首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Dopamine is a principal natriuretic hormone in mammalian Na+ homeostasis. Dopamine acutely alters glomerular filtration rate (GFR) and decreases Na+ absorption in both the proximal and distal nephron. Proximal tubule natriuresis is effected through inhibition of the apical membrane Na/H exchanger NHE3. METHODS: We examined whether dopamine directly and acutely decreases apical membrane NHE3 protein using renal tissue in two in vitro systems: renal cortical slices and in vitro perfused single tubules. After incubation with dopamine, NHE3 activity was measured by 22Na flux and NHE3 antigen was measured by immunoblot in apical membrane and total cellular membranes. RESULTS: Direct application of dopamine to either cortical slices or microperfused tubules acutely decreases NHE3 activity and antigen at the apical membrane of the proximal tubule. No change in total cellular NHE3 was detected. CONCLUSION: One mechanism by which dopamine causes natriuresis is via direct and acute reduction of NHE3 protein at the apical membrane via changes in NHE3 protein trafficking.  相似文献   

2.
In the proximal tubule, angiotensin II (Ang-II) regulates HCO(-)(3) reabsorption and H+ secretion by binding the type 1 Ang-II (AT1) receptor, stimulating Na(+)/HCO(-)(3) cotransport and Na(+)/H(+) exchange. Studies were carried out to determine if long-term changes in Ang-II receptor occupation alter the abundance of the basolateral Na(+)/HCO(-)(3) cotransporter (NBC1) or the apical membrane type 3 Na(+)/H(+) exchanger (NHE3). In the first set of experiments, rats eating a low-sodium diet were infused with the AT1 blocker, candesartan, or vehicle. In the second, lisinopril-infused rats were infused with either Ang II or vehicle. Transporter abundances were determined in whole kidney homogenates (WKH) and in brush border membrane (BBM) preparations by semiquantitative immunoblotting. Tissue distribution of transporters was assessed by immunocytochemistry. Blockade of the AT1 receptor by candesartan caused decreased abundance of NBC1 in WKH (59 +/- 9% of control; P<0.05) and Ang-II infusion increased abundance (130 +/- 7% of control; P<0.05). Changes in NBC1 in response to candesartan were confirmed immunohistochemically. Neither candesartan nor Ang II infusion affected the abundance of NHE3 in WKH or cortical homogenates. Candesartan decreased type 2 sodium-phosphate cotransporter abundance in both WKH (52 +/- 7% of control; P<0.05) and BBM (32 +/- 7% of control; P<0.05). Serum bicarbonate was decreased by candesartan and increased by Ang-II. Candesartan also decreased urinary ammonium excretion (P<0.05). The long-term effects of Ang-II in the proximal tubule may be mediated in part by regulation of NBC1 abundance, modifying bicarbonate reabsorption.  相似文献   

3.
Albumin regulates the Na+/H+ exchanger 3 in OKP cells   总被引:1,自引:0,他引:1  
Albumin filtered by the glomerulus is reabsorbed in the proximal tubule. We have shown previously that proteinuria stimulates the proximal tubular Na(+)/H(+) exchanger 3 (NHE3) in rats. Activation of NHE3 may be a pathophysiologically important factor in the development of renal salt and water retention observed in the nephrotic syndrome. For examining whether albumin is a specific inducer of proximal tubular Na(+)/H(+) exchange and to determine the molecular mechanisms by which it regulates Na(+)/H(+) exchange, the effect of albumin on NHE3 in opossum kidney cells was studied. Albumin activated Na(+)/H(+) exchange in a time- and dose-dependent manner up to 100% in 48 h. In the early phase of stimulation (2 to 12 h), NHE3 activity was increased without changes in NHE3 protein and mRNA. At 24 h, increased NHE3 activity was accompanied by increase in cell surface NHE3 protein. The increase in surface NHE3 was associated with increased bidirectional trafficking of NHE3 protein between intracellular compartments and the cell surface. At 48 h, total cell NHE3 protein abundance and mRNA were increased as well. Whereas NHE3 translation was increased, NHE3 protein half-life remained unchanged. The effects of albumin on NHE3 protein abundance were modified by hydrocortisone in a complicated pattern. These results indicate that albumin directly regulates proximal tubular NHE3 at multiple levels.  相似文献   

