首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct projections primarily ipsilateral to hippocampus from medial septal, diagonal band, supramammillary, submammillothalamic, locus coeruleus, and dorsal and medianus raphe nuclei were demonstrated. The locus coeruleus projects primarily through the cingulum and fornix superior to the dorsal posterior hippocampus, with its terminal fields in the stratum lacunosum moleculare of the subiculum and areas CA 1-CA 2 of the dorsal posterior hippocampus. LC projections to the granular layer of the dentate hilus were not found. Raphe nuclei project through the cingulum, fornix superior, and primarily the fimbria, to the dorsal and ventral posterior hippocampus, with their terminal fields in the stratum lacunosum moleculare of the dorsal posterior subicular region, stratum radiatum of CA 1-CA 3 in the dorsal hippocampus, and the stratum polymorph of the dentate gyrus, primarily in its superficial part. Raphe projections to the anterior hippocampal rudiment were found. However, no projection was found to the subiculum of the ventral posterior hippocampus, nor to stratum oriens. Hypothalamic nuclei project through the fornix superior and the fimbria, mainly to the dorsal posterior hippocampus with abundant terminal fibers in the depth of the dentate hilus. Smaller cells in these hypothalamic nuclei appear projecting to the ventral hippocampus. The number of neurons in the entorhinal area, the diagonal band, and the hypothalamic nuclei projecting to the hippocampus suggests these groups as the main sources of the extrinsic hippocampal afferents. In addition, they may also serve as relay stations for inputs from more caudal nuclei, and the topographic organization of their terminal fields as described herein may have important functional implications.  相似文献   

2.
With the principal aim of providing baseline observations for future experimental studies, the distribution of somatostatin-like and neuropeptide Y-like immunoreactivities is described in the dentate area, hippocampus, and subiculum of the domestic pig (Sus scrofa domesticus) and compared with the distribution described in other mammals. Intensely stained somatostatin-like immunoreactive nerve cell bodies were present throughout the region, with highest densities in the dentate hilus, stratum radiatum and stratum oriens of the hippocampal regio inferior, stratum oriens of the hippocampal regio superior, and in the subicular cell layer. Somatostatin-like immunoreactive terminals were represented by both stained fibers and stained puncta. Scattered somatostatin-like immunoreactive nerve fibers were seen in most areas, but regular fiber plexuses were present in the dentate molecular layer and dentate hilus, stratum moleculare of the hippocampus, and in the subicular plexiform layer. Somatostatin-like immunoreactive puncta were seen in the dentate molecular layer, stratum moleculare of the hippocampus, and in the subicular plexiform layer. Neuropeptide Y-like immunoreactive nerve cell bodies were less numerous than somatostatin-like immunoreactive ones. They were mainly seen in the dentate granule cell layer and dentate hilus, stratum radiatum and stratum oriens of the hippocampus, and in the subicular cell layer. Intensely stained neuropeptide Y-like immunoreactive fibers were numerous, and present in all areas examined. They formed fiber plexuses in the dentate molecular layer and dentate hilus, stratum moleculare of the hippocampal regio superior, and in the subicular plexiform layer. Neuropeptide Y-like immunoreactive puncta were present in the dentate molecular layer, stratum moleculare of the hippocampus, and in the subicular plexiform layer. Consistent and very characteristic variation in the distribution of somatostatin-like and neuropeptide Y-like immunoreactivity was found along the septotemporal axis of the hippocampus. The distribution of somatostatin-like and neuropeptide Y-like neurons and terminals in the domestic pig displayed striking similarities with the basic pattern of organization of these neuropeptides in other species, although more subtle species-specific characteristics were also observed in the pig.  相似文献   

