatigue or symptom-limited maximum. Serum IGF-I levels were monitored to assess compliance with GH treatment. VO(2)peak was low at the two baseline measures (B1, 19.3 +/- 5.5; B2, 19.9 +/- 6.9 ml/kg.min; normal, approximately 30 ml/kg.min) as was VeT (B1, 11.6 +/- 2.2 ml/kg.min; B2, 11.7 +/- 2.6 ml/kg.min; normal, approximately 16 ml/kg.min). Exercise training increased VeT with (8.6%) or without (9.4%) rhGH treatment. Similarly, exercise training resulted in significant reduction in submaximal heart rate in the presence (-5 +/- 4 beats per minute; P < 0.05) or absence of rhGH treatment (-4 +/- 4 beats per minute; P < 0.05). Peak oxygen uptake was not significantly affected by training with or without rhGH treatment. Our findings suggest that exercise training is a feasible intervention in GH-deficient adults that can measurably improve their submaximal responses to exercise. The beneficial effects of exercise can mimic and are not additive to the effects of GH treatment alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号