首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
3-3'-Methylene-bis [4-hydroxycoumarin] (dicoumarol), an inhibitor of NADPH:quinone oxidoreductase 1, has been reported to possess potential antineoplastic effects and the ability to abrogate p53 protein. In the present study, we investigated the cytotoxic effects of dicoumarol in combination with cisplatin (CDDP), using four bladder (RT112, 253J, J82 and UMUC3) and two prostate (LNCap and PC3) cancer cell lines. Single treatment with 100 microM dicoumarol suppressed cell proliferation but did not induce apoptosis at 24 h in all cell lines examined. On the other hand, pretreatment with dicoumarol enhanced cytotoxicity of CDDP in three cell lines with wild type of p53 (RT112, 253J and LNCap), but not in three other cell lines with mutant p53 or in RT112 stable transfectants with a dominant-negative mutant of p53. In RT112 and LNCap, CDDP induced p53 and p21 expression, while pretreatment of dicoumarol suppressed induction of p53/p21 and resulted in sequential activation of c-Jun N-terminal kinase (JNK) in a time-dependent manner. Furthermore, inhibition of JNK, using SP600125, completely suppressed activity of caspases and poly-(ADP-ribose) polymerase cleavage, leading to suppression of enhancement of CDDP-mediated apoptosis by dicoumarol. These results suggested that dicoumarol could enhance cytotoxicity of CDDP in urogenital cancer cells with wild-type p53 through the p53/p21/JNK pathways.  相似文献   

2.
B Jiménez  O V Volpert  F Reiher  L Chang  A Mu?oz  M Karin  N Bouck 《Oncogene》2001,20(26):3443-3448
Thrombospondin-1 (TSP-1) is a potent inhibitor of angiogenesis that acts directly on endothelial cells via the CD36 surface receptor molecule to halt their migration, proliferation, and morphogenesis in vitro and to block neovascularization in vivo. Here we show that inhibitory signals elicited by TSP-1 did not alter the ability of inducers of angiogenesis to activate p42 and p44 mitogen-activated protein kinase (MAPK). Rather, TSP-1 induced a rapid and transient activation of c-Jun N-terminal kinases (JNK). JNK activation by TSP-1 required engagement of CD36, as it was blocked by antagonistic CD36 antibodies and stimulated by short anti-angiogenic peptides derived from TSP-1 that act exclusively via CD36. TSP-1 inhibition of corneal neovascularization induced by bFGF was severely impaired in mice null for JNK-1, pointing to a critical role for this stress-activated kinase in the inhibition of neovascularization by TSP-1.  相似文献   

3.
M Nagao  Y Kaziro  H Itoh 《Oncogene》1999,18(31):4425-4434
Gt12, a member of alpha subunit of heterotrimeric G protein G12 subfamily, has been shown to stimulate c-Jun N-terminal kinase (JNK) activity through the low molecular weight GTP-binding proteins Ras, Rac, and Cdc42. In this study using the transient expression of a constitutively activated mutant of Galpha12 (Galpha12Q229L) in human embryonic kidney (HEK) 293 cells, we found that Rho and Src family kinase are also involved in the Galpha12-induced activation of JNK. The activation of JNK by Galpha12Q229L was inhibited by dominant-negative RhoA(T19N), and botulinum C3 exoenzyme which specifically inactivates Rho. In addition, the expression of activated RhoA(G14V) elevated JNK activity in HEK 293 cells. The Galpha12Q229L-stimulated activation of JNK was blocked by a specific inhibitor of protein tyrosine kinases (PP2), and C-terminal Src kinase (Csk). Moreover, we observed that Galpha12Q229L stimulated Src family kinase activity and v-Src induced JNK activation. Interestingly, the v-Src-induced activation of JNK was inhibited by dominant-negative RhoA(T19N). In contrast, Csk did not inhibit the JNK activation by activated RhoA(G14V). These results suggest that Rho and Src family kinase are required for the Galpha12-induced JNK activation, and that Src family kinase acts upstream of Rho activation in the JNK pathway.  相似文献   