3.
Calcium-binding proteins calbindin D28k (CaBP) and parvalbumin (PV) were localized in neurons of the monkey hippocampal formation. CaBP immunoreactivity is present in all granule cells and in a large proportion of CA1 and CA2 pyramidal neurons, as well as in a distinct population of local circuit neurons. In the dentate gyrus, CaBP-immunoreactive nongranule cells are present in the molecular layer and in the hilar region, but they do not include the pyramidal basket cells at the hilar border. In the Ammon's horn, CaBP-positive, nonpyramidal neurons are more frequent in the CA3 area than in any other parts of the hippocampal formation. They are concentrated in the strata oriens and pyramidale of areas CA1-3, whereas only a few small neurons were found in the strata lucidum and radiatum of CA3 and in the stratum moleculare of the CA1 area. PV is exclusively present in local circuit neurons both in the dentate gyrus and in Ammon's horn. In the dentate gyrus the presumed basket cells at the hilar border exhibit PV immunoreactivity. In the hilar region and molecular layer only a relatively small number of cells are immunoreactive for PV. Most of these PV-positive cell bodies are located in the inner half of the molecular layer, with occasional horizontal cells at the hippocampal fissure. In Ammon's horn, strata oriens and pyramidale of areas CA1-3 contain a large number of PV-positive cells. There are no PV-immunoreactive cells in the strata lucidum, radiatum, or lacunosum moleculare. The CaBP- and PV-containing neurons form different subpopulations of cells in the monkey hippocampal formation. With the exception of a basket cell type in the monkey dentate gyrus, the CaBP- and PV-positive cell types were found to be remarkably similar in rodents and primates.  相似文献   

4.
Both differences and similarities exist between mammalian species in the projections from entorhinal cortex to the hippocampal formation. In most species, layer II cells of the entorhinal cortex project to the dentate gyrus, and they terminate in the outer two-thirds of the molecular layer of the dentate gyrus. The axons from layer III cells project bilaterally to areas CA(1) and CA(3) of the hippocampus, terminating in the stratum lacunosum moleculare. We have analyzed these projections in mice, and in general, the entorhinal cortex-to-hippocampus projections are similar to those in rats. Axons from layer II neurons terminate in the outer and middle thirds of the molecular layer of the dentate gyrus, and axons from layer III neurons terminate bilaterally in the stratum lacunosum moleculare of areas CA(1) and CA(3), and in the molecular layer of the subiculum. However, in contrast to rat, mouse entorhinal cortex neurons do not appreciably project to the contralateral dentate gyrus. Most species, including mice, show a similar topographical organization of the entorhinal-hippocampal projections, with neurons in the lateral part of both the lateral and medial entorhinal cortex projecting to the dorsal part or septal pole of the hippocampus, whereas the projection to the ventral hippocampus originates primarily from neurons in medial parts of the entorhinal cortex.  相似文献   

5.
The distribution of cholecystokinin-like, enkephalin-like, and substance P-like immunoreactivities is described in the dentate area, hippocampus, and subiculum of the domestic pig (Sus scrofa domesticus) as a baseline for future experimental studies. The distributions in the pig are compared with previous observations in other species. Cholecystokinin-like immunoreactive nerve cell bodies were intensely stained and present in large numbers in all subfields studied. Cholecystokinin-like immunoreactive terminals appeared as stained puncta, whereas fibers were only rarely encounterd. The puncta were mainly seen in the dentate molecular layer and dentate granule cell layer, the pyramidal cell layer of the hippocampal regio inferior, stratum moleculare of the hippocampal regio superior, and in the subiculum. Enkephalin-like immunoreactive nerve cell bodies were faintly stained and generally present in very small numbers, except for some pyramidal cells in the subicular cell layer. Enkephalin-like immunoreactive fibers were few in number, whereas stained puncta appeared with variable densities. Puncta of particularly high densities were found in the dentate molecular layer, whereas they appeared of moderate density in the dentate hilus, stratum moleculare of the hippocampal regio superior, and in the subiculum. Substance P-like immunoreactive nerve cell bodies were few and very faintly stined. They primarily occurred in the dentate hilus, stratum oriens of the hippocampus, and in the subicular cell layer. Stained fibers were few in number, whereas stained puncta were present in abundant numbers corresponding to the mossy fiber projection in the dentate hilus and the layer of mossy fibers of the hippocampal regio inferior, and in moderate numbers in stratum moleculare of the hippocampal regio superior and in the subiculum. For all three neuropeptides there were consistent and very characteristic variations in the distribution of immunoreactivity along the septotemporal axis of the hippocampus. When viewed in a comparative perspective the distribution of enkephalin-like and substance P-like terminals in the domestic pig displayed striking differences from the basic pattern observed in other species. This contrasted with the distribution of cholecystokinin-like neurons and terminals, which resembled more closely these species. © 1993 Wiley-Liss, Inc.  相似文献   

