首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cortical signals associated with visual imagery of letters were recorded from 10 healthy adults with a whole-scalp 122-channel neuromagnetometer. The auditory stimulus sequence consisted of 20 different phonemes corresponding to single letters of the Roman alphabet and of tone pips (17%), delivered once every 1.5 sec in a random order. The subjects were instructed to visually imagine the letter corresponding to the auditory stimulus and to examine its visuospatial properties: The associated brain activity was compared with activity evoked by the same stimuli when the subjects just detected the intervening tones. All subjects produced broad imagery-related responses over multiple cortical regions. After initial activation of the auditory cortices, the earliest imagery-related responses originated in the left prerolandic area 320 msec after the voice onset. They were followed within 70 msec by signals originating in the posterior parietal lobe close to midline (precuneus) and, 100 msec later, in the posterior superior temporal areas, predominantly in the left hemisphere. The activations were sustained and partially overlapping in time. Imagery-related activity in the left lateral occipital cortex was observed in two subjects, and weak late activity in the calcarine cortex in one subject. Real audiovisually presented letters activated multiple brain regions, and task-induced visuospatial processing of these stimuli further increased activity in some of these regions and activated additional areas: Some of these areas were activated during imagery as well. The results suggest that certain brain areas involved in high-level visual perception are activated during visual imagery and that the extent of imagery-related activity is dictated by the requirements of the stimuli and the task.  相似文献   

2.
The temporal and spatial processing of face perception in normal subjects was traced by magnetoencephalography (MEG) and electroencephalography (EEG). We used 5 different visual stimuli: (1) face with opened eyes, (2) face with closed eyes, (3) eyes, (4) scrambled face, and (5) hand, and they were shown in random order. Subjects were asked to count the number of hand stimuli. To analyze the complicated brain responses to visual stimuli, we used brain electric source analysis (BESA) as the spatio-temporal multiple source model. In MEG recording, the 1M and 2M components were identified in all subjects. The 1M component was recorded to all kinds of stimuli. The 2M component was clearly identified only to face stimulation in all subjects, but to eyes stimulation in only 3 subjects with a small amplitude. The 2M component was not identified to scrambled face nor hand stimulation. The 2M component was recorded from the right hemisphere in all subjects, but in only 5 of 10 subjects from the left hemisphere. The mean peak latencies of the 1M and 2M components were approximately 132 and 179 ms, respectively. The interpeak latency between 1M and 2M was approximately 47 ms on average but the interindividual difference was large. There was no significant difference of the 2M latency between face with opened eyes and face with closed eyes. The 1M component was generated in the primary visual cortex in the bilateral hemispheres, and the 2M component was generated in the inferior temporal cortex, around the fusiform gyrus. In the EEG recording, face-specific components, positive at the vertex, P200 (Cz), and the negative at the temporal areas, N190 (T5') and N190 (T6'), were clearly recorded. The EEG results were fundamentally compatible with the MEG results. The amplitude of the component recorded from the right hemisphere was significantly larger than that from the left hemisphere. These findings suggest that the fusiform gyrus is considered to play an important role in face perception in humans, and that the right hemisphere is more dominant. Face perception takes place approximately 47 ms after the primary response to visual stimulation in the primary visual cortex, but the period of information transfer to the fusiform gyrus is variable among subjects. Detailed temporal and spatial analyses of the processing of face perception can be achieved with MEG.  相似文献   

