首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《Molecular therapy》2002,5(3):242-251
Substantial effort has been invested in developing methodologies for efficient gene transfer into human, repopulating, hematopoietic stem cells. Oncoretroviral vectors are limited by the lack of nuclear mitosis in quiescent stem cells during ex vivo transduction, whereas the preintegration complex of lentiviral vectors contains nuclear-localizing signals that permit genome integration without mitosis. We have developed a flexible and versatile system for generating lentiviral vector particles and have pseudotyped such particles with amphotropic, ecotropic, feline endogenous virus (RD114) or vesicular stomatitis virus (VSV-G) envelope proteins. Particles of all four types could be concentrated ∼100-fold by ultracentrifugation or ultrafiltration. RD114 or amphotropic particles were more efficient than VSV-G-pseudotyped particles at transducing human cord blood CD34+ cells and clonogenic progenitors within that population. Amphotropic particles transduced cytokine-mobilized, human peripheral blood CD34+ cells capable of establishing hematopoiesis in immunodeficient mice more efficiently than the other two types of particles. We conclude that the use of amphotropic pseudotyped lentiviral vector particles rather than the commonly used VSV-G-pseudotyped particles should be considered in potential applications of lentiviral vectors for gene transfer into this therapeutically relevant target cell population.  相似文献   

3.
《Molecular therapy》2003,7(3):325-333
Hematopoietic stem cells (HSC) require extensive cytokine-mediated stimulation and proliferation for efficient transduction by oncoretroviral vectors. Since lentiviral vectors can transduce nondividing cells, the need for cytokine stimulation has been questioned. We studied HIV-based lentiviral transduction of human early hematopoietic progenitors from umbilical cord blood in the presence or absence of IL-3, IL-6, stem cell factor (SCF), and Flt-3L (36SF) or SCF alone and characterized the effects of these conditions on the stem cell phenotype. Gene transfer was significantly higher in the presence of 36SF in mass culture cells, CFC, LTCIC, and NOD/SCID repopulating cells (SRC). Transduction of primitive progenitor/stem cells was poor without cytokines, with only 12% LTCIC and 23% SRC transduced, compared to 59% in LTCIC and 81% in SRC with 36SF. SCF alone matched transduction rates of multiple cytokines with 70% in CFC. Cytokines prevented apoptosis, expanded CD34+ cell number, and maintained CFC and LTCIC frequencies. Cytokine stimulation increased transduction of nondividing Ara-C-resistant and aphidicolin-inhibited cells similar to dividing cells. These data suggest that cytokines enhance lentiviral transduction of HSC, without requiring cell division, and maintain the stem cell phenotype. SCF stimulation alone was sufficient for high level transduction.  相似文献   

4.
5.
The use of lentiviral vectors for gene transfer into hematopoietic stem cells has raised considerable interest as these vectors can permanently integrate their genome into quiescent cells. Vectors based on alternative lentiviruses would theoretically be safer than HIV-1-based vectors and could also be used in HIV-positive patients, minimizing the risk of generating replication-competent virus. Here we report the use of third-generation equine infectious anemia virus (EIAV)- and HIV-1-based vectors with minimal viral sequences and absence of accessory proteins. We have compared their efficiency in transducing mouse and human hematopoietic stem cells both in vitro and in vivo to that of a previously documented second-generation HIV-1 vector. The third-generation EIAV- and HIV-based vectors gave comparable levels of transduction and transgene expression in both mouse and human NOD/SCID repopulating cells but were less efficient than the second-generation HIV-1 vector in human HSCs. For the EIAV vector this is possibly a reflection of the lower protein expression levels achieved in human cells, as vector copy number analysis revealed that this vector exhibited a trend to integrate equally efficiently compared to the third-generation HIV-1 vector in both mouse and human HSCs. Interestingly, the presence or absence of Tat in viral preparations did not influence the transduction efficiency of HIV-1 vectors in human HSCs.  相似文献   

