首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
mda-7/IL-24: multifunctional cancer-specific apoptosis-inducing cytokine   总被引:17,自引:0,他引:17  
"Differentiation therapy" provides a unique and potentially effective, less toxic treatment paradigm for cancer. Moreover, combining "differentiation therapy" with molecular approaches presents an unparalleled opportunity to identify and clone genes mediating cancer growth control, differentiation, senescence, and programmed cell death (apoptosis). Subtraction hybridization applied to human melanoma cells induced to terminally differentiate by treatment with fibroblast interferon (IFN-beta) plus mezerein (MEZ) permitted cloning of melanoma differentiation associated (mda) genes. Founded on its novel properties, one particular mda gene, mda-7, now classified as a member of the interleukin (IL)-10 gene family (IL-24) because of conserved structure, chromosomal location, and cytokine-like properties has become the focus of attention of multiple laboratories. When administered by transfection or adenovirus-transduction into a spectrum of tumor cell types, melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) induces apoptosis, whereas no toxicity is apparent in normal cells. mda-7/IL-24 displays potent "bystander antitumor" activity and also has the capacity to enhance radiation lethality, to induce immune-regulatory activities, and to inhibit tumor angiogenesis. Based on these remarkable attributes and effective antitumor therapy in animal models, this cytokine has taken the important step of entering the clinic. In a Phase I clinical trial, intratumoral injections of adenovirus-administered mda-7/IL-24 (Ad.mda-7) was safe, elicited tumor-regulatory and immune-activating processes, and provided clinically significant activity. This review highlights our current understanding of the diverse activities and properties of this novel cytokine, with potential to become a prominent gene therapy for cancer.  相似文献   

2.
Characterizing genes associated with leukemic cell differentiation may provide help for understanding mechanisms on the leukemia differentiation. The aim of this study is to investigate whether the expression of melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) could be induced during leukemia differentiation and whether mda-7/IL-24 plays a role in leukemia differentiation. We showed that the expression of mda-7/IL-24 and IL-24 delE5, an mda-7/IL-24 splice variant, was induced in U937 and HL60 cells during 12-O-tetradecanoylphorbol-13-acetate (TPA)-mediated monocytic differentiation. Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway was required for their induction. Knockdown of mda-7/IL-24 and IL-24 delE5 resulted in significant inhibition of the monocytic differentiation induced by TPA. More importantly, ectopic overexpression of mda-7/IL-24 and IL-24 delE5 significantly induced U937 cells, HL60 cells, and blast cells from patients with acute myeloid leukemia-M5 to differentiate, whereas normal hematopoietic progenitors were not affected. Furthermore, the molecular effector associated with selective differentiation induction by mda-7/IL-24 and IL-24 delE5 may be reactive oxygen species (ROS), and the source of ROS generation was nicotinamide adenine dinucleotide phosphate oxidase. Taken together, our results reveal the mechanism by which TPA induces monocytic differentiation and show for the first time the specific differentiation-inducing effects of mda-7/IL-24 and IL-24 delE5 on human myeloid leukemic cells.  相似文献   

3.
It has been demonstrated that interleukin 24 (IL-24, also called melanoma differentiation associated gene 7) exerts antitumor activity. In this study, we investigated whether oncolytic adenovirus-mediated gene transfer of IL-24 could induce strong antitumor activity. A tumor-selective replicating adenovirus expressing IL-24 (ZD55-IL-24) was constructed by insertion of an IL-24 expression cassette into the ZD55 vector, which is based on deletion of the adenoviral E1B 55-kDa gene. ZD55-IL-24 could express substantially more IL-24 than Ad-IL-24 because of replication of the vector. It has been shown that ZD55-IL-24 exerted a strong cytopathic effect and significant apoptosis in tumor cells with p53 dysfunction. Moreover, no cytotoxic and apoptotic effects could be seen in normal cells infected with ZD55-IL-24. Expression of IL-24 did not interfere with viral replication induced by oncolytic adenovirus. Activation of caspase 3 and caspase 9, and induction of bax gene expression, were involved in tumor cell apoptosis induced by ZD55-IL-24. Treatment of established tumors with ZD55-IL-24 showed much stronger antitumor activity than that induced by ONYX-015 or Ad-IL- 24. These data indicated that oncolytic adenovirus expressing IL-24 could exert potential antitumor activity and offer a novel approach to cancer therapy.  相似文献   

