首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Refocused steady-state free precession (SSFP) is limited by its high sensitivity to local field variation, particularly at high field strengths or the long repetition times (TRs) necessary for high resolution. Several methods have been proposed to reduce SSFP banding artifact by combining multiple phase-cycled SSFP acquisitions, each differing in how individual signal magnitudes and phases are combined. These include maximum-intensity SSFP (MI-SSFP) and complex-sum SSFP (CS-SSFP). The reduction in SSFP banding is accompanied by a loss in signal-to-noise ratio (SNR) efficiency. In this work a general framework for analyzing banding artifact reduction, contrast, and SNR of any multiple-acquisition SSFP combination method is presented. A new sum-of-squares method is proposed, and a comparison is performed between each of the combination schemes. The sum-of-squares SSFP technique (SOS-SSFP) delivers both robust banding artifact reduction and higher SNR efficiency than other multiple-acquisition techniques, while preserving SSFP contrast.  相似文献   

2.
PURPOSE: To describe and evaluate a fast, fluid-suppressed 2D multislice steady-state free precession (SSFP) neuroimaging sequence. MATERIALS AND METHODS: We developed a fast fluid-attenuated inversion-recovery SSFP sequence for use in neuroimaging. The inversion time (TI) was optimized to yield good cerebrospinal fluid (CSF) suppression while conserving white matter (WM)/lesion contrast across a broad range of flip angles. Multiple SSFP acquisitions were combined using the sum-of-squares (SOS) method to maximize SNR efficiency while minimizing SSFP banding artifacts. We compared our fluid-attenuated inversion-recovery (FLAIR) SSFP sequence with FLAIR fast spin-echo (FSE) in both normal subjects and a volunteer with multiple sclerosis. SNR measurements were performed to ascertain the SNR efficiency of each sequence. RESULTS: Our FLAIR SSFP sequence demonstrated excellent CSF suppression and good gray matter (GM)/WM contrast. Coverage of the entire brain (5-mm slices, 24-cm FOV, 256 x 192 matrix) was achieved with FLAIR SSFP in less than half the scan time of a corresponding FLAIR FSE sequence with similar SNR, yielding improvements of more than 50% in SNR efficiency. Axial scans of a volunteer with multiple sclerosis show clearly visible plaques and very good visualization of brain parenchyma. CONCLUSION: We have demonstrated the feasibility of a very fast fluid-suppressed neuroimaging technique using SSFP.  相似文献   