6.
Foamy virus (FV) vectors are a promising gene delivery system for use in hematopoietic stem cell gene therapy. Previous FV vector marking studies in the NOD/SCID xenotransplantation model used umbilical cord blood (UCB)-derived SCID repopulating cells (SRCs) that were assayed 5-10 weeks posttransplantation. We now report efficient FV vector transduction (>65%) of UCB-derived primitive, long-term SRCs engrafted for 18 weeks. In addition, we evaluated gene transfer into mobilized peripheral blood (MPB)-derived SRCs by improved, deleted FV vectors containing minimal cis-acting sequences and packaged by split helper constructs that would be appropriate for use in clinical trials. When used at a multiplicity of infection of 1 in a 10-hr transduction protocol, these improved vectors transduced 34% of engrafted MPB-derived SRCs.  相似文献   

7.
8.
Bai Y  Soda Y  Izawa K  Tanabe T  Kang X  Tojo A  Hoshino H  Miyoshi H  Asano S  Tani K 《Gene therapy》2003,10(17):1446-1457
Difficulty in gene transduction of human blood cells, including hematopoietic stem cells, has hampered the development of gene therapy applications for hematological disorders, encouraging the development and use of new gene delivery systems. In this study, we used a third-generation self-inactivating (SIN) lentiviral vector system based on human immunodeficiency virus type 1 (HIV-1) to improve transduction efficiency and prevent vector-related toxicity. The transduction efficiency of the HIV-1-based vector was compared directly with the Moloney murine leukemia virus (MLV) SIN vector in human leukemia cell lines. Initial transduction efficiencies were almost 100% for the HIV and less than 50% for the MLV vectors. Similar results were observed in 11 types of primary cells obtained from leukemia or myeloma patients. Transgene expression persisted for 8 weeks in cells transduced with the HIV vector, but declined with the MLV vector. In addition, resting peripheral blood lymphocytes and CD34(+) hematopoietic cells were transduced successfully with the HIV vector, but not with the MLV vector. Finally, we confirmed vector gene integration in almost all colony-forming cells transduced with the HIV vector, but not with the MLV vector. In conclusion, this lentiviral vector is an excellent gene transduction system for human blood cells because of its high gene transduction and host chromosome integration efficiency.  相似文献   

9.
Lentiviral vectors have turned out to be an efficient method for stable gene transfer in vitro and in vivo. Not only do fields of application include cell marking and tracing following transplantation in vivo, but also the stable delivery of biological active proteins for gene therapy. A variety of cells, however, need immediate transplantation after preparation, for example, to prevent cell death, differentiation or de-differentiation. Although these cells are usually washed several times following lentiviral transduction, there may be the risk of viral vector shuttle via transplanted cells resulting in undesired in vivo transduction of recipient cells. We investigated whether infectious lentiviral particles are transmitted via ex vivo lentivirally transduced cells. To this end, we explored potential viral shuttle via ex vivo lentivirally transduced cardiomyocytes in vitro and following transplantation into the brain and peripheral muscle. We demonstrate that, even after extensive washing, infectious viral vector particles can be detected in cell suspensions. Those lentiviral vector particles were able to transduce target cells in transwell experiments. Moreover, transmitted vector particles stably transduced resident cells of the recipient central nervous system and muscle in vivo. Our results of lentiviral vector shuttle via transduced cardiomyocytes are significant for both ex vivo gene therapy and for lentiviral cell tracing, in particular for investigation of stem cell differentiation in transplantation models and co-cultivation systems.  相似文献   

10.
11.
Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency with a median survival below the age of 20 due to infections, severe hemorrhage, and lymphomas. Transplantation of hematopoietic stem cells from HLA-identical sibling donors is a resolutive treatment, but is available for a minority of patients. Transplantation of genetically corrected autologous hematopoietic stem cells or T cells could represent an alternative treatment applicable to all patients. We investigated whether WAS gene transfer with MMLV-based oncoretroviral and HIV-based lentiviral vectors could restore normal functions of patients' T cells. T cells transduced either with lentiviral vectors expressing the WAS protein (WASP) from the ubiquitous PGK promoter or the tissue-specific WASP promoter or with an oncoretroviral vector expressing WASP from the LTR, reached normal levels of WASP with correction of functional defects, including proliferation, IL-2 production, and lipid raft upregulation. Lentiviral vectors transduced T cells from WAS patients at higher rates, compared to oncoretroviral vectors, and efficiently transduced both activated and naive WAS T cells. Furthermore, a selective growth advantage of T cells corrected with the lentiviral vectors was demonstrated. The observation that lentiviral vector-mediated gene transfer results in correction of T cell defects in vitro supports their application for gene therapy in WAS patients.  相似文献   