6.
Five green monkeys were examined with light and electron microscopic preparations to explore the regional differences in the distribution of parvalbumin (PV)-positive neurons and axon terminals in the primate hippocampus. PV-positive neurons were mainly found in the hilus of the dentate gyrus and the strata oriens and pyramidale of Ammon's horn. In electron microscopic preparations, the PV-positive cells displayed nuclear infoldings, intranuclear rods, a large rim of perikaryal cytoplasm with numerous organelles and both asymmetric and symmetric axosomatic synapses. One prominent PV-positive cell type in CA1 was a large multipolar neuron that resembled the large basket cells of the neocortex. Although most PV-positive dendrites were aspiny and postsynaptic to numerous axon terminals, some PV-positive dendrites in the molecular layer of the dentate gyrus displayed filipodia-like appendages with no synapses or spines that were postsynaptic to multiple axon terminals. The PV-positive dendrites in the hilus and stratum oriens were apposed at specialized junctions that resembled gap junctions. PV-positive axons were concentrated in the principal cell layers, and formed axosomatic, axodendritic, and axon initial segment synapses. In cases where these axons were observed to appose the surface of granule cells for a long length, only one axosomatic symmetric synapse per cell was found. In the hilus, PV-positive axon terminals formed synapses onto thorny excrescences of spiny cells. Both semithin sections and electron microscopic preparations indicated that more PV-positive axon terminals formed symmetric axosomatic synapses with pyramidal cells in CA2 than in CA1 and CA3. Also, CA2 displayed a unique plexus of PV-positive axon terminals in stratum lacunosum moleculare. These results indicate that the PV-positive hippocampal cells form a subset of GABAergic local circuit neurons, including the basket and chandelier cells. The ubiquitous finding of PV-positive dendrites linked by gap junctions throughout the dentate gyrus and Ammon's horn adds further data to indicate that this subset of GABAergic neurons is linked electrotonically. The synaptic organization of PV-positive neurons in the hippocampus suggests their participation in both feedback and feedforward inhibition. The PV-positive neurons in the hippocampus are only a proportion of the basket and chandelier cells, whereas virtually all of these cells in neocortex are PV-positive. © 1993 Wiley-Liss, Inc.  相似文献   

7.
Significant reduction in glutamate receptor 1 (GluR1)- and GluR2/3-immunopositive neurons was demonstrated in the hilus of the dentate gyrus in mice killed on days 1, 7 and 60 after pilocarpine-induced status epilepticus (PISE). In addition, GluR1 and GluR2/3 immunostaining in the strata oriens, radiatum and lacunosum moleculare of areas CA1-3 decreased drastically on days 7 and 60 after PISE. Neuronal loss observed in the above regions may account, at least in part, for a decrease in GluR immunoreactivity. By contrast, many GluR1-immunopositive neurons were observed in the gliotic area of CA1. Of these, about 42.8% were immunopositive for markers for hippocampal interneurons, namely calretinin (7.6%), calbindin (12.8%) and parvalbumin (22.4%). GluR1 or GluR2/3 and BrdU double-labelling showed that the GluR1- and GluR2/3-immunopositive neurons at 60 days after PISE were neurons that had survived rather than newly generated neurons. Furthermore, anterograde tracer and double-labelling studies performed on animals at 60 days after PISE indicated a projection from the hilus of the dentate gyrus to gliotic areas in both CA3 and CA1, where the projecting fibres apparently established connections with GluR1-immunopositive neurons. The projection to CA1 was unexpected. These novel findings suggest that the intrinsic hippocampal neuronal network is altered after PISE. We speculate that GluR1-immunopositive neurons in gliotic CA1 act as a bridge between dentate gyrus and subiculum contributing towards epileptogenesis.  相似文献   