4.
Several studies have shown antitumor activities of the melanoma differentiation-associated gene 7 (mda-7) and the nonsteroidal anti-inflammatory drug sulindac when used as a monotherapies against a wide variety of human cancers. However, the combined effects of mda-7 and sulindac have not previously been tested. Therefore, we tested the antitumor activity of an adenoviral vector expressing mda-7 (Ad-mda7) in combination with sulindac against non-small cell lung cancer cells in vitro and in vivo. When treated with Ad-mda7 in combination with sulindac, human lung cancer cells (A549 and H1299) underwent growth suppression resulting in apoptosis. The growth inhibition induced by Ad-mda7 in combination with sulindac was significantly greater than that observed with Ad-mda7 or sulindac alone. Furthermore, the degree of growth inhibition induced using this combination was dose-dependent for sulindac. Treatment with Ad-mda7 in combination with sulindac had no growth inhibitory effects on human normal lung (CCD-16) fibroblasts. We then investigated the mechanism by which sulindac enhances Ad-mda7-mediated apoptosis. Sulindac increased expression of ectopic MDA-7 protein in tumor cells, thereby increasing the expression of downstream effectors RNA-dependent protein kinase, p38MAPK, caspase-9, and caspase-3 and enhancing apoptosis of non-small cell lung cancer cells. Pulse-chase experiments showed that the increased expression of MDA-7 protein in sulindac-treated cells was due to increased half-life of the MDA-7 protein. Finally, treatment of human lung tumor xenografts in nude mice with Ad-mda7 plus sulindac significantly suppressed growth (P = 0.001) compared with Ad-mda7 or sulindac alone. Our results show for the first time that combined treatment with Ad-mda7 plus sulindac enhances growth inhibition and apoptosis of human lung cancer cells. The increased antitumor activity observed with the combination treatment is a result of increased half-life of MDA-7 protein. Regulation of protein turnover is a heretofore-unrecognized mechanism of this nonsteroidal anti-inflammatory drug.  相似文献   

5.
We have explored the mechanism by which inhibition of multiple cytoprotective cell-signaling pathways enhance melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) toxicity toward invasive primary human glioblastoma multiforme (GBM) cells, and whether improving adenoviral infectivity/delivery of mda-7/IL-24 enhances therapeutic outcome in animals containing orthotopic xenografted GBM cells. The toxicity of a serotype 5 recombinant adenovirus to express MDA-7/IL-24 (Ad.5-mda-7) was enhanced by combined molecular or small molecule inhibition of mitogen-activated extracellular regulated kinase (MEK)1/2 and phosphatidyl inositol 3-kinase (PI3K) or AKT; inhibition of mammalian target of rapamycin (mTOR) and MEK1/2; and the HSP90 inhibitor 17AAG. Molecular inhibition of mTOR/PI3K/MEK1 signaling in vivo also enhanced Ad.5-mda-7 toxicity. In GBM cells of diverse genetic backgrounds, inhibition of cytoprotective cell-signaling pathways enhanced MDA-7/IL-24–induced autophagy, mitochondrial dysfunction and tumor cell death. Due partly to insufficient adenovirus serotype 5 gene delivery this therapeutic approach has shown limited success in GBM. To address this problem, we employed a recombinant adenovirus that comprises the tail and shaft domains of a serotype 5 virus and the knob domain of a serotype 3 virus expressing MDA-7/IL-24, Ad.5/3-mda-7. Ad.5/3-mda-7 more effectively infected and killed GBM cells in vitro and in vivo than Ad.5-mda-7. Future combinations of these approaches hold promise for developing an effective therapy for GBM.  相似文献   

6.
This article addresses practice issues related to school health records and school nursing documentation. Because the issues have been posed by practicing school nurses, the article is in Question and Answer (Q and A) format. Specifically, the questions addressed concern the following: ownership and storage location of student health records when the school nurse is contracted from a community health agency rather than employed by the school district; documentation of sensitive health information on students' health records including pregnancy, drug and alcohol abuse, mental illness, history of suicide attempt, and HIV status; inclusion of medical diagnoses and current medications on a student's Individual Educational Program (IEP); and Health Insurance Portability and Accountability Act (HIPAA)-permitted communications between school nurses and health care providers related to students' immunization status, regarding a student's treatment needs in school, and via facsimile (e.g., records of immunizations, completed physical examination forms, and medical orders). HIPAA, the Family Educational Records and Privacy Act (FERPA), and other laws are addressed as appropriate, and resources for obtaining further information are included.  相似文献   