12.
Foamy virus vectors for gene transfer   总被引:1,自引:0,他引:1  
Foamy virus (FV) vectors are efficient gene delivery vehicles that have shown great promise for gene therapy in preclinical animal models. FVs or spumaretroviruses are not endemic in humans, but are prevalent in nonhuman primates and in other mammals. They have evolved means for efficient horizontal transmission in their host species without pathology. FV vectors have several unique properties that make them well suited for therapeutic gene transfer including a desirable safety profile, a broad tropism, a large transgene capacity, and the ability to persist in quiescent cells. They mediate efficient and stable gene transfer to hematopoietic stem cells (HSCs) in mouse models, and in the canine large animal model. Analysis of FV vector integration sites in vitro and in hematopoietic repopulating cells shows they have a unique integration profile, and suggests they may be safer than gammaretroviruses or lentiviral vectors. Here, properties of FVs relevant to the safety and efficacy of FV vectors are discussed. The development of FV vector systems is described, and studies evaluating their potential in vitro, and in small and large animal models, is reviewed.  相似文献   

13.
Kume A  Xu R  Ueda Y  Urabe M  Ozawa K 《Gene therapy》2000,7(14):1193-1199
Hematopoietic stem cells (HSCs) are attractive targets for gene therapy, but current gene transfer methodologies are inadequate for efficient HSC transduction and perpetual transgene expression. To improve gene transfer vectors and transduction protocols, it is vital to establish a system to evaluate transgene expression and the long-term behavior of transduced cells in vivo. For this purpose, we constructed a bicistronic retrovirus encoding the human CD24 (as the first cistron) and the enhanced green fluorescent protein (EGFP; as the second cistron). Murine bone marrow cells were transduced with this vector and the transgene expression was monitored along with hematopoietic reconstitution. Stable expression of CD24 and EGFP was demonstrated in the long-term repopulating cells for at least 6 months, and multi-parameter flow cytometry illustrated expression of both markers in all the lymphohematopoietic lineages examined (B and T lymphoid, erythroid and myeloid). Sustained expression was also shown in the secondary transplants for 6 months, suggesting that self-renewing HSCs were transduced by this vector. Overall, EGFP-tagged bicistronic retroviruses would provide powerful tools for detailed in vivo analysis of transduced hematopoietic cells, such as transgene expression in conjunction with lineage differentiation. Gene Therapy (2000) 7, 1193-1199.  相似文献   

14.
In light of findings demonstrating that the macaque TRIM5alpha protein inhibits infection of cells by human immunodeficiency virus (HIV)-1, simian immunodeficiency virus (SIV)-based lentiviral vectors may have distinct advantages over HIV-1 vectors for the transduction of macaque hematopoietic stem cells. We evaluated the ability of an SIV vector (VRX859) encoding an antisense SIV envelope sequence and enhanced green fluorescent protein (GFP) to inhibit viral replication and to transduce rhesus CD34(+) lymphoid progenitor cells. After infection with homologous SIV strains, CD4(+) cell lines transduced with VRX859 exhibited more than 600-fold inhibition of viral replication compared with control cells. Less inhibition was observed with the divergent SIV strain SIVsmE660. Partial inhibition of a chimeric simian-human immunodeficiency virus, which contains an HIV-1 envelope in an SIV backbone, was observed, suggesting that the SIV vector also contributes to viral inhibition independent of the antisense envelope inhibitor. Transduction of rhesus CD34(+) cells with VRX859 at various multiplicities of infection resulted in transduction efficiencies comparable to those obtained with the HIV vector VRX494. However, when we evaluated transduction of rhesus T lymphocyte progenitors by examining GFP expression in CD4(+) T cells derived from transduced CD34(+) cells, we observed more efficient transduction with the SIV-based vector. GFP(+)CD4(+) T cells derived from VRX859-transduced CD34(+) cells strongly inhibited SIVmac239 replication as compared with control CD4(+) T cells. The ability of this SIV-based vector to mediate potent inhibition of SIV replication, coupled with its efficient transduction of rhesus hematopoietic progenitor cells, make it an important candidate for proof-of-principle experiments of stem cell gene therapy in the SIV-macaque model.  相似文献   