4.
BACKGROUND: The role of angiotensin II (Ang II) in mediating excessive sodium reabsorption in diabetic nephropathy is recognized. Serine-glucocorticoid kinase-1 (SGK-1) increases sodium-hydrogen exchanger-3 (NHE3) expression and is known to be upregulated in in vitro and in vivo models of diabetic nephropathy. However, a link between Ang II and SGK-1 in diabetic nephropathy has not been established. METHODS: Ang II production in cultured human proximal tubular cells was measured under normal (5 mM) and high (25 mM) glucose conditions. The Ang II type 1 receptor was identified by RT-PCR. SGK-1 and NHE3 mRNA and protein expression was measured in proximal tubule cells (PTCs) exposed to Ang II. EIPA inhibitable changes in cell sodium uptake were undertaken to confirm that alterations in NHE3 mRNA and protein were reflected in transport activity. SGK-1 was silenced in the PTCs using small interfering RNA to determine the role of SGK-1 in mediating Ang II-induced increases in NHE3-mediated sodium uptake. RESULTS: Ang II production by PTCs was significantly increased by exposure to high glucose (P < 0.02). Ang II increased NHE3 and SGK-1 mRNA expression to 275 +/- 30% (P < 0.02) and 130 +/- 10% (P < 0.05) respectively. Silencing of SGK-1 reduced Ang II-stimulated NHE3 protein expression to 49.8 +/- 6.1% (P < 0.05) of control levels. SGK-1 silencing abolished increases in (22)Na(+) uptake seen in Ang II-treated cells to 86.7 +/- 1.6% of control values. CONCLUSION: These data suggest that increased sodium reabsorption in renal proximal tubular cells considered to be due to Ang II in diabetes mellitus is mediated through SGK-1 expression.  相似文献   

5.
Regulation of renal proximal transport by angiotensin II (Ang II) is biphasic: low concentrations (picomolar to nanomolar) stimulate reabsorption, but higher concentrations (nanomolar to micromolar) inhibit reabsorption. Traditionally, the stimulatory effect has been attributed to activation of protein kinase C and/or a decrease in intracellular cAMP, whereas the inhibitory action has been attributed to the activation of phospholipase A2 (PLA2) and the subsequent release of arachidonic acid. The Ang II receptor subtype responsible for these effects and the intracellular signaling pathways involved are not completely understood. We isolated proximal tubules from wild-type, Ang II type 1A receptor (AT1A)-deficient, and group IVA cytosolic phospholipase A2 (cPLA2alpha)-deficient mice, and compared their responses to Ang II. In wild-type mice, we found that the stimulatory and inhibitory effects of Ang II on Na+-HCO3(-) cotransporter activity are both AT1-mediated but that ERK activation only plays a role in the former. The stimulatory effect of Ang II was also observed in AT1A-deficient mice, suggesting that this occurs through AT1B. In contrast, the inhibitory effects of Ang II appeared to be mediated by cPLA2alpha activation because high-concentration Ang II stimulated Na+-HCO3(-) cotransporter activity when cPLA2alpha activity was abrogated by pharmacological means or genetic knockout. Consistent with this observation, we found that activation of the cPLA2alpha/P450 pathway suppressed ERK activation. We conclude that Ang II activates ERK and cPLA2alpha in a concentration-dependent manner via AT1, and that the balance between ERK and cPLA2alpha activities determines the ultimate response to Ang II in intact proximal tubules.  相似文献   