8.
Light and electron microscopic substance P (SP) immunostaining was performed on hippocampal sections of colchicine-pretreated, control, untreated fimbria-fornix-transected (5 days), as well as perforant path-stimulated Sprague-Dawley rats fixed in 5% acrolein. Numerous SP-immunoreactive neurons could be observed in the stratum oriens of the Ammon's horn and subiculum, fewer were seen in the dentate hilar area and stratum radiatum of CA2 and CA3, and even fewer were seen at the border between the CA1 strata radiatum and the lacunosum moleculare of CA1 subfield. A higher dose of colchicine resulted in SP immunoreactivity in a large population of granule cells and mossy axon terminals. The entire CA2 region, the stratum oriens of CA1, CA3, and the subiculum were densely innervated by SP-containing axon terminals. A homogeneous SP innervation was found in the stratum radiatum of CA1. Only a few SP fibers were seen adjacent to the granule cell layer. Symmetric axosomatic contacts were seen between SP-containing boutons and somata in the stratum oriens of the Ammon's horn. However, throughout the hippocampal formation, the majority of SP-containing axons formed axodendritic symmetric synapses. A dense population of SP-immunoreactive boutons that formed axodendritic asymmetric synapses was observed in the strata oriens and radiatum of the CA3a and CA2 regions, and a few were found in the supragranular and subgranular layers of the dentate gyrus. Fimbria-fornix transection resulted in a marked loss of SP fibers in the strata oriens, pyramidale, and radiatum of the CA3a and CA2 subfields. In perforant pathway-stimulated animals, a population of granule cells and a large number of mossy axon terminals were immunoreactive for SP. These observations suggest two sources of SP innervation to the hippocampal formation: one arising from intrinsic sources (interneurons and granule cells) and one arising from extrinsic sources, most likely the supramammillary region. J. Comp. Neurol. 384:41–58, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
The distribution of Ca2+-binding protein, parvalbumin (PV), containing neurons and their colocalization with glutamic acid decarboxylase (GAD) were studied in the rat hippocampus and dentate gyrus using immunohistochemistry. PV immunoreactive (PV-I) perikarya were concentrated in the granule cell layer and hilus in the dentate gyrus and in the stratum pyramidale and stratum oriens in the CA3 and CA1 regions of the hippocampus. They were rare in the molecular layer of the dentate gyrus, in the stratum radiatum and in the stratum lacunosum-moleculare of the hippocampus. PV-I axon terminals were restricted to the granule cell layer, the stratum pyramidale and the immediately adjoining zones of these layers. Almost all PV-I neurons were also GAD immunoreactive (GAD-I), whereas only about 20% of GAD-I neurons also contained PV. The percentages of GAD-I neurons which were also immunoreactive for PV were dependent on the layer in which they were found; i.e. 40-50% in the stratum pyramidale, 20-30% in the dentate granule cell layer and in the stratum oriens of the CA3 and CA1 regions, 15-20% in the hilus and in the stratum lucidum of CA3 region and only 1-4% in the dentate molecular layer and in the stratum radiatum and the stratum lacunosum-moleculare of the CA3 and CA1 regions. PV-I neurons are a particular subpopulation of GABAergic neurons in the hippocampal formation. Based on their morphology and laminar distribution, they probably include basket cells and axo-axonic cells.  相似文献   

10.
Pharmacological depolarization by KCl or veratrine reduced [3H]diprenorphine binding to opioid receptors in the hippocampal slice in a transient, calcium-dependent, and peptide-sensitive manner. These results suggest that endogenous opioid peptides were released from synaptic terminals and competitively displaced [3H]diprenorphine binding to opioid receptors. [3H]diprenorphine binding was significantly reduced by calcium-dependent depolarization throughout the hippocampus as determined by subsequent receptor autoradiography and quantitative densitometry. Displacement of binding was evident at sites in the CA1 and CA3 regions, the dentate gyrus, and the subiculum. The most dramatic reduction was evident in stratum lacunosum moleculare of CA3. Correlating the sites of maximal [3H]diprenorphine displacement with the previously described distribution of the opioid peptides suggests that the perforant path fibers release enkephalins in stratum lacunosum moleculare of CA3 and stratum moleculare of the dentate gyrus, and that mossy fibers may release both dynorphins and enkephalins near stratum pyramidale of CA3 and stratum granulosum. The lack of complete overlap between the distribution of opioid terminals and the sites of displacement indicates that these peptides may diffuse a moderate distance to their sites of action. Radioligand displacement defines the sites of endogenous opioid binding, suggests the likely sources of peptide release, and thus predicts the sites of endogenous opioid action within the hippocampus.  相似文献   