15.
Improving hematopoietic stem and progenitor cell (HSPC) permissiveness to HIV-derived lentiviral vectors (LVs) remains a challenge for the field of gene therapy as high vector doses and prolonged ex vivo culture are still required to achieve clinically relevant transduction levels. We report here that Cyclosporin A (CsA) and Rapamycin (Rapa) significantly improve LV gene transfer in human and murine HSPC. Both compounds increased LV but not gammaretroviral transduction and acted independently of calcineurin and autophagy. Improved gene transfer was achieved across all CD34+ subpopulations, including in long-term SCID repopulating cells. Effects of CsA were specific of HSPC and opposite to its known impact on HIV replication. Mutating the Cyclophilin A binding pocket of the viral capsid (CA) further improved transduction in combination with CsA. Tracking of the LV genome fate revealed that CsA relieves a CA-dependent early block and increases integration, while Rapa acts early in LV infection independently of the viral CA. In agreement, only Rapa was able to improve transduction by an integrase-defective LV harboring wild-type CA. Overall, our findings pave the way for more efficient and sustainable LV gene therapy in human HSPCs and shed light on the multiple innate barriers specifically hampering LV transduction in these cells.  相似文献   

16.
Efficient gene transfer to hematopoietic stem cells by Moloney murine leukemia virus-derived retroviral vectors benefits from ex vivo culture and cytokine support. Both also increase the risks of apoptosis and differentiation among cells targeted for transduction. In an effort to maximize the retention of stem cell properties in target cells, we developed a transduction protocol with a focus on minimizing graft manipulation, cytokine stimulation, and ex vivo exposure duration. Based on their wide host range and ability to transduce quiescent cells, human immunodeficiency virus (HIV)-derived lentivirus vectors are ideally suited for this purpose. Our present studies in a murine model show that whole bone marrow cells are readily transduced after a 1-hour vector exposure in the presence of stem cell factor and CH296 fibronectin fragment. Using this rapid transduction protocol, we achieved long-term, multilineage reconstitution of murine recipients with up to 25% GFP-expressing cells in primary and secondary recipients. Our results demonstrate the unique ability of HIV-derived vectors to transduce hematopoietic stem cells in the absence of enrichment, under minimal cytokine stimulation, and following brief exposures.  相似文献   

17.
Optimized hematopoietic gene therapy requires vectors with strong expression in the desired target cell population and the ability to select for the expressing transduced cells. In the context of drug resistance selection of repopulating hematopoietic stem cells in the mouse, we examined tissue expression after transduced marrow transplantation of the drug selection gene, G156A mutant O6-methylguanine-DNA methyltransferase (G156A MGMT). To gain more experience with the rigor of the impact of selection on tissue-specific gene expression, we also asked whether there are expression differences between three different onco-retroviral backbones--MPSV, SF, and MFG. MGMT expression was compared after O6-benzylguanine (BG) and 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU) drug selection in vivo. After mice were transplanted with cells transduced with MPSV, MFG, or SF retroviral vectors expressing G156A MGMT and drug treated, nearly complete replacement by transduced progenitors was observed in the marrow. Each backbone supported MGMT expression in all four hematopoietic lineages in vivo indicating that MGMT-mediated selection is indeed robust. Expression in marrow, spleen, and thymus was very similar between the vectors and differences were most likely due to differences in gene copy number per selected cell. In primary and secondary recipients, the highest expression was observed in MFG and this was the vector that transduced at the greatest proviral copy number per cell. These data indicate that strong selection pressure using the MGMT gene to protect primary and secondary repopulating murine stem cells from the toxicity of BCNU. Regardless of the vector backbone used, multiorgan expression was observed without evidence of gene silencing. These data help establish mutant, BG-resistant MGMT as a potent selection gene for stem cell selection in vivo.  相似文献   