7.
We developed several adenoviral vectors designed to target MDA-7 expression to different subcellular compartments [endoplasmic reticulum (ER), mitochondria, nucleus, and cytosol] and evaluated their ability to enhance apoptosis. Adenoviral ER-targeted mda-7/interleukin-24 vector (Ad-ER-mda7) selectively and effectively inhibited the growth and proliferation of lung (A549 and H1299) and esophageal (Seg1 and Bic1) cancer cells by enhancing cell killing. Both Ad-mda7 and Ad-ER-mda7 activated a novel pathway of ER stress-induced apoptosis characterized by unregulated expression of phosphorylated JNK, phosphorylated c-Jun, and phosphorylated RNA-dependent protein kinase. Caspase-4 activation mediated Ad-mda7- and Ad-ER-mda7-induced cell death. In addition, Ad-mda7- and Ad-ER-mda7-mediated growth inhibition correlated with activation of ER molecular markers RNA-dependent protein kinase and JNK both in vitro (in Ad-mda7- or Ad-ER-mda7-treated lung cancer cells) and in vivo. These findings suggest that vectors targeting the ER (Ad-ER-mda7) may be more effective in cancer gene therapy possibly through more effective induction or ER stress pathways.  相似文献   

8.
9.
The melanoma differentiation-associated gene (mda-7; approved gene symbol IL24) is a tumor suppressor gene whose protein expression in normal cells is restricted to the immune system and to melanocytes. Recent studies have shown that mda-7 gene transfer inhibits cell growth and induces apoptosis in melanoma, lung cancer, breast cancer, and other tumor types through activation of various intracellular signaling pathways. In the current study, we demonstrate that Ad-mda7 transduction of human pancreatic cancer cells results in G2/M cell cycle arrest and cell killing. Cytotoxicity is mediated via apoptosis in a time- and dose-dependent manner. Tumor cell killing correlates with regulation of proteins involved in the Wnt and PI3K pathways: beta-catenin, APC, GSK-3, JNK, and PTEN. Additionally, we identify bystander cell killing activated by exposure of pancreatic tumor cells to secreted human MDA-7 protein. In pancreatic tumor cells, exogenous MDA-7 protein activates STAT3 and kills cells via engagement of IL-20 receptors. The specificity of bystander killing is demonstrated using neutralizing anti-MDA-7 antibodies and anti-receptor antibodies, which inhibit the apoptotic effects. In sum, we show that Ad-mda7 is able to induce growth inhibition and apoptosis in pancreatic cancer cells via inhibition of the Wnt/PI3K pathways and identify a novel bystander mechanism of MDA-7 killing in pancreatic cancer that functions via IL-20 receptors.  相似文献   

10.
The mda-7 gene (approved gene symbol IL24) is a novel tumor suppressor gene with tumor-apoptotic and immune-activating properties. We completed a Phase I dose-escalation clinical trial, in which a nonreplicating adenoviral construct expressing the mda-7 transgene (INGN 241; Ad-mda7) was administered intratumorally to 22 patients with advanced cancer. Excised tumors were evaluated for vector-specific DNA and RNA, transgenic MDA-7 expression, and biological effects. Successful gene transfer as assessed by DNA- and RT-PCR was demonstrated in 100% of patients evaluated. DNA analyses demonstrated a dose-dependent penetration of INGN 241 (up to 4 x 10(8) copies/mug DNA at the 2 x 10(12) vp dose). A parallel distribution of vector DNA, vector RNA, MDA-7 protein expression, and apoptosis induction was observed in all tumors, with signals decreasing with distance away from the injection site. Additional evidence for bioactivity of INGN 241 was illustrated via regulation of the MDA-7 target genes beta-catenin, iNOS, and CD31. Transient increases (up to 20-fold) of serum IL-6, IL-10, and TNF-alpha were observed. Significantly higher elevations of IL-6 and TNF-alpha were observed in patients who responded clinically to INGN 241. Patients also showed marked increases of CD3+CD8+ T cells posttreatment, suggesting that INGN 241 increased systemic TH1 cytokine production and mobilized CD8+ T cells. Intratumoral delivery of INGN 241 induced apoptosis in a large volume of tumor and elicited tumor-regulatory and immune-activating events that are consistent with the preclinical features of MDA-7/IL-24.  相似文献   