3.
The successful integration of visual and auditory stimuli requires information about whether visual and auditory signals originate from corresponding places in the external world. Here we report crossmodal effects of spatially congruent and incongruent audio-visual (AV) stimulation. Visual and auditory stimuli were presented from one of four horizontal locations in external space. Seven healthy human subjects had to assess the spatial fit of a visual stimulus (i.e. a gray-scaled picture of a cartoon dog) and a simultaneously presented auditory stimulus (i.e. a barking sound). Functional magnetic resonance imaging (fMRI) revealed two distinct networks of cortical regions that processed preferentially either spatially congruent or spatially incongruent AV stimuli. Whereas earlier visual areas responded preferentially to incongruent AV stimulation, higher visual areas of the temporal and parietal cortex (left inferior temporal gyrus [ITG], right posterior superior temporal gyrus/sulcus [pSTG/STS], left intra-parietal sulcus [IPS]) and frontal regions (left pre-central gyrus [PreCG], left dorsolateral pre-frontal cortex [DLPFC]) responded preferentially to congruent AV stimulation. A position-resolved analysis revealed three robust cortical representations for each of the four visual stimulus locations in retinotopic visual regions corresponding to the representation of the horizontal meridian in area V1 and at the dorsal and ventral borders between areas V2 and V3. While these regions of interest (ROIs) did not show any significant effect of spatial congruency, we found subregions within ROIs in the right hemisphere that showed an incongruency effect (i.e. an increased fMRI signal during spatially incongruent compared to congruent AV stimulation). We interpret this finding as a correlate of spatially distributed recurrent feedback during mismatch processing: whenever a spatial mismatch is detected in multisensory regions (such as the IPS), processing resources are re-directed to low-level visual areas.  相似文献   

4.
Positron emission tomography (PET) was used to identify the neural systems involved in discriminating the shape, color, and speed of a visual stimulus under conditions of selective and divided attention. Psychophysical evidence indicated that the sensitivity for discriminating subtle stimulus changes in a same-different matching task was higher when subjects selectively attended to one attribute than when they divided attention among the attributes. PET measurements of brain activity indicated that modulations of extrastriate visual activity were primarily produced by task conditions of selective attention. Attention to speed activated a region in the left inferior parietal lobule. Attention to color activated a region in the collateral sulcus and dorsolateral occipital cortex, while attention to shape activated collateral sulcus (similarly to color), fusiform and parahippocampal gyri, and temporal cortex along the superior temporal sulcus. Outside the visual system, selective and divided attention activated nonoverlapping sets of brain regions. Selective conditions activated globus pallidus, caudate nucleus, lateral orbitofrontal cortex, posterior thalamus/colliculus, and insular-premotor regions, while the divided condition activated the anterior cingulate and dorsolateral prefrontal cortex. The results in the visual system demonstrate that selective attention to different features modulates activity in distinct regions of extrastriate cortex that appear to be specialized for processing the selected feature. The disjoint pattern of activations in extravisual brain regions during selective- and divided-attention conditions also suggests that preceptual judgements involve different neural systems, depending on attentional strategies.  相似文献   

5.
The aim of this study was to investigate the neural correlates of the functional distinction underlying attentional mechanisms of endogenous-sustained and exogenous-transient spatial selection. We recorded event related potentials (ERPs) and used functional magnetic resonance imaging (fMRI) in separate experiments while subjects performed a simple reaction time (RT) to the same visual stimulus displayed to one of several field locations. Endogenous-sustained or exogenous-transient focusing of attention onto target location were obtained by presenting the stimulus in blocks of same-point vs. randomised-point trials, respectively. Same-point stimuli yielded overall faster RT than randomised stimuli, indicating a facilitating effect of endogenous-sustained spatial attention on the perceptual processing of the impending stimulus. Moreover, same-point vs. randomised presentations revealed significant increases in the fMRI signal in the bilateral lingual and fusiform gyri as well as in the right calcarine sulcus, in conjunction with a larger amplitude of the posterior P1 component of ERPs, but no modulation of the amplitude of the N1 component. Rather, a larger amplitude of N1 was found in the reverse contrast, randomised minus same-point trials, which revealed increases in the fMRI signal along the posterior left superior frontal sulcus and bilaterally in the superior precuneus. These findings indicate that N1 indexes exogenous orienting of attention and is likely to represent the activity of frontal and parietal components of the attention network involved in eliciting attention changes. In contrast, the effects of those changes, resulting in a modulation of activation in visual occipital areas, are indexed by P1.  相似文献   