18.
Major limitations to gene therapy using HSCs are low gene transfer efficiency and the inability of most therapeutic genes to confer a selective advantage on the gene-corrected cells. One approach to enrich for gene-modified cells in vivo is to include in the retroviral vector a drug resistance gene, such as the P140K mutant of the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT*). We transplanted 5 rhesus macaques with CD34+ cells transduced with lentiviral vectors encoding MGMT* and a fluorescent marker, with or without homeobox B4 (HOXB4), a potent stem cell self-renewal gene. Transgene expression and common integration sites in lymphoid and myeloid lineages several months after transplantation confirmed transduction of long-term repopulating HSCs. However, all animals showed only a transient increase in gene-marked lymphoid and myeloid cells after O6-benzylguanine (BG) and temozolomide (TMZ) administration. In 1 animal, cells transduced with MGMT* lentiviral vectors were protected and expanded after multiple courses of BG/TMZ, providing a substantial increase in the maximum tolerated dose of TMZ. Additional cycles of chemotherapy using 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) resulted in similar increases in gene marking levels, but caused high levels of nonhematopoietic toxicity. Inclusion of HOXB4 in the MGMT* vectors resulted in no substantial increase in gene marking or HSC amplification after chemotherapy treatment. Our data therefore suggest that lentivirally mediated gene transfer in transplanted HSCs can provide in vivo chemoprotection of progenitor cells, although selection of long-term repopulating HSCs was not seen.  相似文献   

19.
The optimal stem cell source for stem cell gene therapy has not been defined. Most gene transfer studies have used peripheral blood or marrow repopulating cells collected after administration of granulocyte colony-stimulating factor and stem cell factor (G-CSF/SCF). For clinical applications, however, growth factor administration may not be feasible. Thus, in the current study we used a competitive repopulation assay in the dog to directly compare transduction efficiency of steady-state marrow, G-CSF/SCF-primed marrow, and G-CSF/SCF-mobilized peripheral blood. Cells from all three sources were transduced, cryopreserved, and thawed together before infusion into myeloablated dogs. Gene marking in hematopoietic repopulating cells was assessed by polymerase chain reaction. While primed marrow resulted in the highest long-term marking levels, steady-state marrow was transduced at least as efficiently as mobilized peripheral blood in all three dogs. These results suggest that steady-state marrow may be an appropriate source for genetic modification of hematopoietic stem cells.  相似文献   

20.
Sakurai F  Mizuguchi H  Hayakawa T 《Gene therapy》2003,10(12):1041-1048
Efficient gene transfer into human hematopoietic stem cells (HSCs) is the most important requirement for gene therapy of hematopoietic disorders and for study of the hematopoietic system. An adenovirus (Ad) vector based on the Ad serotype 5 (Ad5) is known to transduce HSCs, including CD34(+) cells, with very low efficiency because of low-level expression of its primary receptor, coxsackievirus and adenovirus receptor (CAR). In the present study, we developed a recombinant Ad vector composed of the whole Ad serotype 35 (Ad35), which recognizes an unidentified receptor different from CAR for its infection. A transduction study showed that the Ad35-based vectors exhibit a higher transduction efficiency in human CD34(+) cells than the conventional Ad5 vectors and the Ad5F35 vectors, which are fiber-substituted Ad5 vectors containing Ad35 fiber proteins. The mean of fluorescence intensity in the CD34(+) cells transduced with the Ad35 vectors was 12-76 and 1.4-3 times higher than that in the cells transduced with the Ad5 and Ad5F35 vectors, respectively. The percentages of green fluorescent protein (GFP)-positive CD34(+) cells by transduction with Ad35, Ad5, and Ad5F35 vectors expressing GFP at 300 PFU/cell were 53%, 5%, and 52%, respectively, suggesting that Ad35 vectors mediate a more efficient gene transfer into human CD34(+) cells than Ad5 and Ad5F35 vectors, although the percentage of transduced cells was similar between Ad35 and Ad5F35 vectors. The Ad vector based on Ad35 could be very useful in gene therapy for blood disorders and gene transfer experiments using HSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号