共查询到20条相似文献,搜索用时 31 毫秒
1.
背景:医用纳米粒作为药物传递的新型载体,目前已经成为医药领域研究的重点。
目的:构建以生物可降解材料乳酸-羟基乙酸共聚物为载体,负载抗肿瘤药物5-氟尿嘧啶的载药纳米粒。
方法:利用复乳-溶剂挥发法制备乳酸-羟基乙酸共聚物载药纳米粒。场发射扫描电子显微镜观察纳米粒表面形态;激光粒度分析仪测定粒径分布并计算成球率;紫外分光光度计测定5-氟尿嘧啶载药量、包封率,并对体外释药进行评估。
结果与结论:纳米粒呈球性,平均粒径为(186±14) nm,成球率、载药量和包封率分别为70.8%、6.6%、28.1%,体外释药有突释现象,24 h内5-氟尿嘧啶累积释药量达36.2%,10 d达83.6%。提示成功制备乳酸-羟基乙酸共聚物载药纳米粒,其具有缓释效应。 相似文献
2.
Lee JS Chae GS Kim MS Cho SH Lee HB Khang G 《Bio-medical materials and engineering》2004,14(2):185-192
Biodegradable polymers have been extensively investigated because of regulating drug release rate easily, obviating the need to remove the device, and good biocompatibility. Among the biodegradable polymers currently under investigation, poly(D,L-lactide-co-glycolide) (PLGA) copolymers are the most widely studied because of their long history of safe clinical use as drug carrier. 50 : 50 PLGA was used as a model degradable polymer in this study to investigate the degradation behaviour on drug release from bulk degradable polymers in vitro. 5-fluorouracil (5-FU) was used as a model drug. Molecular weight change, residual mass, water uptake, morphological change of PLGA wafers, and pH of release test medium were characterized to investigate the effect of polymer degradation on drug release. The release rate of 5-FU increased with the increase of 5-FU loading amount and the release profiles of 5-FU irrespective of 5-FU loading amount followed near first order release kinetics. 相似文献
3.
Biodegradable fibers of poly(L-lactic acid) (PLLA) and poly(D,L-lactide-co-glycolide) (PLGA) that encapsulated a water-soluble drug were created by a patented technique consisting of wet-spinning a water-in-oil emulsion. These fibers are 2.4% by mass drug, which is slowly released, making these fibers potential candidates for implantation as drug delivery devices and/or tissue-engineering substrates. Drug release kinetics and changes in molecular weight were investigated over time. This study demonstrated that drug release rates and molecular weight degradation are a function of the amount of aqueous phase added as an emulsion during fabrication. The type of polymer used (PLLA or PLGA) determines the molecular weight degradation rates, but has little effect on drug release kinetics. 相似文献
4.
Smeets R Gerhards F Stein JM Stein J Paz RM Vogt S Pautke C Weitz J Kolk A 《Journal of biomedical materials research. Part A》2011,96(1):177-185
Topical thrombins are locally active hemostatic agents that can be used to minimize blood loss during any surgery. The aim of this study was to design and investigate a thrombin-containing biodegradable hemostyptic device with an optimized drug release profile to promote local blood clot formation. It is effective with ongoing systemic antithrombotic therapy and can be used in all types of bone-related surgery, for example, in dental surgery. Thrombin-loaded poly(D,L-lactide-co-glycolide) microspheres were synthesized by means of complex (w/o/w) emulsion evaporation method. The resulting enzyme activity of the serine-protease thrombin was verified by the specific chromogenic substrate S-2238. The thrombin release profile depended on four factors: (1) thrombin dosage, (2) polymer concentration in the o-phase, (3) phase quotient w1:0 in the primary emulsion, and (4) the addition of pore-introducing agents. A collagenous sponge containing thrombin-loaded microspheres by means of lyophilization was developed. The impact of several production factors of the (w1/o/w2) solvent evaporation method to optimize thrombin encapsulation, morphology of the spheres, and desired drug release profile have been investigated. The in vitro thrombin release was dependent on the polymer-to-oil phase ratio, the polymer concentration, and the type of solvent and polymer. The porosity of the spheres and release rate of the active agent were enhanced by increasing the inner aqueous w1 phase. With this study, a new biodegradable hemostyptic device could be verified and established for a potentially safe and locally controlled thrombin release to manage postsurgical hemorrhage in patients undergoing anticoagulant therapy. 相似文献
5.