11.
Chromogranins are polypeptides which are widely expressed in the central nervous system. They are stored in dense core vesicles of nerve terminals, from where they are released upon stimulation. Using immunocytochemistry, we investigated the distribution of chromogranin A, chromogranin B, secretoneurin, and, for comparison, dynorphin in hippocampal specimens removed at routine surgery from patients with drug-resistant mesial temporal lobe epilepsy and in autopsy tissues from nonneurologically deceased subjects. In post mortem controls (n = 21), immunoreactivity for all 4 peptides (most prominently for chromogranin B and dynorphin) was observed in the terminal field of mossy fibers. For chromogranins, staining was observed also in sectors CA1 to CA3 and in the subiculum. Chromogranin B immunoreactivity was found in the inner molecular layer of the dentate gyrus, the area of terminating associational-commissural fibers. Secretoneurin and dynorphin immunoreactivity labeled the outer molecular layer and the stratum lacunosum moleculare of sectors CA1 to CA3, where projections from the entorhinal cortex terminate. In specimens with Ammon's horn sclerosis (n = 25), staining for all 3 chromogranins and for dynorphin was reduced in the hilus of the dentate gyrus. Instead, intense staining was observed in the inner molecular layer, presumably delineating terminals of sprouted mossy fibers. Specimens obtained from temporal lobe epilepsy patients without Ammon's horn sclerosis (n = 4) lacked this pronounced rearrangement of mossy fibers. In the stratum lacunosum moleculare of sector CA1, secretoneurin and dynorphin immunoreactivity was reduced in sclerotic, but not in nonsclerotic, specimens, paralleling the partial loss of fibers arising from the entorhinal cortex. Instead, presumably sprouted secretoneurin-immunoreactive fibers were found in the outer dentate molecular layer in sclerotic specimens. These changes in staining patterns for chromogranins and dynorphin mark profound plastic and functional rearrangement of hippocampal circuitry in temporal lobe epilepsy.  相似文献   

12.
Microinfusions of cholinergic agents were made in various sites in the dorsal hippocampal formation of urethane anaesthetized rats. Infusions of eserine or carbachol elicited hippocampal theta activity when made in areas containing high levels of cholinergic markers: the stratum oriens and radiatum of the CA1 and CA3, the stratum moleculare and stratum granulosum of the dentate gyrus and the infragranular region of the hilus. Subsequent infusions of atropine sulfate antagonized the theta activity. Control infusions of equal volumes of saline in active sites were without effect. Infusions of eserine or carbachol in the vicinity of the hippocampal fissure, the stratum lacunosum/moleculare of the CA1 or CA3, in the deep regions of the hilus, and in the lateral ventricle and overlying neocortex, were also without effect. Furthermore, in active sites, the latency to onset of theta and subsequent theta frequency, were both directly related to the total amount of carbachol infused. Thus, areas in which theta could be elicited with a cholinergic agonist (carbachol), or an anticholinesterase (eserine) and antagonized with atropine, were found to correspond well to areas previously found to contain a high density of cholinoceptive neurons, using autoradiographic and immunohistochemical techniques. These results provide further support for the involvement of acetylcholine as a neurotransmitter in the generation of type 2 theta in the hippocampal formation.  相似文献   