6.
Injections of HRP-WGA in four cytoarchitectonic subdivisions of the posterior parietal cortex in rhesus monkeys allowed us to examine the major limbic and sensory afferent and efferent connections of each area. Area 7a (the caudal part of the posterior parietal lobe) is reciprocally interconnected with multiple visual-related areas: the superior temporal polysensory area (STP) in the upper bank of the superior temporal sulcus (STS), visual motion areas in the upper bank of STS, the dorsal prelunate gyrus, and portions of V2 and the parieto-occipital (PO) area. Area 7a is also heavily interconnected with limbic areas: the ventral posterior cingulate cortex, agranular retrosplenial cortex, caudomedial lobule, the parahippocampal gyrus, and the presubiculum. By contrast, the adjacent subdivision, area 7ip (within the posterior bank of the intraparietal sulcus), has few limbic connections but projects to and receives projections from widespread visual areas different than those that are connected with area 7a: the ventral bank and fundus of the STS including part of the STP cortex and the inferotemporal cortex (IT), areas MT (middle temporal) and possibly MTp (MT peripheral) and FST (fundal superior temporal) and portions of V2, V3v, V3d, V3A, V4, PO, and the inferior temporal (IT) convexity cortex. The connections between posterior parietal areas and visual areas located on the medial surface of the occipital and parieto-occipital cortex, containing peripheral representations of the visual field (V2, V3, PO), represent a major previously unrecognized source of visual inputs to the parietal association cortex. Area 7b (the rostral part of the posterior parietal lobe) was distinctive among parietal areas in its selective association with somatosensory-related areas: S1, S2, 5, the vestibular cortex, the insular cortex, and the supplementary somatosensory area (SSA). Like 7ip, area 7b had few limbic associations. Area 7m (on the medial posterior parietal cortex) has its own topographically distinct connections with the limbic (the posterior ventral bank of the cingulate sulcus, granular retrosplenial cortex, and presubiculum), visual (V2, PO, and the visual motion cortex in the upper bank of the STS), and somatosensory (SSA, and area 5) cortical areas. Each parietal subdivision is extensively interconnected with areas of the contralateral hemisphere, including both the homotopic cortex and widespread heterotopic areas. Indeed, each area is interconnected with as many areas of the contralateral hemisphere as it is within the ipsilateral one, though less intensively. This pattern of distribution allows for a remarkable degree of interhemispheric integration.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
In humans, damage to posterior parietal or frontal cortices often induces a severe impairment of the ability to redirect gaze to visual targets introduced into the contralateral field. In cats, unilateral deactivation of the posterior middle suprasylvian (pMS) sulcus in the posterior inferior parietal region also results in an equally severe impairment of visually mediated redirection of gaze. In this study we tested the contributions of the pMS cortex and 14 other cortical regions in mediating redirection of gaze to visual targets in 31 adult cats. Unilateral cooling deactivation of three adjacent regions along the posterior bend of the suprasylvian sulcus (posterior middle suprasylvian sulcus, posterior suprasylvian sulcus, and dorsal posterior ectosylvian gyrus at the confluence of the occipital, parietal, and temporal cortices) eliminated visually mediated redirection of gaze towards stimuli introduced into the contralateral hemifield, while the redirection of gaze toward the ipsilateral hemifield remained highly proficient. Additional cortical loci critical for visually mediated redirection of gaze include the anterior suprasylvian gyrus (lateral area 5, anterior inferior parietal cortex) and medial area 6 in the frontal region. Cooling deactivation of: 1) dorsal or 2) ventral posterior suprasylvian gyrus; 3) ventral posterior ectosylvian gyrus, 4) middle ectosylvian gyrus; 5) anterior or 6) posterior middle suprasylvian gyrus (area 7); 7) anterior middle suprasylvian sulcus; 8) medial area 5; 9) the visual portion of the anterior ectosylvian sulcus (AES); 10) or lateral area 6 were all without impact on the ability to redirect gaze. In summary, we identified a prominent field of cortex at the junction of the temporo-occipito-parietal cortices (regions pMS, dPE, PS), an anterior inferior parietal field (region 5L), and a frontal field (region 6M) that all contribute critically to the ability to redirect gaze to novel stimuli introduced into the visual field during fixation. These loci have several features in common with cortical fields in monkey and human brains that contribute to the visually guided redirection of the head and eyes.  相似文献   