4.
Programmed cell death, or apoptosis, has emerged as a common mechanism by which cells respond to chemotherapeutic drugs. However, the signaling mechanisms that mediate drug-induced apoptosis are still widely unknown. Mitogen-activated protein kinase (MAPK) signaling cascades trigger stimulus-specific responses in cells with ERK being associated with proliferation and differentiation, and JNK/SAPK and p38 mediating stress and apoptotic responses. Here, we found that mitoxantrone and anisomycin stimulated a dose- and time-dependent induction of JNK/SAPK activity, and to a lesser extent p38 activity, that preceded the appearance of apoptosis as measured by internucleosomal DNA fragmentation. These compounds did not induce ERK activity. We further demonstrated that p38 activity was not involved in the induction of apoptosis since the use of the p38 inhibitor, SB203580, did not prevent drug-induced apoptotic DNA fragmentation. Additionally, direct inhibition of JNK/SAPK signaling through the use of dominant-negative MKK4/SEK1 (SEK-AL) inhibited mitoxantrone- and anisomycin-induced apoptosis. These results suggest that mitoxantrone- and anisomycin-induced apoptosis is dependent on JNK/SAPK, but not p38, activity.  相似文献   

5.
Zhang J  Liu J  Yu C  Lin A 《Cancer research》2005,65(18):8372-8378
The phosphorylation and regulation of the proapoptotic Bcl-2 family protein BAD by c-Jun NH2-terminal kinase (JNK) is controversial. JNK can suppress interleukin-3 withdrawal-induced apoptosis via phosphorylation of BAD at Thr201. However, it has also been reported that JNK promotes apoptosis through phosphorylation of BAD at Ser128. Here, we report that JNK is not a BAD Ser128 kinase. JNK phosphorylates murine BAD (mBAD), but not human BAD (hBAD), in which Ser91 is equivalent to Ser128 in mBAD. In contrast, Cdc2, which phosphorylates Ser128, phosphorylates both mBAD and hBAD. Replacement of Ser128 by alanine has no effects on BAD phosphorylation by JNK in vitro and in vivo. Two-dimensional phosphopeptide mapping in combination with phosphoamino acid analysis reveals that JNK does not phosphorylate BAD at Ser128. Elimination of Ser128 phosphorylation has no effects on the proapoptotic activity of BAD in apoptosis induced by UV via JNK or growth factor withdrawal. Thus, our results show that Ser128 is not phosphorylated by JNK for promoting cell death.  相似文献   

6.
The growth of cancer cells is limited by energy supply which is regulated by the energy sensor AMP-kinase (AMPK). Hence, mimicking a low energy state may inhibit cancer growth and may be exploited in anticancer therapies. In the present study, the impact of AMPK activation on cell growth and apoptosis of DU-145 prostate cancer cells was investigated. Incubation with the AMPK activator aminoimidazole carboxamide ribonucleotide (AICAR) dose-dependently inhibited cell growth, activated AMPK, and inhibited mTOR. Furthermore, AICAR treatment activated c-Jun N-terminal kinase (JNK) and caspase-3, thereby initiating apoptosis. Within 60 min of treatment AICAR raised intracellular reactive oxygen species (ROS) which could be abolished in the presence of the free radical scavenger N-(2-mercaptopropionyl)glycin (NMPG), the AMPK inhibitor compound C (Comp C) and the respiratory chain complex I inhibitor rotenone, but not by the NADPH oxidase inhibitor VAS2870. Inhibition of ROS generation abolished AMPK activation by AICAR as well as JNK and caspase-3 activation. Furthermore, AMPK activation, JNK phosphorylation and cleaved caspase-3 upon AICAR treatment were abolished in the presence of Comp C. In summary, our data demonstrate that activation of AMPK by AICAR induces apoptosis of prostate cancer cells by a signaling pathway involving ROS, activation of JNK and cleaved caspase-3.  相似文献   