13.
The expression of metabotropic glutamate receptor 1alpha was studied in the rat hippocampus after pilocarpine-induced status epilepticus by Western blot and immunocytochemistry at both light and electron microscopic levels. At 1 day after pilocarpine-induced status epilepticus, there was marked decrease in metabotropic glutamate receptor 1alpha immunoreactivity at the border between stratum oriens and alveus in CA1 and CA3, and in the hilus of dentate gyrus. Between 3 and 31 days after pilocarpine-induced status epilepticus, metabotropic glutamate receptor 1alpha-immunoreactive dendrites and cell bodies in the border between stratum oriens and alveus gradually reappeared. Upregulation of metabotropic glutamate receptor 1alpha, however, was observed in the stratum oriens of CA1 at day 1, but returned to baseline by day 7. By electron microscopy, the metabotropic glutamate receptor 1alpha-immunoreactive product was demonstrated only in the post-synaptic elements in the border between the stratum oriens and alveus of CA1 and the hilus of the dentate gyrus in both control and experimental rats. At 1 day after pilocarpine-induced status epilepticus, metabotropic glutamate receptor 1alpha-immunoreactive degenerating neurons were identified in the border between stratum oriens and alveus of CA1 and the hilus of the dentate gyrus. At 7 and 31 days, many degenerating axons were also found. Present results suggest that excitoneurotoxicity mediated through post-synaptic metabotropic glutamate receptor 1alpha may be involved in degeneration and death of interneurons in the hilus of dentate gyrus, and the border between stratum oriens and alveus of CA1 in the early stage after pilocarpine-induced status epilepticus.  相似文献   

14.
The distribution of GABA-immunoreactive neurons and axonal varicosities was investigated in the hippocampal region of the rat brain by means of an indirect peroxidase immunocytochemical method with recently developed anti-GABA antibodies. The immunolabeling was found to be restricted to nervous structures: neuronal cell bodies, dendrites and axon terminals. Myelinated axons showing GABA-immunoreactivity were also observed. GABA-immunoreactive neurons were found in great number in the stratum pyramidale, the superficial part of the stratum oriens and the deep part of the stratum radiatum in the Ammon's horn. Less were found in the other regions; rare labeled cells were observed in the superficial part of the stratum radiatum and the middle part of the stratum oriens. The dentate gyrus exhibited numerous labeled cells in the granular layer, few in the hilus, rare in the molecular later. A high density of GABA-immunoreactive terminals was found at the limit of the stratum oriens with the alveus, in the stratum pyramidale and in the stratum lacunosum. A lower density of labeled fibers was observed in the other areas. The somata and proximal dendrites of pyramidal and granular cells were encompassed by characteristics pericellular arrangements of GABA-immunoreactive varicosities. Ultrastructural observations revealed a diffuse immunoreaction product spread over the cytoplasm and the nucleus without specific relationship with the organelles, and immunoreactive aggregates in the cytoplasm. Labeled dendrites often showed enlargements displaying the immunoreaction whereas thinner segments were devoid of it. They received numerous asymmetrical synapses from unlabeled axon terminals. GABA-immunoreactive terminals were filled with small clear vesicles with immunopositive membranes and were observed in symmetrical contact with somata and dendrites.  相似文献   

15.
The detailed patterns of afferentation to the ammon's horn and dentate gyrus of the hippocampus in the rat were investigated employing the anterograde tracer Phaseolus vulgaris leuco-agglutinin (PHA-L) after punctate iontophoretic injections in the medial septum (MS) and vertical limb of the diagonal band of Broca (VDB). The topographically ordered innervation pattern was different in the regio superior (or CA1) vs. the regio inferior (or CA3) and in the dorsal vs. ventral aspects of ammon's horn and dentate gyrus. The CA1 pyramidal and dentate granule cell layers in the dorsal hippocampus received afferent input almost exclusively from the VDB, whereas those cell layers in ventral hippocampus were supplied from both VDB and MS. The PHA-L labeled projecting fibers could be differentiated into two distinct fiber systems. One class of thick and coarse axons (tentatively called type I fibers) carried fewer but larger terminal boutons and were found to infiltrate the entire stratum oriens, dentate hilus, all layers of the regio inferior and the CA1 str. moleculare. A second, delicate thin (type II) fiber system provided with numerous and passant varicosities showed a much more restricted laminar innervation pattern and appeared to originate from areas in MS-VDB which are rich in AChE-positive neurons. The densest type II fiber networks could be observed in the CA1 subpyramidal and dentate supragranular zones, in the CA1 stratum lacunosum-moleculare and in the dentate middle third molecular layer. This laminar type II innervation pattern showed a remarkable coincidence with the reported distribution of cholinergic marker enzymes. The topographic and spatial organization of the projections described above will be discussed in relation to their possible functional significance.  相似文献   