8.
We have been studying the underlying mechanisms of face perception in humans using magneto‐ (MEG) and electro‐encephalography (EEG) including (1) perception by viewing the static face, (2) differences in perception by viewing the eyes and whole face, (3) the face inversion effect, (4) the effect of gaze direction, (5) perception of eye motion, (6) perception of mouth motion, and (7) the interaction between auditory and visual stimuli related to the vowel sounds. In this review article, we mainly summarize our results obtained on 3, 5, and 6 above. With the presentation of both upright and inverted unfamiliar faces, the inferior temporal cortex (IT) centered on the fusiform gyrus, and the lateral temporal cortex (LT) near the superior temporal sulcus were activated simultaneously, but independently, between 140 and 200 ms post‐stimulus. The right hemisphere IT and LT were both active in all subjects, and those in the left hemisphere in half of the subjects. Latencies with inverted faces relative to those with upright faces were longer in the right hemisphere, and shorter in the left hemisphere. Since the activated regions under upright and those under inverted face stimuli did not show a significant difference, we consider that differences in processing upright versus inverted faces are attributable to temporal processing differences rather than to processing of information by different brain regions. When viewing the motion of the mouth and eyes, a large clear MEG component, 1M (mean peak latency of approximately 160 ms), was elicited to both mouth and eye movement, and was generated mainly in the occipito‐temporal border, at human MT/V5. The 1M to mouth movement and the 1M to eye movement showed no significant difference in amplitude or generator location. Therefore, our results indicate that human MT/V5 is active in the perception of both mouth and eye motion, and that the perception of movement of facial parts is probably processed similarly.  相似文献   

9.
Evoked magnetic fields to randomized infrequent omissions of visual stimuli resulted in a magnetic field pattern over the right hemisphere consistent with a dipolar source and led to localization of this source within the superior temporal sulcus. Previous investigations using implanted microelectrodes, ablation/lesion procedures in monkeys and observations of behavioral anomalies following injury in humans have already indicated the importance of the inferior portions of the temporal lobe in visual processing. However, until now, no method was available to study noninvasively the role of temporal cortex during visual processing.  相似文献   

10.
The neural substrate of gesture recognition   总被引:1,自引:0,他引:1  
Previous studies have linked action recognition with a particular pool of neurons located in the ventral premotor cortex, the posterior parietal cortex and the superior temporal sulcus (the mirror neuron system). However, it is still unclear if transitive and intransitive gestures share the same neural substrates during action-recognition processes. In the present study, we used event-related functional magnetic resonance imaging (fMRI) to assess the cortical areas active during recognition of pantomimed transitive actions, intransitive gestures, and meaningless control actions. Perception of all types of gestures engaged the right pre-supplementary motor area (pre-SMA), and bilaterally in the posterior superior temporal cortex, the posterior parietal cortex, occipitotemporal regions and visual cortices. Activation of the posterior superior temporal sulcus/superior temporal gyrus region was found in both hemispheres during recognition of transitive and intransitive gestures, and in the right hemisphere during the control condition; the middle temporal gyrus showed activation in the left hemisphere when subjects recognized transitive and intransitive gestures; activation of the left inferior parietal lobe and intraparietal sulcus (IPS) was mainly observed in the left hemisphere during recognition of the three conditions. The most striking finding was the greater activation of the left inferior frontal gyrus (IFG) during recognition of intransitive actions. Results show that a similar neural substrate, albeit, with a distinct engagement underlies the cognitive processing of transitive and intransitive gestures recognition. These findings suggest that selective disruptions in these circuits may lead to distinct clinical deficits.  相似文献   

11.
This study is the first to assess lesion-symptom relations for subitizing and counting impairments in a large sample of neuropsychological patients (41 patients) using an observer-independent voxel-based approach. We tested for differential effects of enumerating small versus large numbers of items while controlling for hemianopia and visual attention deficits. Overall impairments in the enumeration of any numbers (small or large) were associated with an extended network, including bilateral occipital and fronto-parietal regions. Within this network, severe impairments in accuracy when enumerating small sets of items (in the subitizing range) were associated with damage to the left posterior occipital cortex, bilateral lateral occipital and right superior frontal cortices. Lesions to the right calcarine extending to the precuneus led to patients serially counting even small numbers of items (indicated by a steep response slope), again demonstrating an impaired subitizing ability. In contrast, impairments in counting large numerosities were associated with damage to the left intraparietal sulcus. The data support the argument for some distinctive processes and neural areas necessary to support subitization and counting with subitizing relying on processes of posterior occipital cortex and with counting associated with processing in the parietal cortex.  相似文献   