3.
Balanced SSFP achieves high SNR efficiency, but suffers from bright fat signal. In this work, a multiple‐acquisition fat‐water separation technique using alternating repetition time (ATR) balanced SSFP is proposed. The SSFP profile can be modified using alternating repetition times and appropriate phase cycling to yield two spectra where fat and water are in‐phase and out‐of‐phase, respectively. The signal homogeneity and the broad width of the created in‐phase and out‐of‐phase profiles lead to signal cancellation over a broad stop‐band. The stop‐band suppression is achieved for a wide range of flip angles and tissue parameters. This property, coupled with the inherent flexibility of ATR SSFP in repetition time selection, makes the method a good candidate for fat‐suppressed SSFP imaging. The proposed method can be tailored to achieve a smaller residual stop‐band signal or a decreased sensitivity to field inhomogeneity depending on application‐specific needs. Magn Reson Med 60:479–484, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
Although balanced steady‐state free precession (bSSFP) imaging yields high signal‐to‐noise ratio (SNR) efficiency, the bright lipid signal is often undesirable. The bSSFP spectrum can be shaped to suppress the fat signal with scan‐efficient alternating repetition time (ATR) bSSFP. However, the level of suppression is limited, and the pass‐band is narrow due to its nonuniform shape. A multiple repetition time (TR) bSSFP scheme is proposed that creates a broad stop‐band with a scan efficiency comparable with ATR‐SSFP. Furthermore, the pass‐band signal uniformity is improved, resulting in fewer shading/banding artifacts. When data acquisition occurs in more than a single TR within the multiple‐TR period, the echoes can be combined to significantly improve the level of suppression. The signal characteristics of the proposed technique were compared with bSSFP and ATR‐SSFP. The multiple‐TR method generates identical contrast to bSSFP, and achieves up to an order of magnitude higher stop‐band suppression than ATR‐SSFP. In vivo studies at 1.5 T and 3 T demonstrate the superior fat‐suppression performance of multiple‐TR bSSFP. Magn Reson Med 62:193–204, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Flow‐independent angiography is a non‐contrast‐enhanced technique that can generate vessel contrast even with reduced blood flow in the lower extremities. A method is presented for producing these angiograms with magnetization‐prepared balanced steady‐state free precession (bSSFP). Because bSSFP yields bright fat signal, robust fat suppression is essential for detailed depiction of the vasculature. Therefore, several strategies have been investigated to improve the reliability of fat suppression within short scan times. Phase‐sensitive SSFP can efficiently suppress fat; however, partial volume effects due to fat and water occupying the same voxel can lead to the loss of blood signal. In contrast, alternating repetition time (ATR) SSFP minimizes this loss; however, the level of suppression is compromised by field inhomogeneity. Finally, a new double‐acquisition ATR‐SSFP technique reduces this sensitivity to off‐resonance. In vivo results indicate that the two ATR‐based techniques provide more reliable contrast when partial volume effects are significant. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Steady-state free precession (SSFP) methods have been very successful due to their high signal and short imaging times. These properties make them good candidates for applications that intrinsically suffer from low signal such as low gamma nuclei imaging. A new chemical shift imaging (CSI) technique based on the SSFP signal formation has been implemented and applied to (31)P. The signal properties of the SSFP CSI method have been evaluated and the steady-state signal of (31)P has been measured in human muscles. Due to the T(2) and T(1) signal dependence of SSFP, the steady-state signal mainly consists of phosphocreatine (PCr). The technique allows fast CSI acquisitions with high SNR of the PCr signal. The SNR gain for PCr over a FLASH-based CSI method is approx. 4-5. Fast in vivo CSI of human muscle with subcentimeter resolution and high SNR is demonstrated at 2 T.  相似文献   

7.
PURPOSE: To evaluate the potential of fully-balanced steady-state free-precession (SSFP) sequences in in vivo high-resolution (HR) MRI of trabecular bone at field strengths of 1.5 and 3 T by simulation and experimental methods. MATERIALS AND METHODS: Using simulation studies, refocused SSFP acquisition was optimized for our imaging purposes with a focus on signal-to-noise ratio (SNR) and SNR efficiency. The signal behavior in trabecular bone was estimated using a magnetostatic model of the trabecular bone and marrow. Eight normal volunteers were imaged at the proximal femur, calcaneus, and the distal tibia on a GE Signa scanner at 1.5 and at 3 T with an optimized single-acquisition SSFP sequence (three-dimensional FIESTA) and an optimized multiple-acquisition SSFP sequence (three-dimensional FIESTA-c). Images were also acquired with a fast gradient echo (FGRE) sequence for evaluation of the SNR performance of SSFP methods. RESULTS: Refocused SSFP images outperformed FGRE acquisitions in both SNR and SNR efficiency at both field strengths. At 3 T, susceptibility effects were visible in FIESTA and FGRE images and much reduced in FIESTA-c images. The magnitude of SNR boost at 3 T was closely predicted by simulations. CONCLUSION: Single-acquisition SSFP (at 1.5 T) and multiple-acquisition SSFP (at 3 T) hold great potential for HR-MRI of trabecular bone.  相似文献   

8.

Purpose

To investigate the effectiveness of flow signal suppression of a motion‐sensitizing magnetization preparation (MSPREP) sequence and to optimize a 2D MSPREP steady‐state free precession (SSFP) sequence for black blood imaging of the heart.