6.
Newton CR  Curran B  Victorino GP 《Surgery》2004,136(5):1054-1060
BACKGROUND: In addition to its vasoconstricting effects, angiotensin II (Ang II) has also demonstrated the ability to modulate microvessel permeability. We hypothesized that activation of the angiotensin II type 1 receptor (AT1) would increase hydraulic permeability. METHODS: Hydraulic permeability (L(p)) was measured in rat mesenteric venules using the Landis micro-occlusion technique. Paired measures of L(p) were obtained at baseline and after perfusion with the AT1 agonist, [Sar(1)]-angiotensin II, at 10 micromol/L (n=6) and 100 micromol/L (n=6). Activation of the AT1 receptor was also achieved by perfusion with 20 nmol/L Ang II plus the angiotensin II type 2 receptor (AT2) antagonist, PD123319. In these studies, 30 micromol/L (n=6) and 300 micromol/L (n=6) of PD123319 were used. RESULTS: [Sar(1)]-angiotensin II increased L(p) 2-fold with the 10 micromol/L dose (P=.04) and 4-fold with the 100 micromol/L dose (P < .001). The L(p) peak due to [Sar(1)]-angiotensin II occurred sooner than the peak observed with Ang II. PD123319 (30 micromol/L) plus 20 nmol/L Ang II increased L(p) 5-fold (P=.003), while PD123319 (300 micromol/L) plus 20 nmol/L Ang II increased L(p) 20-fold (P < .0001). The magnitude of the effect due to PD123319 (300 micromol/L) plus Ang II (20 nmol/L) was approximately twice the summation of effects due to PD123319 (300 micromol/L) alone and Ang II (20 nmol/L) alone. CONCLUSIONS: We conclude that endothelial cell Ang II receptors play an important role in modulating transendothelial fluid flux. Activating the AT1 receptor increases L(p); the AT2 receptor may operate to oppose this action. Pharmacologic manipulation of Ang II receptors may be beneficial during shock states to limit intravascular fluid loss.  相似文献   

7.
Cyclosporin A (CyA) causes renal Na+ retention which may lead to arterial hypertension. The apical Na+/H+ exchanger (NHE3) is responsible for bulk proximal tubular Na+ reabsorption. The aim of this study was to investigate the effects of CyA on the NHE3 of polarized proximal tubular cells to evaluate cellular mechanisms of CyA-associated arterial hypertension. The change of the intracellular pH (Δ-[pH]i/min) was determined as a measure of the activity of the NHE in LLC-PK1/PKE20 cells using 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). The NHE activity was identified as the apical NHE3 since it could be inhibited by the inhibitor S3226, but not by inhibitors of the basolateral isoform (NHE1) amiloride or HOE 694. CyA stimulated the NHE3 activity dose dependently. The mean increase stimulated by relevant CyA concentrations was 61±11%. A 24-h application of CyA also stimulated an increase of NHE3 activity which did not seem to be mediated by an increase of NHE3 RNA expression. The less immunosuppressive derivatives cyclosporin H and cyclosporin G caused NHE3 activation as well. Carbachol and ATP, which both induce a Ca2+ release from internal Ca2+ stores, also increased the NHE3 activity. The Ca2+ chelator 1,2-bis-(2-aminophenoxy)-ethane-N,N,-N′,N′-tetraacetic acid tetraacetoxymethyl ester (BAPTA-AM) abolished the CyA-associated NHE3 stimulation, whereas low extracellular Ca2+ had no effect. CyA-associated effects did not seem to be mediated via inhibition of protein kinase C (PKC). CyA had no additive effects on the angiotensin II-associated NHE3 stimulation. Concurrent application of losartan did not impair the CyA-induced NHE3 stimulation. In conclusion CyA stimulates the apical NHE3 in proximal tubular cells. This is mediated by Ca2+ release from intracellular stores but is independent of the action of angiotensin II or PKC.  相似文献   