12.
目的研究急性枕叶脑梗死患者视觉皮层中枢脑磁图(MEG)的变化特征。方法对6例急性单侧枕叶梗死表现为对侧视野同向偏盲患者于发病后2周内行视觉诱发磁场(VEFs)测试,并检测8名健康志愿者作为正常对照。刺激选取黑白棋盘格翻转图形。分别记录两组受试者VEFs的M100波峰产生的潜伏期、波形、等电流偶极(ECD)强度和磁源性影像(MSI)。结果所有受试者VEFs反应的最基本波形为M100,位于距状裂两侧的皮质。与正常对照组相比,患者健侧枕叶的VEFs反应波形,潜伏期和ECD强度并无明显差异(均P>0.05),而患侧枕叶的VEF反应则出现了波形异常,潜伏期明显延长和ECD强度显著降低(均P<0.05)异常,且MSI显示其M100反应的ECD位置分布紊乱。结论MEG可检测出急性枕叶脑梗死患者视觉皮质中枢功能的损伤,并能够客观的评价患者视觉皮层中枢的功能状态。  相似文献   

13.
We studied cortical connections of functionally distinct movement zones of the posterior parietal cortex (PPC) in galagos identified by intracortical microstimulation with long stimulus trains (~500 msec). All these zones were in the anterior half of PPC, and each of them had a different pattern of connections with premotor (PM) and motor (M1) areas of the frontal lobe and with other areas of parietal and occipital cortex. The most rostral PPC zone has major connections with motor and visuomotor areas of frontal cortex as well as with somatosensory areas 3a and 1‐2 and higher order somatosensory areas in the lateral sulcus. The dorsal part of anterior PPC region representing hand‐to‐mouth movements is connected mostly to the forelimb representation in PM, M1, 3a, 1‐2, and somatosensory areas in the lateral sulcus and on the medial wall. The more posterior defensive and reaching zones have additional connections with nonprimary visual areas (V2, V3, DL, DM, MST). Ventral aggressive and defensive face zones have reciprocal connections with each other as well as connections with mostly face, but also forelimb representations of premotor areas and M1 as well as prefrontal cortex, FEF, and somatosensory areas in the lateral sulcus and areas on the medial surface of the hemisphere. Whereas the defensive face zone is additionally connected to nonprimary visual cortical areas, the aggressive face zone is not. These differences in connections are consistent with our functional parcellation of PPC based on intracortical long‐train microstimulation, and they identify parts of cortical networks that mediate different motor behaviors. J. Comp. Neurol. 517:783–807, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Stilla R  Sathian K 《Human brain mapping》2008,29(10):1123-1138
Previous functional neuroimaging studies have described shape-selectivity for haptic stimuli in many cerebral cortical regions, of which some are also visually shape-selective. However, the literature is equivocal on the existence of haptic or visuo-haptic texture-selectivity. We report here on a human functional magnetic resonance imaging (fMRI) study in which shape and texture perception were contrasted using haptic stimuli presented to the right hand, and visual stimuli presented centrally. Bilateral selectivity for shape, with overlap between modalities, was found in a dorsal set of parietal areas: the postcentral sulcus and anterior, posterior and ventral parts of the intraparietal sulcus (IPS); as well as ventrally in the lateral occipital complex. The magnitude of visually- and haptically-evoked activity was significantly correlated across subjects in the left posterior IPS and right lateral occipital complex, suggesting that these areas specifically house representations of object shape. Haptic shape-selectivity was also found in the left postcentral gyrus, the left lingual gyrus, and a number of frontal cortical sites. Haptic texture-selectivity was found in ventral somatosensory areas: the parietal operculum and posterior insula bilaterally, as well as in the right medial occipital cortex, overlapping with a medial occipital cortical region, which was texture-selective for visual stimuli. The present report corroborates and elaborates previous suggestions of specialized visuo-haptic processing of texture and shape.  相似文献   