The physostigmine-loaded poly(ortho ester) (POE), poly(dl-lactide-co-glycolide) (PLGA) and POE/PLGA blend microspheres were fabricated by a spray drying technique. The in vitro degradation of, and physostigmine release from, the microspheres were investigated. SEM analysis showed that the POE and POE/PLGA blend particles were spherical. They were better dispersed when compared to the pure PLGA microspheres. Two glass transition temperature ( Tg ) values of the POE/PLGA blend microspheres were observed due to the phase separation of POE and PLGA in the blend system. XPS analysis proved that POE dominated the surfaces of POE/PLGA blend microspheres, indicating that the blend microspheres were coated with POE. The encapsulation efficiencies of all the microspheres were more than 95%. The incorporation of physostigmine reduced the Tg value of microspheres. The Tg value of the degrading microspheres increased with the release of physostigmine. For instance, POE blank microspheres and physostigmine-loaded POE microspheres had a Tg value of 67 degrees C and 48 degrees C, respectively. After 19 days in vitro incubation, Tg of the degrading POE microspheres increased to 55 degrees C. Weight loss studies showed that the degradation of the blend microspheres was accelerated with the presence of PLGA because its degradation products catalyzed the degradation of both POE and PLGA. The release rate of physostigmine increased with increase of PLGA content in the blend microspheres. The initial burst release of physostigmine was effectively suppressed by introducing POE to the blend microspheres. However, there was an optimized weight ratio of POE to PLGA (85:15 in weight), below which a high initial burst was induced. The POE/PLGA blend microspheres may make a good drug delivery system. 相似文献
6.
Day RM Maquet V Boccaccini AR Jérôme R Forbes A 《Journal of biomedical materials research. Part A》2005,75(4):778-787
Recent studies have demonstrated the angiogenic potential of 45S5 Bioglass. However, it is not known whether the angiogenic properties of Bioglass remain when the bioactive glass particles are incorporated into polymer composites. The objectives of the current study were to investigate the angiogenic properties of 45S5 Bioglass particles incorporated into biodegradable polymer composites. In vitro studies demonstrated that fibroblasts cultured on discs consisting of specific quantities of Bioglass particles mixed into poly(D,L-lactide-co-glycolide) secreted significantly increased quantities of vascular endothelial growth factor. The optimal quantity of Bioglass particles determined from the in vitro experiments was incorporated into three-dimensional macroporous poly(D,L-lactide-co-glycolide) foam scaffolds. The foam scaffolds were fabricated using either compression molding or thermally induced phase separation processes. The foams were implanted subcutaneously into mice for periods of up to 6 weeks. Histological assessment was used to determine the area of granulation tissue around the foams, and the number of blood vessels within the granulation tissue was counted. The presence of Bioglass particles in the foams produced a sustained increase in the area of granulation tissue surrounding the foams. The number of blood vessels surrounding the neat foams was reduced after 2 weeks of implantation; however, compression-molded foams containing Bioglass after 4 and 6 weeks of implantation had significantly more blood vessels surrounding the foams compared with foams containing no Bioglass at the same time points. These results indicate that composite polymer foam scaffolds containing Bioglass particles retain granulation tissue and blood vessels surrounding the implanted foams. The use of this polymer composite for tissue engineering scaffolds might provide a novel approach for ensuring adequate vascular supply to the implanted device. 相似文献
7.