7.
Zhao Y  Zhao X  Yang B  Neuzil J  Wu K 《Cancer letters》2007,247(2):345-352
Gastric neoplastic disease is one of the most frequent causes of cancer-associated deaths with poor prognosis. Here we studied the effect of the redox-silent analogue alpha-tocopheryl succinate (alpha-TOS), a strong apoptogen and anti-cancer agent, on the gastric cancer cell line SGC-7901. alpha-TOS inhibited proliferation of the cells and induced their apoptosis in a concentration- and time-dependent manner, while succinate or alpha-tocopherol showed no effect. The effect of alpha-TOS was modulated by components of the MAPK signaling network, including ERK1/2 and c-Jun N-terminal kinase (JNK), but not p38. Activation of ERK1/2 occurred early and increased until 12h, coinciding with an in crease in apoptosis in the cells, after which it dropped abruptly, while activation of JNK rose steadily, reaching a plateau at 12h of alpha-TOS treatment. The effects of ERK1/2 and JNK on the apoptosis outcome are transmitted via c-Jun, since transfection of the cells with c-Jun antisense oligodeoxynucleotide inhibited alpha-TOS-induced apoptosis. We conclude that ERK1/2 and JNK positively regulate apoptosis induced in gastric cancer cells by alpha-TOS.  相似文献   

8.
Regulation of Nur77 nuclear export by c-Jun N-terminal kinase and Akt   总被引:3,自引:0,他引:3  
Han YH  Cao X  Lin B  Lin F  Kolluri SK  Stebbins J  Reed JC  Dawson MI  Zhang XK 《Oncogene》2006,25(21):2974-2986
Proapoptotic nuclear receptor family member Nur77 translocates from the nucleus to the mitochondria, where it interacts with Bcl-2 to trigger apoptosis. Nur77 translocation is induced by certain apoptotic stimuli, including the synthetic retinoid-related 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalenecarboxylic acid (AHPN)/CD437 class. In this study, we investigated the molecular mechanism by which AHPN/CD437 analog (E)-4-[3-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid (3-Cl-AHPC) induces Nur77 nuclear export. Our results demonstrate that 3-Cl-AHPC effectively activated Jun N-terminal kinase (JNK), which phosphorylates Nur77. Inhibition of JNK activation by a JNK inhibitor suppressed 3-Cl-AHPC-induced Nur77 nuclear export and apoptosis. In addition, several JNK upstream activators, including the phorbol ester TPA, anisomycin and MAPK kinase kinase-1 (MEKK1), phosphorylated Nur77 and induced its nuclear export. However, Nur77 phosphorylation by JNK, although essential, was not sufficient for inducing Nur77 nuclear export. Induction of Nur77 nuclear export by MEKK1 required a prolonged MEKK1 activation and was attenuated by Akt activation. Expression of constitutively active Akt prevented MEKK1-induced Nur77 nuclear export. Conversely, transfection of dominant-negative Akt or treatment with a phosphatidylinositol 3-kinase (PI3-K) inhibitor accelerated MEKK1-induced Nur77 nuclear export. Furthermore, mutation of an Akt phosphorylation residue Ser351 in Nur77 abolished the effect of Akt or the PI3-K inhibitor. Together, our results demonstrate that both activation of JNK and inhibition of Akt play a role in translocation of Nur77 from the nucleus to the cytoplasm.  相似文献   

9.
The c-Jun N-terminal kinase (JNK) is a vital stress-activated signal that can be regulated differentially under oxidant or antioxidant conditions. Recently, we have reported that activation of JNK by cadmium chloride (Cd) contributes to apoptosis in CL3 human lung adenocarcinoma cells. Although oxidative stress has been implicated in numerous biochemical effects altered by Cd, its role in Cd-elicited JNK activation has not been established. Here we report that catalase is crucial for the activation of JNK by Cd. Short-term treatment of 3-amino-1,2,4-triazole (3AT), a specific catalase inhibitor, completely suppressed the Cd-elicited JNK activation, conversely, exogenous addition of catalase increased the intensity and duration of JNK activation in Cd-treated CL3 cells. Co-administering high doses of H(2)O(2) (500-1000 micro M) with Cd also markedly decreased JNK activity, although at doses <200 micro M H(2)O(2) enhanced the Cd-elicited JNK activation in CL3 cells. 3AT also blocked JNK activation in Cd-treated normal human fibroblasts and Chinese hamster ovary cells, and in UV-irradiated CL3 cells. However, mannitol, a hydroxyl radical scavenger, did not alter the JNK activity in Cd-treated human and rodent cells. Intriguingly, sodium fluoride or okadaic acid, inhibitors for serine/threonine protein phosphatases (PP), recovered the JNK activity in CL3 cells exposed to Cd plus 3AT; however, the protein tyrosine phosphatases inhibitor sodium orthovanadate did not. Furthermore, 3AT decreased but catalase increased the Cd-induced cytotoxicity, apoptosis and procaspase-3 degradation in CL3 cells. Together, these results indicate that persistent activation of apoptotic JNK signal by Cd requires functional catalase and that short-term depletion of catalase activity may facilitate okadaic acid-sensitive PP to down-regulate the JNK activation and may predispose these cells to carcinogenic transformation upon Cd exposure.  相似文献   