15.
Can the cortical substrates for the perception of face actions be distinguished when the superficial visual qualities of these actions are very similar? Two fMRI experiments are reported. Compared with watching the face at rest, observing silent speech was associated with bilateral activation in a number of temporal cortical regions, including the superior temporal sulcus (STS). Watching face movements of similar extent and duration, but which could not be construed as speech (gurning; Experiment 1b) was not associated with activation of superior temporal cortex to the same extent, especially in the left hemisphere. Instead, the peak focus of the largest cluster of activation was in the posterior part of the inferior temporal gyrus (right, BA 37). Observing silent speech, but not gurning faces, was also associated with bilateral activation of inferior frontal cortex (BA 44 and 45). In a second study, speechreading and observing gurning faces were compared within a single experiment, using stimuli which comprised the speaker's face and torso (and hence a much smaller image of the speaker's face and facial actions). There was again differential engagement of superior temporal cortex which followed the pattern of Experiment 1. These findings suggest that superior temporal gyrus and neighbouring regions are activated bilaterally when subjects view face actions--at different scales--that can be interpreted as speech. This circuitry is not accessed to the same extent by visually similar, but linguistically meaningless actions. However, some temporal regions, such as the posterior part of the right superior temporal sulcus, appear to be common processing sites for processing both seen speech and gurns.  相似文献   

16.
Previous work disclosed that single magnetic coil (MC) pulses applied over human calcarine cortex could suppress perception of letter briefly presented, e.g. 80–100 ms earlier1. Although individual MC stimuli presented 0–60 ms, or more than 140 ms after the visual stimulus were apparently ineffective, combinations of 2 or 3 MC pulses at such intervals temporarily depressed visual perception. Thus, progressing of such language information could be slowed, without being abolished. By contrast, when the first MC pulse was delivered 120 ms or later, a second MC pulse 40 ms later had no detectable effect, implying that calcarine cortex had already transmitted the information. Perceptual recovery of 5-character words initially occurred no earlier than that of random letters vs. arbitrary linear patterns, implying that the processing delays in calcarine cortex were similar.  相似文献   

17.
To address the extent to which the visual foveal representation is split, we examined a 29-year-old patient with a lower right quadrantanopia following surgical removal of the left occipital cortex above the calcarine sulcus and compared her performance with subjects receiving transcranial magnetic stimulation (TMS) over the occipital lobes. In a letter/digit classification task, the patient responded accurately to targets presented in the upper visual field, for all horizontal eccentricities. In the lower visual field, she failed to discriminate letters from digits when targets were presented in the right, but not the left visual field (RVF and LVF, respectively). This pattern was also true for the foveal targets, with poor performance to foveal-RVF (0.5 degrees to the right of fixation) but not foveal-LVF (0.5 degrees to the left of fixation) targets. Similar patterns of normal performance to LVF but not RVF or foveal-RVF targets were observed in a group of nine normal observers when TMS was applied over their left occipital cortex. Complementary impairments to LVF and foveal-LVF target classification were induced with TMS over the right occipital cortex. Thus, we have induced an hemianopic pattern in normal observers contralateral to the magnetically stimulated hemisphere. This correspondence between real and TMS-induced visual field defects is further evidence, in neurologically intact subjects, that the cortical representation of the fovea is split between the two hemispheres along the vertical meridian.  相似文献   