A compression-heat molding procedure was developed to fabricate poly(D,L-lactide-co-glycolide) (PLGA) controlled release drug delivery devices for the local treatment of tumors. The drug delivery devices were designed in the shape of a cylindrical millirod (1.6-mm diameter, 10-mm length), which allows them to be implanted by a modified 14-gauge tissue biopsy needle into tumor tissues via image-guided interventional procedures. In this study, the prototype trypan blue-containing PLGA millirods were fabricated under a compression pressure of 4.6 x 10(6) Pa and different fabrication temperatures for 2 h. The scanning electron microscopy results showed complete polymer annealing for millirods fabricated at 80 and 90 degrees C, while the cross sections of the 60 and 70 degrees C millirods showed incompletely annealed PLGA microspheres and trypan blue powders. The density, flexural modulus, and release properties of the PLGA millirods were also characterized and compared. The average values of the density and flexural modulus of the millirods increased with an increase in fabrication temperature. The flexural modulus values of most PLGA millirods were above 1 x 10(8) Pa, which provides sufficient stiffness for implantation within the tumor tissue. In addition, a Delta c(p) method was developed to determine the loading density of trypan blue in the PLGA millirods by differential scanning calorimetry. Results from the Delta c(p) measurement showed that trypan blue was homogeneously distributed in the millirod. Release studies in phosphate-buffered saline showed that the release rate decreased for the millirods fabricated at higher temperatures. The times for the release of 50% trypan blue were 5, 25, 25, and 25 h for millirods fabricated at 60, 70, 80, and 90 degrees C, respectively. Millirods fabricated at 90 degrees C had the most reproducible release profiles. The results from this study established compression--heat molding as an effective method to fabricate controlled release PLGA millirods with sufficient mechanical strength and reproducible release profiles for local cancer therapy. 相似文献
8.
One major obstacle for development of injectable biodegradable microspheres for controlled peptide and protein delivery is the high initial burst of drug release occurring over the first day of incubation. We describe here the significant reduction in initial burst release of a highly water-soluble model peptide, octreotide acetate, from poly(D,L-lactide-co-glycolide) microspheres by the co-encapsulation of a small amount of glucose (e.g., 0.2%w/w), i.e., from 30+/-20% burst - glucose to 8+/-3% + glucose (mean+/-SD, n=4). This reduction is unexpected since hydrophilic additives are known to increase porosity of microspheres, causing an increase in permeability to mass transport and a higher burst. Using the double emulsion-solvent evaporation method of encapsulation, the effect of glucose on initial burst in an acetate buffer pH 4 was found to depend on polymer concentration, discontinuous phase/continuous phase ratio, and glucose content. Extensive characterization studies were performed on two microsphere batches, +/-0.2% glucose, to elucidate the mechanism of this effect. However, no significant difference was observed with respect to specific surface area, porosity, internal and external morphology and drug distribution. Continuous monitoring of the first 24-h release of octreotide acetate from these two batches disclosed that even though their starting release rates were close, the microspheres + glucose exhibited a much lower release rate between 0.2 and 24h compared to those - glucose. The microspheres + glucose showed a denser periphery and a reduced water uptake at the end of 24-h release, indicating decreased permeability. However, this effect at times was offset as glucose content was further increased to 1%, causing an increase in surface area and porosity. In summary, we conclude that the effect of glucose on initial burst are determined by two factors: (1) increased initial burst due to increased osmotic pressure during encapsulation and drug release, and (2) decreased initial burst due to decreased permeability of microspheres. 相似文献
9.
This paper is covering new, simplistic method of obtaining the system for controlled delivery of the ascorbic acid. Copolymer poly (D,L-lactide-co-glycolide) (DLPLG) nanoparticles are produced using physical method with solvent/nonsolvent systems where obtained solutions were centrifuged. The encapsulation of the ascorbic acid in the polymer matrix is performed by homogenization of water and organic phases. Particles of the DLPLG with the different content of ascorbic acid have different morphological characteristics, that is, variable degree of uniformity, agglomeration, sizes, and spherical shaping. Mean sizes of nanoparticles, which contain DLPLG/ascorbic acid in the ratio 85/150%, were between 130 to 200 nm depending on which stereological parameters are considered (maximal diameters Dmax, feret X, or feret Y). By introducing up to 15% of ascorbic acid, the spherical shape, size, and uniformity of DLPLG particles are preserved. The samples were characterized by infrared spectroscopy, scanning electron microscopy, stereological analysis, and ultraviolet spectroscopy. 相似文献
10.