Materials and Methods

Using a flow phantom, the effect of varying field of speed (FOS), b‐value, voxel size, and flow pattern on the flow suppression was investigated. In seven healthy volunteers, black blood images of the heart were obtained at 1.5T with MSPREP‐SSFP and double inversion recovery fast spin echo (DIR‐FSE) techniques. Myocardium and blood signal‐to‐noise ratio (SNR) and myocardium‐to‐blood contrast‐to‐noise ratio (CNR) were measured. The optimal FOS that maximized the CNR for MSPREP‐SSFP was determined.

Results

Phantom data demonstrated that the flow suppression was induced primarily by the velocity encoding effect. In humans, FOS = 10–20 cm/s was found to maximize the CNR for short‐axis (SA) and four‐chamber (4C) views. Compared to DIR‐FSE, MSPREP‐SSFP provided similar blood SNR efficiency in the SA basal and mid‐views and significantly lower blood SNR efficiency in the SA apical (P = 0.02) and 4C (P = 0.01) views, indicating similar or better blood suppression.

Conclusion

Velocity encoding is the primary flow suppression mechanism of the MSPREP sequence and 2D MSPREP‐SSFP black blood imaging of the heart is feasible in healthy subjects. J. Magn. Reson. Imaging 2008;28:1092–1100. © 2008 Wiley‐Liss, Inc.  相似文献   

9.
Coronary artery data acquisition with steady-state free precession (SSFP) is typically performed in a single frame in mid-diastole with a spectrally selective pulse to suppress epicardial fat signal. Data are acquired while the signal approaches steady state, which may lead to artifacts from the SSFP transient response. To avoid sensitivity to cardiac motion, an accurate trigger delay and data acquisition window must be determined. Cine data acquisition is an alternative approach for resolving these limitations. However, it is challenging to use conventional fat saturation with cine imaging because it interrupts the steady-state condition. The purpose of this study was to develop a 4D coronary artery imaging technique, termed "cine angiography with phase-sensitive fat suppression" (CAPS), that would result in high temporal and spatial resolution simultaneously. A 3D radial stacked k-space was acquired over the entire cardiac cycle and then interleaved with a sliding window. Sensitivity-encoded (SENSE) reconstruction with rescaling was developed to reduce streak artifact and noise. Phase-sensitive SSFP was employed for fat suppression using phase detection. Experimental studies were performed on volunteers. The proposed technique provides high-resolution coronary artery imaging for all cardiac phases, and allows multiple images at mid-diastole to be averaged, thus enhancing the signal-to-noise ratio (SNR) and vessel delineation.  相似文献   

10.
The concentric rings two‐dimensional (2D) k‐space trajectory enables flexible trade‐offs between image contrast, signal‐to‐noise ratio (SNR), spatial resolution, and scan time. However, to realize these benefits for in vivo imaging applications, a robust method is desired to deal with fat signal in the acquired data. Multipoint Dixon techniques have been shown to achieve uniform fat suppression with high SNR‐efficiency for Cartesian imaging, but application of these methods for non‐Cartesian imaging is complicated by the fact that fat off‐resonance creates significant blurring artifacts in the reconstruction. In this work, two fat–water separation algorithms are developed for the concentric rings. A retracing design is used to sample rings near the center of k‐space through multiple revolutions to characterize the fat–water phase evolution difference at multiple time points. This acquisition design is first used for multipoint Dixon reconstruction, and then extended to a spectroscopic approach to account for the trajectory's full evolution through 3D kt space. As the trajectory is resolved in time, off‐resonance effects cause shifts in frequency instead of spatial blurring in 2D k‐space. The spectral information can be used to assess field variation and perform robust fat–water separation. In vivo experimental results demonstrate the effectiveness of both algorithms. Magn Reson Med, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