18.
Visual deprivation early in life results in occipital cortical responsiveness across a broad range of perceptual and cognitive tasks. In the reorganized occipital cortex of early blind (EB) individuals, the relative lack of specificity for particular sensory stimuli and tasks suggests that attention effects may play a prominent role in these areas. We wished to establish whether occipital cortical areas in the EB were responsive to stimuli across sensory modalities (auditory, tactile) and whether these areas maintained or altered their activity as a function of selective attention. Using a three-stimulus oddball paradigm and event-related functional magnetic resonance imaging, auditory and tactile tasks presented separately demonstrated that several occipital regions of interest (ROIs) in the EB, but not sighted controls (SCs), responded to targets and task-irrelevant distracter stimuli of both modalities. When auditory and tactile stimuli were presented simultaneously with subjects alternating attention between sensory streams, only the calcarine sulcus continued to respond to stimuli in both modalities. In all other ROIs, responses to auditory targets were as large or larger than those observed in the auditory-alone condition, but responses to tactile targets were attenuated or abolished by the presence of unattended auditory stimuli. Both auditory and somatosensory cortices responded consistently to auditory and tactile targets, respectively. These results reveal mechanisms of orienting and selective attention within the visual cortex of EB individuals and suggest that mechanisms of enhancement and suppression interact asymmetrically on auditory and tactile streams during bimodal sensory presentation.  相似文献   

19.
目的:用MEG来描述人脑视皮质对不同对比度和照度条件下黑白棋盘格翻转刺激所产生的视觉诱发磁场,并研究对比度和照度对VEF成分之一的M100的影响。方法:测定11例健康志愿者对对比度分别为31%、62%、82%、90%和94%的5种对比度和白格照度分别为143.5、166.5和196.5Lux的3种照度条件下的左半视野棋盘格刺激的诱发磁场反应。结果:采用单因素方差分析进行数据分析。开始时,随着对比度增大,M100偶极强度迅速增大(P<0.05),M100峰值潜伏期迅速缩短(P>0.05),对比度增至82%时,M100偶极强度上升明显减慢,峰值潜伏期缩短减少;3种照度所引起的M100峰值潜伏期随照度增加而逐渐缩短(P<0.05),所引起的M100偶极强度随照度增加而逐渐增高(P>0.05)。对不同对比度棋盘格刺激的M100反应均位于刺激野对侧半球枕区的距状沟后肢底部上唇或下唇,即楔下回、楔舌后回和舌上回;对不同照度的棋盘格刺激的M100反应起源均位于刺激野对侧半球枕区的距状沟后肢底部的下唇,即舌上回和楔舌后回,虽然个体间M100偶极位置有一定程度的差异,但在统计学上无明显差异(P>0.05)。结论:棋盘格刺激是一种对比度刺激,对比度变化是影响视皮质对棋盘格刺激反应的敏感因素。尽管不同对比度和照度条件下的棋盘格刺激对源位置无显著影响,但在日常工作当中,应选择不低于82%的对比度和尽量高的照度方能获得较好的皮质反应波。  相似文献   

20.
Limited processing resources are allocated preferentially to events that are relevant for behavior. Research using the novelty "oddball" paradigm suggests that a widespread network of limbic, paralimbic, and association areas supports the goal-directed processing of task-relevant target events. In that paradigm, greater activity in diverse brain areas is elicited by rare task-relevant events that require a subsequent motor response than by rare task-irrelevant novel events that require no response. Both stimulus infrequency (unexpectedness) and novelty, however, may contribute to the pattern of activity observed using that paradigm. The goal of the present study was to examine the supramodal neural activity elicited by regularly occurring, equiprobable, and non-novel stimuli that differed in the subsequent behavior they prescribed. We employed event-related functional magnetic resonance imaging (fMRI) during auditory and visual versions of a Go/NoGo task. Participants made a motor response to the designated "Go" (target) stimulus, and no motor response to the equiprobable "NoGo" (nontarget) stimulus. We hypothesized that task-relevant Go events would elicit relatively greater hemodynamic activity than would NoGo events throughout a network of limbic, paralimbic, and association areas. Indeed, Go events elicited greater activity than did NoGo events in the amygdala-hippocampus, paralimbic cortex at the anterior superior temporal sulcus, insula, posterior orbitofrontal cortex, and anterior and posterior cingulate cortex, as well as in heteromodal association areas located at the temporoparietal junction, anterior intraparietal sulcus and precuneus, and premotor cortex. Paralimbic cortex offers an important site for the convergence of motivational/goal-directed influences from limbic cortex with stimulus processing and response selection mediated within the frontoparietal areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号