Costantino L Gandolfi F Bossy-Nobs L Tosi G Gurny R Rivasi F Vandelli MA Forni F 《Biomaterials》2006,27(26):4635-4645
We describe a general method for incorporating target moieties in a well-defined arrangement into the surface of biocompatible polyester poly(D,L-lactic-co-glycolic acid) (PLGA) materials using dendrons. In this way it is possible to obtain nanoparticles (NPs) with a high degree of surface coverage. This new strategy was successfully applied to the preparation of peptide- and beta-D-glucose-covered NPs. The first application is based on the discovery of NPs made of conjugates between PLGA and short peptidic sequences able to cross the blood-brain barrier (BBB) after systemic administration. In this paper, we used a branched structure (dendron) in order to prepare a derivative of PLGA able to form, by simple nanoprecipitation, NPs with a higher degree of surface coverage than previously reported by us, characteristic that could influence the uptake by the liver and spleen. The NPs thus obtained retain the ability to cross the BBB and possess a core-shell structure, as evidenced from zeta-potential, X-ray photoelectron (ESCA) spectroscopy and elemental analyses. These results are comparable with the NPs obtained by the derivatization of preformed NPs. The same strategy, namely the use of a branched spacer (a dendron or a G1 dendrimer) inserted between one end of the PLGA chain and a derivatizing molecule, was also successfully applied to obtain beta-D-glucose-covered NPs; in this case, the surface analysis of the NPs was performed by using high resolution magic angle spinning (HRMAS) NMR spectroscopy and zeta-potential measurements. 相似文献
11.
《Journal of biomaterials science. Polymer edition》2013,24(9):815-825
—Rifampicin-loaded poly(D,L-lactide) (PDLLA) microspheres in the size range of 0.8-8.0μm were prepared by a modified solvent evaporation method. Rifampicin loading was changed by using different types of solvents (i.e. methylene chloride, chloroform, and carbon tetrachloride) with different solvent/polymer ratios and different emulsifiers (i.e. methyl cellulose, gelatin, and Tween-20), and by changing the initial drug/polymer ratio. These rifampicin-loaded PDLLA microspheres degraded much faster in the medium at basic pH (9.8) and at high temperatures (55°C). Rifampicin release was also high under these conditions. It was concluded that rifampicin release was both degradation- and diffusion-controlled. 相似文献
12.
Lihui Weng Parinaz Rostamzadeh Navid Nooryshokry Hung C. Le Jafar Golzarian 《Acta biomaterialia》2013,9(6):6823-6833
Natural polymer-derived materials have attracted increasing interest in the biomedical field. Polysaccharides have obvious advantages over other polymers employed for biomedical applications due to their exceptional biocompatibility and biodegradability. None of the spherical embolic agents used clinically is biodegradable. In the current study, microspheres prepared from chitosan and carboxymethyl cellulose (CMC) were investigated as a biodegradable embolic agent for arterial embolization applications. Aside from the enzymatic degradability of chitosan units, the cross-linking bonds in the matrix, Schiff bases, are susceptible to hydrolytic cleavage in aqueous conditions, which would overcome the possible shortage of enzymes inside the arteries. The size distribution, morphology, water retention capacity and degradability of the microspheres were found to be affected by the modification degree of CMC. An anticancer drug, doxorubicin, was successfully incorporated into these microspheres for local release and thus for killing cancerous cells. These microspheres demonstrated controllable degradation time, variable swelling and tunable drug release profiles. Co-culture with human umbilical vein endothelial cells revealed non-cytotoxic nature of these microspheres compared to monolayer control (P > 0.95). In addition, a preliminary study on the in vivo degradation of the microspheres (100–300 μm) was performed in a rabbit renal embolization model, which demonstrated that the microspheres were compatible with microcatheters for delivery, capable of occluding the arteries, and biodegradable inside arteries. These microspheres with biodegradability would be promising for embolization therapies. 相似文献
13.