8.
BACKGROUND: Neonates have a lower Na+/H+ antiporter activity on the apical membrane of proximal tubule than that of adults. The maturational increase in Na+/H+ antiporter activity occurs at the time when there is a rise in serum glucocorticoid levels in rats. The purpose of the present study was to examine whether glucocorticoids are responsible for the postnatal increase in Na+/H+ antiporter activity. METHODS: Nine-day-old Sprague-Dawley rats were compared with rats studied at 30 days of age who had either a sham operation or adrenalectomy (ADX) at nine days of age and with rats that had an adrenalectomy and physiologic corticosterone replacement (ADX-Cort) to determine whether glucocorticoid deficiency prevented the maturational increase in Na+/H+ antiporter activity. Na+/H+ antiporter activity was measured in proximal convoluted tubules perfused in vitro by the change in cell pH (pHi) following luminal sodium removal. NHE3 mRNA abundance was measured using Northern blot analysis, and NHE3 protein abundance was measured by immunoblot. RESULTS: Na+/H+ antiporter activity was 93.8 +/- 17.7, 157.0 +/- 18.0, 356.7 +/- 29.9, and 402.5 +/- 14.5 pmol/mm. min in nine-day-old, ADX, ADX-Cort, and sham control groups, respectively. The ADX-Cort and sham control were higher than the 9-day-old and the 30-day-old ADX group (P < 0.05). Brush-border membrane NHE3 protein abundance in the nine-day-old and ADX groups were sixfold less than ADX-Cort and sham control groups (P < 0.001). Nine-day-old neonates had fivefold less renal cortical NHE3 mRNA than the ADX, ADX-Cort, and sham-operated control groups (P < 0.01). CONCLUSIONS: These data demonstrate that glucocorticoids play a role in the postnatal maturation of the proximal tubule Na+/H+ antiporter activity and brush-border membrane NHE3 protein abundance. Glucocorticoid deficiency does not completely prevent the maturational increase in Na+/H+ antiporter activity and does not affect NHE3 mRNA abundance.  相似文献   

9.
目的 探讨血管紧张素Ⅱ(AngⅡ)在肾近曲小管Na+-HCO3-转运中的作用及细胞外信号调节激酶(ERK)、胞质磷脂酶A2α(cPLA2α)通路对其调节的机制。 方法 从野生小鼠和血管紧张素1a型受体 (AT1aR)基因缺陷小鼠分离新鲜单根肾近曲小管,在不同浓度AngⅡ(10-10、10-8、10-6 mol/L)及AT1、AT2受体阻滞剂或促分裂原活化蛋白激酶(MAPK)、cPLA2、P450抑制剂存在下对比Na+-HCO3-离子转运活动度变化。Western印迹方法测定ERK磷酸化(p-ERK)。RT-PCR测定AT1bR在两种小鼠肾小管中的表达。 结果 (1)在野生小鼠,低浓度AngⅡ(10-10 mol/L)刺激Na+-HCO3-转运并被AT1受体阻滞剂及MAPK阻滞剂PD98059阻滞;而高浓度AngⅡ(10-6 mol/L)抑制Na+-HCO3-的转运,被AT1受体阻滞剂阻滞,但PD98059对其无阻滞作用。显示AngⅡ在肾脏近曲小管双向性调节Na+-HCO3-转运,ERK通路仅参与低浓度AngⅡ的刺激作用。(2)在AT1aR基因缺陷小鼠,只有高浓度AngⅡ(10-6 mol/L)能刺激Na+-HCO3-转运,并被AT1受体阻滞剂及PD98059阻滞。显示在AT1aR缺乏时,AT1bR起到部分代偿作用,RT-PCR也证实AT1bR在肾小管的存在。(3)在野生小鼠,cPLA2 阻滞剂或P450阻滞剂存在下,所有浓度AngⅡ均显示刺激作用,并被AT1受体阻滞剂及PD98059阻滞。Western印迹检测也证实上述结论。这显示经由AT1受体,低浓度AngⅡ通过ERK通路仅参与刺激肾近曲小管Na+-HCO3-离子转运作用,而高浓度AngⅡ经cPLA2α-P450通路抑制Na+-HCO3-离子转运,cPLA2α-P450通路同时也参与了抑制ERK的激活作用。 结论 不同浓度AngⅡ经由AT1受体介导了ERK和cPLA2α通路的平衡,从而决定AngⅡ调节在肾近曲小管水和钠的重吸收。  相似文献   