16.
Kainic acid-induced limbic seizures enhance expression of tenascin-C (TN) in the hippocampus of adult rats. TN mRNA was detectable by in situ hybridization in many granule cells in the dentate gyrus 4.5 hr after kainic acid injection but not in saline-injected animals (controls) or in animals killed 2 or 24 hr after injection. Thirty days after kainic acid injection, TN mRNA was detectable only in pyramidal cells of CA3 and CA1. At the protein level, TN was detectable by immunocytochemistry in control animals in the strata oriens and lacunosum moleculare of CA1, in the molecular layer, and within a narrow area at the inner surface of the granule cell layer in the dentate gyrus. Twenty-four hours after kainic acid injection, TN immunoreactivity was enhanced in these areas and throughout the granule cell layer. Thirty days after kainic acid injection, TN immunoreactivity was downregulated in these areas, while it was prominent in the stratum oriens and in clusters of immunoreactivity in the stratum lucidum of CA3. Western blot analysis of the hippocampus showed a peak of TN expression 24 hr after kainic acid injection. These observations show that TN expression is upregulated in predominantly neuronal cells already by 4.5 hr after kainic acid injection, coincident with activation of granule cells and sprouting of axon terminals, whereas the remaining TN expression 30 days after injection relates to pyramidal cells in CA1 and CA3, coincident with an astroglial response, as marked by a strong expression of glial fibrillary acidic protein. © 1996 Wiley-Liss, Inc.  相似文献   

17.
Shetty AK 《Hippocampus》2002,12(4):534-542
Intracerebroventricular kainic acid administration in rat, a model of temporal lobe epilepsy, results in CA3 pyramidal neuron degeneration leading to deafferentation of CA1 pyramidal neurons. Denervation in CA1 shows a near-complete recovery of synaptic density over 2-3 months, but the source of axons participating in the reinnervation is not clear. This study investigated the contribution of the entorhinal cortex in this reinnervation by comparing the distribution of the entorhinal axons in the CA1 subfield between the intact hippocampus and the CA3-lesioned hippocampus at 3 months after administration of kainic acid. Entorhinal axons were visualized by anterograde tracing using injections of the biotinylated dextran amine into the entorhinal cortex. In the CA1 subfield of the intact hippocampus, entorhinal axons were conspicuous in the alveus and the stratum lacunosum moleculare. The distribution in the strata oriens, pyramidale, and radiatum was sparse and was characterized by isolated entorhinal fibers of the alvear pathway crossing these strata to the stratum lacunosum moleculare. However, after kainic acid-induced CA3 lesion, the density of entorhinal axons increased significantly in the CA1 stratum radiatum (375% of the intact hippocampus), as a large number of axons emanating from the entorhinal fiber plexus in the stratum lacunosum moleculare invaded the stratum radiatum. The stratum radiatum also exhibited wavy entorhinal axons filled with boutons and oriented parallel to the stratum pyramidale, suggesting collateral sprouting from entorhinal axons traversing the stratum radiatum. Thus, a significant aberrant sprouting of entorhinal axons occurs into the CA1 stratum radiatum after CA3 lesion. The sprouted fibers appear to come from both entorhinal fiber plexus in the stratum lacunosum moleculare (translaminar sprouting) and entorhinal axons traversing the stratum radiatum (intralaminar sprouting). However, the major contribution appears to be from the entorhinal plexus in the stratum lacunosum moleculare. This aberrant sprouting may lead to altered afferent excitatory connectivity in the CA1 subfield and contribute to the persistent CA1 hyperexcitability that occurs after the CA3 lesion.  相似文献   