A physicochemical study of the morphology of progesterone-loaded microspheres fabricated from poly(D,L-lactide-co-glycolide) 总被引:1,自引:0,他引:1
V Rosilio J P Benoit M Deyme C Thies G Madelmont 《Journal of biomedical materials research》1991,25(5):667-682
Progesterone-loaded microspheres are fabricated by a solvent evaporation process from a poly(D,L-lactide-co-glycolide) (85/15 PLG) and from alpha-progesterone. Methylene chloride is used as solvent and polyvinyl alcohol and methylcellulose are used as surfactants. The microspheres are characterized by scanning electron microscopy, differential scanning calorimetry, and x-ray powder diagrams. Our study shows that the morphology and the thermal behavior of PLG microspheres can vary significantly with progesterone loading and sample thermal history. Below and at 16.5% loading the microspheres exhibit a smooth outer surface. Above 23% loading, the surface becomes rough, embedded by copolymer particles or well-defined crystals. Pores and cracks can also be observed. Below 35% the progesterone is molecularly dispersed. At 35% and above crystal domains of the steroid appear and two crystalline forms are found: alpha- and beta-progesterone. The physical state of progesterone and the nature of its crystal domains dispersed in the PLG matrix can change during storage. Also a progressive development of an endothermic peak at the Tg event of the copolymer is observed during storage. No well defined relationship of peak size to progesterone loading can be shown. 相似文献
14.
Biocompatibility of poly(D,L-lactide-co-glycolide) nanoparticles conjugated with alendronate 总被引:2,自引:0,他引:2
Cenni E Granchi D Avnet S Fotia C Salerno M Micieli D Sarpietro MG Pignatello R Castelli F Baldini N 《Biomaterials》2008,29(10):1400-1411
Nanoparticles made of a conjugate of poly(D,L-lactide-co-glycolide) with alendronate (PLGA-ALE NPs), were prepared by emulsion/solvent evaporation technique. The conjugation yield, determined by MALDI TOF analysis, was 30-35%. PLGA-ALE NPs size, evaluated by photon correlation spectroscopy, was 198.7+/-0.2 nm. Haemocompatibility studies using different concentrations of PLGA-ALE NPs did not show any significant effect on haemolysis, leukocyte number, platelet activation, APTT and complement consumption, in comparison with blood incubated with phosphate buffered saline (PBS). A significant reduction of the prothrombin activity was demonstrated after incubation with 560 microg/ml of PLGA-ALE NPs; a significant increase was observed at the highest dilutions. The viability of human umbilical vein endothelial cells and bone marrow stromal cells (BMSC), evaluated through the neutral red test, was not affected by PLGA-ALE NPs. There were no significant differences in cell-associated alkaline phosphatase between BMSC incubated with PLGA-ALE NP- and PBS-added media. These results demonstrated that PLGA-ALE NPs had an acceptable degree of blood compatibility and were not cytotoxic; therefore, they may be considered suitable for intravenous administration. 相似文献
15.
Thermally sensitive block copolymers, poly(N-isopropylacrylamide-co-N, N-dimethylacrylamide)-b-poly(d,l-lactide-co-glycolide) [P(NIPAAm-co-DMAAm)-b-poly(D,L-lactide-co-glycolide) (PLGA)] with different compositions and lengths of PLGA block are synthesized and utilized to fabricate micelles containing doxorubicin (DOX), a model anticancer drug, by a membrane dialysis method for targeted anticancer drug delivery. The critical association concentration (CAC) of the polymers ranges from 4.0 to 25.0 mg/L. An increased length of core-forming block PLGA leads to a decrease in the CAC. The clearly defined core-shell structure of micelles is proved by 1H-NMR analyses of the micelles in CDCl3 and D2O. The morphology of the micelles is analyzed by transmission electron microscopy, showing a spherical structure of both blank and drug-loaded micelles. The results obtained from dynamic light scattering show that the blank and drug-loaded micelles have an average size below 200 nm. The lower critical solution temperature (LCST) of the micelles made from the various polymers is similar, around 39 degrees C in phophate-buffered solution (PBS). The presence of serum in PBS does not alter the LCST significantly. The drug loading capacity varies depending on the PLGA block. The polymers are degradable, and the degradation of PLGA-based polymers is faster than that of poly(lactide) (PLA)-based polymer. The DOX-loaded micelles are stable in PBS containing serum at 37 degrees C but deform at 39.5 degrees C above the normal body temperature, thus triggering DOX release. It is revealed by confocal laser scanning microscopy that free DOX molecules enter cell nuclei very fast and DOX-loaded micelles accumulate mostly in cytoplasm after endocytosis. At a temperature above the LCST, more DOX molecules release from the micelles and enter the nuclei as compared to the temperature below the LCST. DOX-loaded micelles show greater cytotoxicity at a temperature above the LCST. The P(NIPAAm-co-DMAAm)-b-PLGA micelles developed may be a good carrier for anticancer drug delivery. 相似文献
16.