10.
For determination of the molecular mechanisms underlying the induction of epithelial cell hypertrophy by angiotensin II (Ang II), a well-characterized porcine renal proximal tubular cell line LLCPKcl4, which does not express endogenous Ang II receptor subtypes, was transfected with cDNA encoding Ang II subtype 1 receptor (AT1R/Cl4). Ang II transactivated the EGF receptor (EGFR) in these AT1R/Cl4 cells, which was blocked by the selective AT1R antagonist losartan but not by the selective AT2R antagonist PD123319. Ang II did not transactivate EGFR in empty vector-transfected LLCPKcl4 cells (Vector/Cl4). Ang II elicited release of soluble heparin-binding EGF-like growth factor (HB-EGF) from AT1R/Cl4 cells, and Ang II-induced EGFR activation was prevented by pretreatment with the specific HB-EGF inhibitor CRM197 or the metalloproteinase inhibitors batimastat or phenanthroline, none of which had any effect on EGFR activation by exogenously administered EGF. Ang II stimulated protein synthesis and cell hypertrophy in AT1R/Cl4 cells without increasing cell number, and signaling studies revealed that Ang II stimulated phosphorylation of the 40S ribosomal protein S6 and the eukaryotic translation initiation factor 4E-binding protein 1, the two downstream target proteins of the mammalian target of rapamycin, which is a central regulator of protein synthesis and cell size. Ang II-induced mammalian target of rapamycin activation, [3H]leucine incorporation, and cellular hypertrophy were inhibited by pretreatment with either batimastat or CRM197 or by pretreatment with rapamycin or the EGFR tyrosine kinase inhibitor AG1478. Ang II also stimulated Smad 2/3 phosphorylation, which was blocked by a selective TGF-beta receptor I kinase inhibitor but not by CRM197. With blockade of TGF-beta receptor, Ang II-mediated hypertrophy was converted into cell proliferation, which was blocked by CRM197. In summary, this is the first demonstration that HB-EGF shedding-dependent EGFR transactivation, along with activation of TGF-beta signaling pathways, mediates Ang II-induced renal tubular epithelial cell hypertrophy.  相似文献   

11.
12.
BACKGROUND: In the rat cortical thick ascending limb (CTAL), intracellular Ca2+ ([Ca2+]i) responses to angiotensin II (Ang II) and angiotensin III (Ang III) were mediated by the Ang II subtype 1A receptor (AT1A-R), whereas the arginine vasopressin (AVP)-dependent cAMP accumulation involved the vasopressin receptor type 2 (V2-R). This work was performed in CTAL to investigate the crosstalk between these two receptors by studying their transduction pathways. METHODS: The cAMP-dependent pathway was activated by 10 minutes of prestimulation with either forskolin, CTP-cAMP or AVP, and Ang II/Ang III-induced [Ca2+]i responses were assessed. RESULTS: Pretreatment with 5 micromol/L forskolin significantly enhanced the [Ca2+]i response induced by 10-7 mol/L either Ang II or Ang III. Analysis of dose-response curves to Ang III in forskolin-treated CTAL demonstrated that the maximal [Ca2+]i response was significantly increased without altering the EC50. In Ca2+-free medium, the forskolin-induced potentiation of the [Ca2+]i response to Ang III was weaker but always present, suggesting that this effect was not only due to intracellular Ca2+ release but also to extracellular Ca2+ influx. Furthermore, the fact that the forskolin-induced potentiation of the [Ca2+]i response to Ang III was blocked by 10 micromol/L H-89, a specific protein kinase A (PKA) inhibitor, indicated that this effect occurred via activation of PKA. Finally, the potentiation of the [Ca2+]i response to Ang III also was observed following pretreatment with 100 micromol/L CTP-cAMP or 10-7 mol/L AVP. CONCLUSIONS: In CTAL, there is a positive crosstalk between the adenylyl cyclase and phosphoinositide pathways mediated by V2- and AT1A-R, respectively, through activation of PKA.  相似文献   