11.
Melanoma differentiation-associated gene-7 (mda-7), recently classified as interleukin-24 (approved gene symbol IL24), is thought to be a tumor suppressor gene based on the loss of its expression in many different types of cancer. Gene therapy by adenovirus-mediated mda-7 (Ad-mda7) gene transfer has been shown to inhibit the growth of several different tumor cell lines, in vitro and in vivo. We previously demonstrated that Ad-mda7 radiosensitized non-small-cell lung cancer (NSCLC) cell lines by enhancing an apoptosis pathway through the activation of JNK and c-Jun. In the present study, we investigated the efficacy of intratumoral administration of Ad-mda7 combined with ionizing radiation for treating A549 xenograft tumors in nude mice. Substantial and long-lasting inhibition of tumor growth was evident following the combined treatment. Histological examination revealed marked reduction of angiogenic factors (bFGF, VEGF) and microvessel density and enhanced apoptosis in the tumors treated with the combination therapy compared to those treated with Ad-mda7 alone or radiation alone. To confirm the radiosensitizing effect of secreted MDA-7 protein, we performed clonogenic survival assays using human umbilical vein endothelial cells (HUVECs), A549 cells, and normal human lung fibroblasts, CCD16 cells, pretreated with the conditioned medium from 293 cells that had been stably transfected with mda-7 or a control vector. The results showed that MDA-7 protein sensitized HUVECs to ionizing radiation but not A549 cells or CCD16 cells. Our results suggest that Ad-mda7 in combination with radiation enhances apoptosis in the tumors and that secreted MDA-7 protein inhibits angiogenesis by sensitizing endothelial cells to ionizing radiation without affecting other normal cells. We conclude that the combination of mda-7 gene therapy and radiotherapy may be a feasible and effective strategy for treatment of NSCLC.  相似文献   

12.
Although the etiologies of sudden cardiac death (SCD) are diverse, genetic mutations associated with cardiomyopathic and channelopathic diseases are major causes, and clinically available genetic tests offer the potential to identify at-risk family members, contribute to risk stratification, and guide therapeutic intervention. Recently, the first large-scale systematic studies exploring the background genetic "noise" rate of these tests have been conducted and offer guidance in interpreting positive genetic test results.  相似文献   

13.
We have previously observed the suppression of lung tumor growth in response to overexpression of melanoma differentiation-associated gene-7 (MDA-7)/interleukin-24 (IL-24; approved gene symbol IL24) in vitro and in vivo. MDA-7/IL-24 exerts its tumor-suppressive effects by multiple mechanisms, including the activation of the caspase cascade and the inhibition of angiogenesis. In this study, we used an adenoviral vector (Ad-mda7) to examine the effect of the ectopic production of MDA-7/IL-24 on cell migration and invasion by human non-small-cell lung carcinoma cells. Lung tumor cells (H1299 and A549) treated in vitro with Ad-mda7 migrated and invaded less than cells treated with phosphate-buffered saline (PBS) or Ad-Luc (vector control). MDA-7/IL-24 inhibited migration and invasion by down-regulating the production of phosphatidylinositol 3-kinase/protein kinase B, focal adhesion kinase, and matrix metalloproteinase-2 and -9 relative to PBS and Ad-Luc. Furthermore, tumor cells treated with Ad-mda7 ex vivo or with DOTAP:Chol-mda7 complex in vivo formed significantly fewer tumors in an experimental lung metastasis model. These results show that MDA-7/IL-24 inhibits invasion and migration by lung cancer cells by down-regulating proteins associated with these processes, resulting in reduced metastasis. Thus, Ad-mda7 should be considered a therapeutic agent that can inhibit primary tumor growth and prevent metastasis.  相似文献   

14.
Introduction: MDA-7/Interleukin-24 (IL-24), as a pleiotropic cytokine, exhibits a specific tumor suppression property that has attracted a great deal of attention. While its anti-tumor induction is mostly attributed to endogenous gene expression, attachment of secreted MDA-7/IL-24 to cognate receptors also triggers the death of cancerous cell via different pathways. Therefore, precise targeting of secreted MDA-7/IL-24 to tumor cells would render it more efficacy and specificity.