目的研究磁性聚乳酸-羟基乙酸氧化苦参碱纳米粒(M-PLGA-OM-NP)的制备工艺,并对纳米粒子进行评价。方法运用复乳法制备M-PLGA-OM-NP,通过透射电子显微镜观察纳米粒形态,并对纳米粒的平均粒径、载药量、包封率、体外释药情况等进行评价。结果纳米粒外观呈规则球形,其平均粒径为146.5 nm,载药量为7.61%,包封率为44.8%。突释后至第72小时,纳米粒维持较稳定的释药速度,累积释放达52.9%。72~240 h,药物释放缓慢,累计释放约为16.6%,体外释放符合Ritger peppas方程lny=1.280 6+lnt。氧化苦参碱药性不受温度影响。结论获得了较满意的M-PLGA-OM-NP制备工艺,其过程简单,粒子性状符合要求。 相似文献
17.
Kempen DH Lu L Zhu X Kim C Jabbari E Dhert WJ Currier BL Yaszemski MJ 《Journal of biomedical materials research. Part A》2004,70(2):293-302
This article describes the effects of six processing parameters on the release kinetics of a model drug Texas red dextran (TRD) from poly(propylene fumarate)/poly(lactic-co-glycolic acid) (PPF/PLGA) blend microspheres as well as the degradation of these microspheres. The microspheres were fabricated using a double emulsion-solvent extraction technique in which the following six parameters were varied: PPF/PLGA ratio, polymer viscosity, vortex speed during emulsification, amount of internal aqueous phase, use of poly(vinyl alcohol) in the internal aqueous phase, and poly(vinyl alcohol) concentration in the external aqueous phase. We have previously characterized these microspheres in terms of microsphere morphology, size distribution, and TRD entrapment efficiency. In this work, the TRD release profiles in phosphate-buffered saline were determined and all formulations showed an initial burst release in the first 2 days followed by a decreased sustained release over a 38-day period. The initial burst release varied from 5.1 (+/-1.1) to 67.7 (+/-3.4)% of the entrapped TRD, and was affected most by the viscosity of the polymer solution used for microsphere fabrication. The sustained release between day 2 and day 38 ranged from 7.9 (+/-0.8) to 27.2 (+/-3.1)% of the entrapped TRD. During 11 weeks of in vitro degradation, the mass of the microspheres remained relatively constant for the first 3 weeks after which it decreased dramatically, whereas the molecular weight of the polymers decreased immediately upon placement in phosphate-buffered saline. Increasing the PPF content in the PPF/PLGA blend resulted in slower microsphere degradation. Overall, this study provides further understanding of the effects of various processing parameters on the release kinetics from PPF/PLGA blend microspheres thus allowing modulation of drug release to achieve a wide spectrum of release profiles. 相似文献
18.