13.
BACKGROUND: We previously found that the Na(+)/H(+) exchanger 3 (NHE3) is localized in the apical membrane of the rat renal proximal tubule and thick ascending limb of Henle. In the present study, we examined the direct effect of glucagon on the opossum kidney P (OKP) cell Na(+)/H(+) antiporter, encoded by NHE3. METHODS: Na(+)/H(+) antiporter activity was measured as the rate of cell pH recovery from an acid load using 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein. Northern blot and Western blot analyses were performed using OKP NHE3 cDNA and anti-OKP-NHE3 antibodies. RESULTS: Glucagon (1 ng/ml) acutely (1 h) inhibited, but chronically (24 h) activated NHE3 activity in OKP cells. These effects were blocked by either KT5720 or RpcAMP [protein kinase A (PKA) inhibitors], and mimicked by 10(-4) M dibutyryl-cAMP. Both NHE3 mRNA and protein abundance increased with the 24-hour incubation in glucagon or dibutyryl-cAMP. Cycloheximide did not prevent a significant increase in NHE3 activity at 24 h. We therefore examined NHE3 protein abundance in the surface membrane by the biotinylation method. cAMP or glucagon significantly increased NHE3 protein abundance in the surface membrane when incubated with cycloheximide for 24 h. CONCLUSIONS: Glucagon acutely inhibits but chronically activates NHE3 activity in OKP cells via a PKA-dependent pathway. Both protein-synthesis-dependent and -independent mechanisms play important roles in the chronic activation of NHE3.  相似文献   

14.
15.
BACKGROUND: The most abundant Na+/H+ exchanger in the apical membrane of proximal tubules is the type 3 isoform (NHE3), and its activity is acutely inhibited by parathyroid hormone (PTH). In the present study, we investigate whether changes in protein abundance as well as in mRNA levels play a significant role in the long-term modulation of NHE3 by PTH. METHODS: Three groups of animals were compared: (1) HP: animals submitted to hyperparathyroidism by subcutaneous implantation of PTH pellets, providing threefold basal levels of this hormone (2.1 U. h-1); (2) control: sham-operated rats in which placebo pellets were implanted; (3) PTX: animals submitted to hypoparathyroidism by thyroparathyroidectomy followed by subcutaneous implantation of thyroxin pellets, which provided basal levels of thyroid hormone. After eight days, we measured bicarbonate reabsorption in renal proximal tubules by in vivo microperfusion. NHE3 activity was also measured in brush border membrane (BBM) vesicles by proton dependent uptake of 22Na. NHE3 expression was evaluated by Northern blot, Western blot and immunohistochemistry. RESULTS: Bicarbonate reabsorption in renal proximal tubules was significantly decreased in HP rats. Na+/H+ exchange activity in isolated BBM vesicles was 6400 +/- 840, 9225 +/- 505, and 12205 +/- 690 cpm. mg-1. 15 s-1 in HP, sham, and PTX groups, respectively. BBM NHE3 protein abundance decreased 39.3 +/- 8.2% in HP rats and increased 54.6 +/- 7.8% in PTX rats. Immunohistochemistry showed that expression of NHE3 protein in apical BBM was decreased in HP rats and was increased in PTX rats. Northern blot analysis of total kidney RNA showed that the abundance of NHE3 mRNA was 20.3 +/- 1.3% decreased in HP rats and 27. 7 +/- 2.1% increased in PTX. CONCLUSIONS: Our results indicate that the chronic inhibitory effect of PTH on the renal proximal tubule NHE3 is associated with changes in the expression of NHE3 mRNA levels and protein abundance.  相似文献   

16.
We reported previously that angiotensin II (AngII) increases net Cl(-) absorption in mouse cortical collecting duct (CCD) by transcellular transport across type B intercalated cells (IC) via an H(+)-ATPase-and pendrin-dependent mechanism. Because intracellular trafficking regulates both pendrin and H(+)-ATPase, we hypothesized that AngII induces the subcellular redistribution of one or both of these exchangers. To answer this question, CCD from furosemide-treated mice were perfused in vitro, and the subcellular distributions of pendrin and the H(+)-ATPase were quantified using immunogold cytochemistry and morphometric analysis. Addition of AngII in vitro did not change the distribution of pendrin or H(+)-ATPase within type B IC but within type A IC increased the ratio of apical plasma membrane to cytoplasmic H(+)-ATPase three-fold. Moreover, CCDs secreted bicarbonate under basal conditions but absorbed bicarbonate in response to AngII. In summary, angiotensin II stimulates H(+) secretion into the lumen, which drives Cl(-) absorption mediated by apical Cl(-)/HCO(3)(-) exchange as well as generates more favorable electrochemical gradient for ENaC-mediated Na(+) absorption.  相似文献   