18.
In order to study the distribution of acetylcholinesterase (AChE) in the primate hippocampal formation, we have stained serial sections through the brains of nine macaque monkeys for AChE by two variants of the Koelle acetylthiocholine method. We have found a distinctive pattern of staining in the hippocampal formation which varies in intensity both from region to region, and along rostrocaudal and radial gradients within each region. In the dentate gyrus, there is intense staining of the inner one-third of the molecular layer with much lighter staining in the rest of the molecular layer except for a moderately stained band at its outer edge. In the caudal half of the dentate gyrus, the inner portion of the molecular layer is less intensely stained though there is a distinctly denser band of staining just above, and partly within, the superficial margin of the granule cell layer. The granule cells are unstained but there are AChE-positive fibers which run through the granule cell layer to the molecular layer. The hilar region of the dentate gyrus has a narrow band of heavy staining (which corresponds to an acellular layer in Nissl-stained sections) just subjacent to the granule cell layer; the remainder of the hilus, where most of the hilar cells reside, is less intensely stained and at caudal levels is almost entirely unstained. In the regio inferior of the hippocampus, there is intense staining of the stratum oriens which extends into the pyramidal cell layer; the stratum radiatum and the stratum lacunosum- moleculare are also stained and here the staining pattern shows some degree of stratification. By contrast, most of the alveus, the pyramidal cell somata, and the layer of mossy fibers (stratum lucidum) are unstained. The border region between regio inferior and regio superior of the hippocampus (field CA2 of Lorente de No, '34) is especially heavily stained. This contrasts markedly with regio superior, which is more lightly stained than regio inferior. Stratum oriens and stratum radiatum of regio superior have a more evenly distributed pattern of staining, though the intensity of staining increases sharply at the border with the subiculum. Stratum lacunosum- moleculare is only lightly stained throughout much of the transverse extent of regio superior but there is also a conspicuous and constant patch of heavier staining at the border with the subiculum.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Light and electron microscopic immunocytochemical techniques were used to study the interneuron population staining for somatostain (SRIF) in cultured slices of rat hippocampus. The SRIF immunoreactive somata were most dense in stratum oriens of areas CA1 and CA3, and in the dentate hilus. Somatostain immunoreactive cells in areas CA1 and CA3 were characteristically fusiform in shape, with dendrites that extended both parallel to and into the alveus. The axonal plexus in areas CA1 and CA3 was most dense in stratum lacunosum-moleculare and in stratum pyramidale. Electron microscopic analysis of this area revealed that the largest number of symmetric synaptic contacts from SRIF immunoreactive axons were onto pyramidal cell somata and onto dendrites in stratum lacunosum-moleculare. In the dentate gyrus, SRIF somata and dendrites were localized in the hilus. Hilar SRIF immunoreactive neurons were fusiform in shape and similar in size to those seen in CA1 and CA3. Axon collaterals coursed throughout the hilus, projected between the granule cells and into the outer molecular layer. The highest number of SRIF synaptic contacts in the dentate gyrus were seen on granule cell dendrites in the outer molecular layer. Synaptic contacts were also observed on hilar neurons and granule cell somata. SRIF synaptic profiles were seen on somata and dendrites of interneurons in all regions. The morphology and synaptic connectivity of SRIF neurons in hippocampal slice cultures appeared generally similar to intact hippocampus. © 1994 Wiley-Liss, Inc.  相似文献   

20.
The distributions of adenosine A1 receptors, as demonstrated by 3H-cyclohexyladenosine (3H-CHA) binding, and the adenosine-producing enzyme 5'-nucleotidase were examined in the hippocampal formation of the rat, mouse, gerbil, cat, hamster, rabbit, and guinea pig. The enzyme and binding sites were restricted to subregions and often individual layers of this structure. The distribution of 3H-CHA binding was consistent among the species with the strata radiatum and oriens of fields CA1 and CA3 exhibiting the highest levels of binding. A distinct band of 3H-CHA binding was observed in the stratum moleculare of the dentate gyrus; and in most species, this band was restricted to the inner one-third of the stratum moleculare (i.e., proximal to the stratum granulosum). The strata pyramidale, granulosum, and lucidum were in general only weakly positive for 3H-CHA binding. The binding to the stratum lacunosum/moleculare (or the distinct strata lacunosum and moleculare in the rabbit and cat) was moderate. In contrast to the relative consistency of the patterns of 3H-CHA binding in these species, 5'-nucleotidase exhibited wide variations in both the absolute amount of activity and its localization. In all species, the strata granulosum and pyramidale appeared devoid of 5'-nucleotidase activity. The only clear exception to this rule was the CA3 region of the cat where activity was seen between the cell bodies of stratum pyramidale. The strata radiatum and oriens of CA1 were strongly positive in the rat and hamster but only low to moderately stained in the other species examined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号