10.
11.
Takino T  Yoshioka K  Miyamori H  Yamada KM  Sato H 《Oncogene》2002,21(42):6488-6497
Focal adhesion kinase (FAK) becomes activated and tyrosine-phosphorylated in response to cell adhesion to extracellular matrix proteins in a variety of cell types, and associates with a number of signaling molecules, structural proteins, and beta integrin cytoplasmic domains. Here we demonstrated that c-Jun N-terminal kinase (JNK)/stress activated protein kinase-associated protein 1 (JSAP1), a scaffold factor in the mitogen-activated protein kinase (MAPK) cascades, forms a complex with the N-terminus of FAK. The complex formation was further stimulated by c-Src, in which JSAP1 was tyrosine-phosphorylated and other FAK/Src signaling molecules were recruited. Fibronectin (FN) stimulation of cells expressing JSAP1 induced its tyrosine phosphorylation concomitant with association with FAK. Expression of JSAP1 in Hela cells facilitated formation of well-organized focal contacts and actin stress fibers, and promoted cell spreading onto FN. Taken together, these results suggest that JSAP1 is involved an integrin-mediated signaling pathway through FAK/Src by recruiting other signaling molecules, resulting in promotion of cell spreading onto FN.  相似文献   

12.
Protein phosphatase 2A (PP2A) is a multimeric serine/threonine phosphatase that can dephosphorylate multiple kinases. It is generally considered to be a cancer suppressor as its inhibition can induce phosphorylation and activation of substrate kinases that mainly accelerate growth. We previously reported that cantharidin, an active constituent of a traditional Chinese medicine, potently and selectively inhibited PP2A, yet efficiently repressed the growth of pancreatic cancer cells through activation of the c-Jun N-terminal kinase (JNK) pathway. This suggested that activation of kinase pathways might also be a potential strategy for cancer therapy. In this study, we have confirmed that the basal activity of the phospatidylinositol 3-kinase (PI3K)/JNK/activator protein 1 (AP-1) pathway promoted pancreatic cancer cell growth when stimulated by growth factors. Interestingly, although treatment with the PP2A inhibitors, cantharidin or okadaic acid (OA), amplified the PI3K-dependent activation of JNK, cell growth was repressed. We therefore hypothesised that a specific level of activity of the JNK pathway might be required to maintain the promitogenic function, as both repression and overactivation of JNK could inhibit cell proliferation. It was found that the JNK-dependent growth inhibition was independent of the activation of AP-1, but dependent on the repression of Akt. Although the PP2A inhibitors triggered overactivation of JNK and inhibited cell growth, excessively activated protein kinase C (PKC) improved cell survival. Combined treatment with a PP2A inhibitor and a PKC inhibitor produced a synergistic effect, which indicates a potentially promising therapeutic approach to pancreatic cancer treatment.  相似文献   

13.