17.
BACKGROUND: The mitogen-activated protein kinase (MAPK) cascade is an important intracellular mediator of angiotensin II (Ang II)-induced cell growth and differentiation. Here, we examined the effect of angiotensin II type 1 receptor (AT1) receptor blockade on renal injury and MAPK activity in Dahl salt-sensitive (DS) rats. METHODS: DS rats were maintained on a high (H: 8.0%NaCl, N= 8) or low (L: 0.3%NaCl, N= 7) salt diet, or H + candesartan cilexetil (10 to 15 mg/kg/day, N= 8). Urinary protein excretion (UproteinV), renal cortical collagen content, and glomerular injury (assessed by semiquantitative morphometric analysis) were determined after 4-week treatments. Plasma and kidney Ang II levels were measured by radioimmunoassay. Protein levels of AT1 and AT2 receptors in the renal cortical tissues were analyzed by Western-blotting analyses. MAPKs activities, including extracellular signal-regulated kinases (ERK)1/2, c-Jun NH2-terminal kinases (JNK), p38 MAPK, and Big-MAPK-1 (BMK1), were measured by Western-blotting analyses or in vitro kinase assays. RESULTS: DS/H rats showed higher mean blood pressure (MBP), UproteinV, and renal cortical collagen content than DS/L rats. Increased ERK1/2, JNK, and BMK1 activities were observed in renal cortical tissues of DS/H rats (approximately 6.3-, 4.5-, and 2.5-fold, respectively), whereas p38 MAPK activity was unchanged. Plasma Ang II levels were significantly reduced in DS/H rats compared with DS/L rats, whereas kidney Ang II contents and AT1 receptor protein levels were similar. Candesartan did not alter MBP, but significantly reduced UproteinV and collagen content, and ameliorated progressive sclerotic and proliferative glomerular changes. Furthermore, candesartan decreased renal tissue Ang II contents (from 216 +/- 19 to 46 +/- 3 fmol/mL) and ERK1/2, JNK, and BMK1 activities (-45%, -60%, and -70%, respectively) in DS/H rats. CONCLUSION: In DS hypertensive rats, some of the renoprotective effects of AT1 receptor blockade are accompanied by reductions in intrarenal Ang II contents and MAPK activity, which might not be mediated through arterial pressure changes.  相似文献   

18.
Regulation of renal apical Na+/H+ exchanger 3 (NHE3) activity by adenosine has been suggested to contribute to acute control of mammalian Na(+) homeostasis. The mechanism by which adenosine controls NHE3 activity in a renal cell line was examined. The adenosine analog, N(6)-cyclopentyladenosine (CPA) exerts a bimodal effect on NHE3: CPA concentrations >10(-8) M inactivate NHE3, whereas concentrations <10(-8) M stimulate NHE3 activity. Acute CPA-induced control of NHE3 was blocked by antagonists of A1 adenosine receptors and inhibition of phospholipase C, pretreatment with BAPTA-AM (chelator of cellular calcium), and exposure to pertussis toxin. Stimulatory and to some extent also inhibitory CPA concentrations attenuated 8-bromo-cAMP and dopamine-mediated inhibition of NHE3. BAPTA eliminated the ability of a stimulatory dose of CPA to attenuate 8-bromo-cAMP-induced suppression of NHE3 activity. Upon inhibition of protein kinase C, CPA at an inhibitory dose provoked activation of NHE3, which is partially reverted by 8-bromo-cAMP and suppressed by pre-incubation with BAPTA-AM. Cytochalasin B, an actin-modifying agent, selectively prevented downregulation but did not affect upregulation of NHE3 activity by CPA. In conclusion, these observations demonstrate that (1) CPA modulates NHE3 activity by elevation of cellular Ca(2+) exerting a negative control on adenylate cyclase activity, (2) protein kinase C is the determining factor leading to CPA-induced downregulation of NHE3 activity, and (3) alterations of surface NHE3 abundance may contribute to A1 adenosine receptor-dependent inhibition of NHE3 activity.  相似文献   