背景:乳酸-羟基乙酸共聚物是一种生物可降解高分子材料,以乳酸-羟基乙酸共聚物为原料制备的载药微球和纳米粒既可提高药物的稳定性,又能实现缓释、控释和靶向释放。
目的:分析乳酸-羟基乙酸共聚物缓控释微球的制备方法以及突释的成因、影响因素和改进方法。
方法:应用计算机检索1990/2010中国期刊全文数据库和PubMed数据库与乳酸-羟基乙酸共聚物缓控释微球的制备及突释联系紧密的文章。
结果与结论:目前乳酸-羟基乙酸共聚物缓释微球制备方法主要有单凝聚法、乳化-固化法、喷雾干燥法。造成其突释的原因首先是药物分子和聚合物分子之间的相互作用太弱,导致药物很容易从微球进入释放递质中,其次是在微球释放初期,药物从微球中的孔洞和缝隙中释放出来导致突释。影响突释程度的具体因素有乳酸-羟基乙酸共聚物的相对分子质量、浓度、微球载药量、主药理化性质、微球制备方法及制备参数等。虽然国内外对突释机制以及控制突释措施的研究都还处于初步阶段,通过对各影响因素加以适当优化与控制,可在一定程度上减少微球的突释率,突释问题应该能够得到解决和控制。 相似文献
19.
Bini TB Gao S Xu X Wang S Ramakrishna S Leong KW 《Journal of biomedical materials research. Part A》2004,68(2):286-295
Tiny tubes with fiber architecture were developed by a novel method of fabrication upon introducing some modification to the microbraiding technique, to function as nerve guide conduit and the feasibility of in vivo nerve regeneration was investigated through several of these conduits. Poly(L-lactide-co-glycolide) (10:90) polymer fibers being biocompatible and biodegradable were used for the fabrication of the conduits. The microbraided nerve guide conduits (MNGCs) were characterized using scanning electron microscopy to study the surface morphology and fiber arrangement. Degradation tests were performed and the micrographs of the conduit showed that the degradation of the conduit is by fiber breakage indicating bulk hydrolysis of the polymer. Biological performances of the conduits were examined in the rat sciatic nerve model with a 12-mm gap. After implantation of the MNGC to the right sciatic nerve of the rat, there was no inflammatory response. One week after implantation, a thin tissue capsule was formed on the outer surface of the conduit, indicating good biological response of the conduit. Fibrin matrix cable formation was seen inside the MNGC after 1 week implantation. One month after implantation, 9 of 10 rats showed successful nerve regeneration. None of the implanted tubes showed tube breakage. The MNGCs were flexible, permeable, and showed no swelling apart from its other advantages. Thus, these new poly(L-lactide-co-glycolide) microbraided conduits can be effective aids for nerve regeneration and repair and may lead to clinical applications. 相似文献
20.
Guan XP Quan DP Liao KR Tao Wang Peng Xiang Mai KC 《Journal of biomaterials applications》2008,22(4):353-371
Chitosan (CS)-modified poly(D,L-lactide-co-glycolide) (PLGA/CS) nanoparticles with cationic surface were prepared by means of emulsion-solvent evaporation technique using polyviny alcohol and chitosan as costabilizers. The preparation conditions of the cationic nanoparticles were optimized by orthogonal factorial design, and the influences of the experiment variables such as polymer concentration, the molecular weight of chitosan, etc., on the size and zeta potential of the nanoparticles were evaluated. It was shown that the diameter of the PLGA/CS nanoparticles can be controlled in the range of 150-200 nm as determined by dynamic light scattering with the optimized conditions. The zeta potential of PLGA/CS nanoparticles increased with increasing the concentration of CS (C(CS)) or decreasing the pH, it was up to 55 mV when C(CS) was 3 mg/mL at pH 4 and inversed around pH 8. The optimization conditions for fabricating the relatively small diameter and high zeta potential cationic nanoparticles were C(CS) 3 mg/mL, C(PLGA) 10 mg/mL, and the volume ratio of organic solution to aqueous medium 1/4. X-ray photo electron spectroscopy and fluorescence inverted microscope observations approved that CS molecules were adsorbed on the surface of PLGA nanoparticles, DNA-condensing ability of the PLGA/CS nanoparticles and cell transfection efficiency of the nanoparticle-DNA complexes were estimated by gel electrophoresis and transfection experiment to 293FT cell, respectively. 相似文献