Background  

Ceramide is an important second messenger that has diverse cellular and biological effect. It is a specific and potent inducer of apoptosis and suppressor of cell growth. In leukemia, chemoresistance generally developed due to deregulated ceramide metabolism. In combinatorial treatment strategies of leukemia, few components have the capability to increases ceramide production. Manipulation in ceramide production by physiological and pharmacological modulators therefore will give additive effect in leukemia chemotherapy.  相似文献   

14.
15.
The root of Angelica gigas Nakai contains two major coumarins, which have been previously identified as decursin and decursinol. Decursin has been demonstrated to exhibit potent anti-cancer activity both in vitro and in vivo. In this study, we found that decursin and decursinol at non-cytotoxic doses inhibited the VEGF-induced proliferation, migration, and capillary-tube formation of HUVECs. Moreover, decursin and decursinol suppressed microvessel formation on chorioallantoic membranes in fertilized eggs and into mouse Matrigel plugs. The oral administration of decursin and decursinol also reduced VEGF-induced angiogenesis in Matrigel. Furthermore, decursin and decursinol reduced the phosphorylation of ERK and JNK, but not p38 MAPK, in VEGF-stimulated HUVECs. Taken together, our results reveal that decursin and decursinol inhibit VEGF-induced angiogenesis by reducing the activation of ERK and JNK in HUVECs, and possess potent in vivo anti-angiogenic activity, coupled with the advantage of oral dosing. Thus, these compounds may have the potential for the treatment of cancers dependent on VEGF-induced vascularization.  相似文献   

16.
The role of Bax in the release of cytochrome c from mitochondria and the induction of apoptosis has been demonstrated in many systems. Using immunocytochemical staining, we observed that photodynamic therapy (PDT) with the photosensitiser Pc 4 induced Bax translocation from the cytosol to mitochondria, and the release of cytochrome c from mitochondria as early signalling for the intrinsic pathway of apoptosis in human breast cancer MCF-7c3 cells. To test the role of Bax in apoptosis, MCF-7c3 cells were treated with Bax antisense oligonucleotides, which resulted in as much as a 50% inhibition of PDT-induced apoptosis. In the second approach, Bax-negative human prostate cancer DU-145 cells were studied. Following PDT, the hallmarks of apoptosis, including the release of cytochrome c from mitochondria, loss of mitochondrial membrane potential, caspase activation, and chromatin condensation and fragmentation, were completely blocked in these cells. Restoration of Bax expression in DU-145 cells restored apoptosis, indicating that the resistance of DU-145 cells to PDT-induced apoptosis is due to the lack of Bax rather than to another defect in the apoptotic machinery. However, despite the inhibition of apoptosis, the Bax-negative DU-145 cells were as photosensitive as Bax-replete MCF-7c3 cells, as determined by clonogenic assay. Thus, for Pc 4-PDT, the commitment to cell death occurs prior to Bax activation.  相似文献   

17.
Tchou WW  Yie TA  Tan TH  Rom WN  Tchou-Wong KM 《Oncogene》1999,18(50):6974-6980
The cysteine protease inhibitor N-acetyl-leucinyl-leucinyl-norleucinal (LLnL) inhibited the growth of the Calu-1 lung carcinoma cells and induced a prolonged cell cycle arrest in the S phase. c-Jun N-terminal kinases (JNKs) participate in cellular responses to mitogenic stimuli, environmental stresses, and apoptotic signals but its role in cell cycle checkpoint control has not been elucidated. In this report, we examined the role of JNK in LLnL-induced S phase checkpoint by overexpression of a dominant-negative mutant of JNK1 (JNK1-APF) in Calu-1 cells. Expression of high levels of JNK1-APF blocked the growth-inhibitory effects of LLnL and abrogated S phase arrest induced by LLnL. These results support the role of JNK in the activation of cell cycle checkpoint induced by LLnL.  相似文献   