19.
In the male reproductive tract, the epididymis plays an important role in mediating transepithelial bicarbonate transport and luminal acidification. In the proximal vas deferens, a significant component of luminal acidification is Na+-independent, and mediated by specific cells that possess apical vacuolar proton pumps. In contrast, luminal acidification in the cauda epididymidis is an Na+-dependent process. The specific apical Na+-dependent H+/base transport process(es) responsible for luminal acidification have not been identified. A potential clue as to the identity of these apical Na+-dependent H+/base transporter(s) is provided by similarities between the transport properties of the epididymis and the mammalian nephron. Specifically, the H+/base transport properties of caput epididymidis resemble the mammalian renal proximal tubule, whereas the distal epididymis and vas deferens have characteristics in common with renal collecting duct intercalated cells. Given the known expression of the Na+/H+ antiporter, NHE3, in the proximal tubule, and of the electroneutral sodium bicarbonate cotransporter, NBC3, in renal intercalated cells, we determined the localization of NHE3 and NBC3 in various regions of rat epididymis. NBC3 was highly expressed on the apical membrane of apical (narrow) cells in caput epididymidis, and light (clear) cells in corpus and cauda epididymidis. The number of cells expressing apical NBC3 was highest in cauda epididymidis. The localization of NBC3 in the epididymis was identical to the vacuolar H+-ATPase. The results indicate that colocalization of NBC3 and the vacuolar H+-ATPase is not restricted to kidney intercalated cells. Moreover, the close association of the two transporters appears to be a more generalized phenomenon in cells that express high levels of vacuolar H+-ATPase. Unlike NBC3, NHE3 was most highly expressed on the apical membrane of all epithelial cells in caput epididymidis, with less expression in the corpus, and no expression in the cauda. These results suggest that apical NBC3 and NHE3 potentially play an important role in mediating luminal H+/base transport in epididymis.  相似文献   

20.
BACKGROUND: Endogenous intratubular angiotensin II (Ang II) supports an autocrine tonic stimulation of NaCl absorption in the proximal tubule, and its production may be regulated independently of circulating Ang II. In addition, endogenous Ang II activity may be regulated at the brush border membrane (BBM), by the rate of aminopeptidase A and N (APA and APN) activities and the rate of Ca2+-independent phospholipase A2 (PLA2-dependent endocytosis and recycling of the complex Ang II subtype 1 (AT1) receptor (AT1-R). The aim of the present study was to look for subcellular localization of AT1-R, and APA and APN activities in the medullary thick ascending limb of Henle (mTAL), as well as search for an asymmetric coupling of AT1-R to signal transduction pathways. METHODS: Preparations of isolated basolateral membrane (BLMV) and luminal (LMV) membrane vesicles from rat mTAL were used to localize first, AT1-R by 125I-[Sar1, Ile8] Ang II binding studies and immunoblot experiments with a specific AT1-R antibody, and second, APA and APN activities. Microfluorometric monitoring of cytosolic Ca2+ with a Fura-2 probe was performed in mTAL microperfused in vitro, after apical or basolateral application of Ang II. RESULTS: AT1-R were present in both LMV and BLMV, with a similar Kd (nmol/L range) and Bmax. Accordingly, BLMV and LMV preparations similarly stained specific AT1-R antibody. APA and APN activities were selectively localized in LMV, although to a lesser extent than those measured in BBM. In the in vitro microperfused mTAL, basolateral but not apical Ang II induced a transient increase in cytosolic [Ca2+]. CONCLUSIONS: Besides the presence of basolateral AT1-R in mTAL coupled to the classical Ca2+-dependent transduction pathways, AT1-R are present in LMV, not coupled with Ca2+ signaling, and co-localized with APA and APN activities. Thus, apical APA and APN may play an important role in modulating endogenous Ang II activity on NaCl reabsorption in mTAL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号