Areas covered: In order to target soluble cytokines, particularly MDA-7/IL-24 to the neighbor tumor sites and enhance their therapeutic efficiency, fusing with cell penetrating peptides (CPPs) or Tumor homing peptides (THPs) seems logical due to the improvement of their bystander effects. Although the detailed anti-tumor mechanisms of endogenous mda-7/IL-24 have been largely investigated, the significance of the secreted form in these activities and methods of its improving by CPPs or THPs need more discussion.

Expert opinion: While the employment of CPPs/THPs for the improvement of cytokine gene therapy is desirable, to create fusions of CPPs/THPs with MDA-7/IL-24, some hurdles are not avoidable. Regarding our expertise, herein, the importance of CPPs/THPs, needs for their elegant designing in a fusion structure, and their applications in cytokine gene therapy are discussed with a special focus on mda-7/IL-24.  相似文献   


15.
Interleukin-2 (IL-2) and IL-7 are the most intriguing molecules in immune-based HIV infection treatment. An in vitro IL-2/IL-7 cross-talk due to IL-2-driven IL-7 receptor-alpha-chain (IL-7R alpha) down-modulation, potentially blocking IL-7 signalling has been described. We investigated the in vivo IL-2 effect on IL-7/IL-7R system, measuring free IL-7, and IL-7R alpha CD4 and CD8 in 12 HIV-positive patients enrolled in a randomized IL-2 trial. Compared to HAART alone, IL-2 induced a parallel expansion in total and naive CD4, TRECs and IL-7 plasma levels, with no IL-7R alpha CD4 and IL-7R alpha CD8 changes (P>0.05), suggesting that in vivo IL-2 boosts IL-7 production without down-modulating IL-7R alpha, preserving IL-7-mediated T-lymphocyte homeostatic regulation. Our data confirm the pivotal role of IL-2 and IL-7 in the regulation of T-lymphocyte homeostasis in HIV infection.  相似文献   

16.
mda-7/IL-24 (HGMW-approved symbol IL24) is a tumor suppressor gene whose expression is lost during tumor progression. Gene transfer using adenoviral mda-7/IL-24 (Ad-mda7) exhibits minimal toxicity on normal cells while inducing potent apoptosis in a variety of cancer cell lines. Ad-mda7-transduced cells express high levels of MDA-7 protein intracellularly and also secrete a soluble form of MDA-7 protein. In this study, we sought to determine whether the intracellular or secreted MDA-7 protein was responsible for anti-tumor activity in H1299 lung tumor cells. Ad-mda7 transduction of lung tumor cells increased expression of stress-related proteins, including BiP, GADD34, PP2A, caspases 7 and 12, and XBP-1, consistent with activation of the UPR pathway, a key sensor of endoplasmic reticulum (ER)-mediated stress. Blocking secretion of MDA-7 did not inhibit apoptosis, demonstrating that intracellular MDA-7 was responsible for cytotoxicity. Consistent with this result, when applied directly to lung cancer cells, soluble MDA-7 protein exhibited minimal cytotoxic effect. We then generated mda-7 expression constructs using vectors that target the expressed protein to various subcellular compartments, including cytoplasm, nucleus, and ER. Only full-length and ER-targeted MDA-7 elicited cell death in tumor cells. Thus in lung cancer cells, Ad-mda7 activates the UPR stress pathway and induces apoptosis via intracellular MDA-7 expression in the secretory pathway.  相似文献   