18.
Engedal N  Korkmaz CG  Saatcioglu F 《Oncogene》2002,21(7):1017-1027
In early, androgen dependent stages of prostate cancer, androgen withdrawal, the major course of therapy in prostate cancer, leads to a rapid regression of the tumor as a result of apoptosis. However, prostate cancer invariably progresses to an androgen independent and apoptosis resistant stage for which no curative treatment is available. The molecular details of regression upon androgen withdrawal and progression to a resistant state are largely unknown. Here we show that c-Jun N-terminal Kinase (JNK) is activated strongly and in a sustained fashion by 12-O-tetradecanoylphorbol 13-acetate (TPA) and thapsigargin (TG), two agents which were previously shown to lead to apoptosis in the androgen responsive prostate cancer cell line LNCaP. The time course of JNK induction by both compounds correlated very well with the onset and progression of apoptosis in LNCaP cells. Inhibition of either ERK or p38 pathways did not affect TPA-induced cell death. In the androgen-independent prostate cancer cell lines DU-145 and PC-3, and in the cervical carcinoma cell line HeLaS3, TPA did not lead to apoptosis and there were no significant changes in JNK activity upon TPA treatment. The failure of TPA to induce JNK activity in PC-3, DU-145, and HelaS3 cells was not due to a general defect in JNK signaling since ultraviolet (UV) irradiation dramatically increased JNK activity in all four cell lines. Specific inhibition of JNK by expression of the JNK Inhibitory Protein (JIP) dramatically inhibited both TPA- and TG-induced apoptosis. Furthermore, apoptosis induced by both agents was completely blocked by ectopic expression of the baculovirus caspase-inhibitor P35. Surprisingly, ZVAD-fmk, a cell-permeable fluoromethylketone inhibitor of caspases, had no effect on TPA-induced apoptosis, whereas it completely inhibited TG-induced cell death; JNK activity was not affected in either case. This indicates that ZVAD-fmk does not inhibit some of the caspases involved in TPA-induced apoptosis, and that despite the common requirement of JNK activation, TPA- and TG-induced cell death are mechanistically different. Furthermore, it also suggests that JNK is either upstream or independent of caspases in LNCaP cells. Collectively, these results indicate that apoptosis in LNCaP cells requires a sustained increase in JNK activity and caspase activation; components of these signaling pathways may be defective in the androgen independent prostate cancer cell lines.  相似文献   

19.
We hypothesized that the lipid second messenger, ceramide, and microtubule-directed chemotherapeutic agents might engage converging pathways in inducing apoptosis. Our studies demonstrated that simultaneous treatment of Jurkat cells with paclitaxel and ceramide enhanced paclitaxel-induced cell growth inhibition. Cell cycle analysis indicated a significant increase in the hypodiploid population over that observed with paclitaxel treatment alone. Morphologic evaluation and a TUNEL assay confirmed a dramatic increase in apoptosis in Jurkat cells treated with the combination of these two agents. This is the first demonstration that paclitaxel and ceramide interact in a supra-additive manner to decrease leukemic T-cell growth, suggesting a possible application of paclitaxel and ceramide in combination therapy.  相似文献   

20.
Overexpression of epidermal growth factor receptors (ErbB) is frequently seen in inflammatory breast cancer (IBC). Treatment with ErbB1/2-targeting agents (lapatinib) mediates tumor apoptosis by downregulating ErbB1/2 phosphorylation and downstream survival signaling. In this study, using carboxy-H2DCFDA, DHE, and MitoSOX Red to examine changes in hydrogen peroxide radicals, cytoplasmic and mitochondrial superoxide, respectively, we observed that GW583340 (a lapatinib-analog) increases reactive oxygen species (ROS) in two models of IBC (SUM149, SUM190) that are sensitive to ErbB1/2 blockade. This significant increase in ROS levels was similar to those generated by classical oxidative agents H2O2 and paraquat. In contrast, minimal to basal levels of ROS were measured in a clonal population of GW583340-resistant IBC cells (rSUM149 and rSUM190). The GW583340-resistant IBC cells displayed increased SOD1, SOD2, and glutathione expression, which correlated with decreased sensitivity to the apoptotic-inducing effects of GW583340, H2O2, and paraquat. The ROS increase and cell death in the GW583340-sensitive cells was reversed by simultaneous treatment with a superoxide dismutase (SOD) mimic. Additionally, overcoming the high levels of antioxidants using redox modulators induced apoptosis in the GW583340-resistant cells. Taken together, these data demonstrate a novel mechanism of lapatinib-analog-induced apoptosis and indicate that resistant cells have increased antioxidant potential, which can be overcome by treatment with SOD modulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号