17.
18.
A murine cell line (IxN/2b) absolutely dependent upon exogenous IL-7 for continued growth has been obtained that expresses lymphoid precursor and class I MHC antigens and also contains a rearranged mu heavy chain. This cell line has been used to define the binding and structural characteristics of the murine IL-7 receptor using 125I-labeled recombinant murine IL-7. 125I-IL-7 binding to IxN/2b cell was rapid and saturable at both 4 degrees and 37 degrees C. Equilibrium binding studies produced curvilinear Scatchard plots at both temperatures with high and low affinity Ka values of approximately 1 x 10(10) M-1 and 4 x 10(8) M-1, respectively, and a total of 2,000-2,500 IL-7 binding sites expressed per cell. Experiments measuring inhibition of binding of 125I-IL-7 by unlabeled IL-7 also produced data consistent with the existence of two classes of IL-7 receptors. Evidence concerning the possible molecular nature of two classes of IL-7 receptors was provided by dissociation kinetics and affinity crosslinking experiments. The dissociation rate of 125I-IL-7 was markedly increased when measured in the presence of unlabeled IL-7 at both 37 degrees and 4 degrees C, which is diagnostic of a receptor population displaying negative cooperativity. Crosslinking studies showed that under both reducing and nonreducing conditions, the major crosslinked species observed corresponded to a receptor size of 75-79 kD while a less intense higher molecular mass crosslinked species was also seen which corresponded to a receptor size approximately twice as large (159-162 kD). Both types of experiments suggest that the IL-7 receptor may form noncovalently associated dimers in the membrane. The IL-7 receptor was expressed on pre-B cells, but not detected on several murine B cell lines or primary mature B cells. It was also expressed on murine thymocytes, some T lineage cell lines, and on bone marrow-derived macrophage. All cells binding 125I-IL-7 exhibited curvilinear Scatchard plots. No cytokines or growth factors tested were able to inhibit binding of 125I-IL-7 to its receptor. These results define the initial binding and structural characteristics, and the cellular distribution, of the murine IL-7 receptor.  相似文献   

19.
The melanoma differentiation-associated gene-7 (mda-7; approved gene symbol IL24) is a tumor suppressor gene whose expression induces selective apoptosis in tumor cells. To characterize the safety and biologic activity of mda-7 gene transfer, we conducted a phase I trial using intratumoral injections of an adenovirus containing the mda-7 construct (Ad-mda7; INGN 241; 2 x 10(10) to 2 x 10(12) vp) in 28 patients with resectable solid tumors. One hundred percent of injected lesions demonstrated INGN 241 vector transduction, transgenic mRNA, elevated MDA-7 protein, and apoptosis induction, with the highest levels near the injection site. Apoptosis of cells in injected tumors was consistently observed even in heavily pretreated patients. INGN 241 vector DNA and mRNA were detected more than 1 cm from the injection site, whereas MDA-7 protein and bioactivity were more widely distributed. Toxicity attributable to the injections was self-limiting and generally mild; however, one patient experienced a grade 3 SAE possibly related to the study drug. Evidence of clinical activity was found in 44% of lesions with the repeat injection schedule, including complete and partial responses in two melanoma patients. Thus intratumoral administration of INGN 241 is well tolerated, induces apoptosis in a large percentage of tumor cells, and demonstrates evidence of clinically significant activity.  相似文献   

20.
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) is a novel cytokine displaying selective apoptosis-inducing activity in transformed cells without harming normal cells. The present studies focused on defining the mechanism(s) by which a GST-MDA-7 fusion protein inhibits cell survival of primary human glioma cells in vitro. GST-MDA-7 killed glioma cells with diverse genetic characteristics that correlated with inactivation of ERK1/2 and activation of JNK1-3. Activation of JNK1-3 was dependent on protein kinase R-like endoplasmic reticulum kinase (PERK), and GST-MDA-7 lethality was suppressed in PERK-/- cells. JNK1-3 signaling activated BAX, whereas inhibition of JNK1-3, deletion of BAX, or expression of dominant-negative caspase-9 suppressed lethality. GST-MDA-7 also promoted a PERK-, JNK-, and cathepsin B-dependent cleavage of BID; loss of BID function promoted survival. GST-MDA-7 suppressed BAD and BIM phosphorylation and heat shock protein 70 (HSP70) expression. GST-MDA-7 caused PERK-dependent vacuolization of LC3-expressing endosomes whose formation was suppressed by incubation with 3-methyladenine, expression of HSP70 or BiP/GRP78, or knockdown of ATG5 or Beclin-1 expression but not by inhibition of the JNK1-3 pathway. Knockdown of ATG5 or Beclin-1 expression or overexpression of HSP70 reduced GST-MDA-7 lethality. Our data show that GST-MDA-7 induces an endoplasmic reticulum stress response that is causal in the activation of multiple proapoptotic pathways, which converge on the mitochondrion and highlight the complexity of signaling pathways altered by mda-7/IL-24 in glioma cells that ultimately culminate in decreased tumor cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号