11.
PURPOSE: To compare the performance of the conventional diaphragm navigator (DNAV) and the recently developed cardiac fat navigator (FatNAV) in suppressing respiration-induced cardiac motion in free-breathing 3D balanced steady-state free precession coronary MRA (SSFP CMRA). MATERIALS AND METHODS: In 16 healthy volunteers the right coronary artery (RCA) was imaged at 1.5T using a navigator-gated 3D SSFP CMRA sequence. DNAV and FatNAV gating were performed in random order. Image quality difference was scored by three experienced readers blinded to the gating technique. Blood signal-to-noise ratio (SNR), blood-to-myocardium contrast-to-noise ratio (CNR), and navigator efficiency were calculated. RESULTS: Diagnostically interpretable CMRA was obtained successfully in all 16 subjects with FatNAV gating (0% failure rate) and only 14 subjects with DNAV gating (12% failure rate). Compared to DNAV gating, FatNAV gating provided similar SNR and CNR, better image quality (P < 0.01), and 28% improvement in navigator efficiency (P = 0.002). CONCLUSION: FatNAV gating provides more effective motion suppression and better image quality than DNAV gating for free-breathing 3D SSFP CMRA of the RCA in healthy subjects.  相似文献   

12.

Purpose

To assess a 3D radial balanced steady‐state free precession (SSFP) technique that provides submillimeter isotropic resolution and inherently registered fat and water image volumes in comparison to conventional T2‐weighted RARE imaging for lesion characterization in breast magnetic resonance imaging (MRI).

Materials and Methods

3D projection SSFP (3DPR‐SSFP) combines a dual half‐echo radial k‐space trajectory with a linear combination fat/water separation technique (linear combination SSFP). A pilot study was performed in 20 patients to assess fat suppression and depiction of lesion morphology using 3DPR‐SSFP. For all patients fat suppression was measured for the 3DPR‐SSFP image volumes and depiction of lesion morphology was compared against corresponding T2‐weighted fast spin echo (FSE) datasets for 15 lesions in 11 patients.

Results

The isotropic 0.63 mm resolution of the 3DPR‐SSFP sequence demonstrated improved depiction of lesion morphology in comparison to FSE. The 3DPR‐SSFP fat and water datasets were available in a 5‐minute scan time while average fat suppression with 3DPR‐SSFP was 71% across all 20 patients.

Conclusion

3DPR‐SSFP has the potential to improve the lesion characterization information available in breast MRI, particularly in comparison to conventional FSE. A larger study is warranted to quantify the effect of 3DPR‐SSFP on specificity. J. Magn. Reson. Imaging 2009;30:135–144. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Signal inhomogeneities in MRI often appear as multiplicative weightings due to various factors such as field‐inhomogeneity dependencies for steady‐state free precession (SSFP) imaging or receiver sensitivities for coil arrays. These signal inhomogeneities can be reduced by combining multiple data sets with different weights. A sum‐of‐squares combination is typically used due to its simplicity and near‐optimal signal‐to‐noise ratio (SNR). However, this combination may lead to residual signal inhomogeneity. Alternatively, an optimal linear combination of the data can be performed if the weightings for individual data sets are estimated accurately. We propose a nonlinear combination to improve image‐based estimates of the individual weightings. The signal homogeneity can be significantly increased without compromising SNR. The improved performance of the method is demonstrated for SSFP banding artifact reduction and multicoil (phased‐array and parallel) image reconstructions. Magn Reson Med 60:732–738, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
Contrast-enhanced MR angiography (CE-MRA) using steady-state free precession (SSFP) pulse sequences is described. Using SSFP, vascular structures can be visualized with high signal-to-noise ratio (SNR) at a substantial (delay) time after the initial arterial pass of contrast media. The peak blood SSFP signal was diminished by <20% 30 min after the initial administration of 0.2 mmol/kg of Gd-chelate. The proposed method allows a second opportunity to study arterial or venous structures with high image SNR and high spatial resolution. A mask subtraction scheme using spin echo SSFP-S(-) acquisition is also described to reduce stationary background signal from the delayed SSFP angiography images.  相似文献   

15.
Refocused steady-state free precession (SSFP), or fast imaging with steady precession (FISP or TrueFISP), has recently proven valuable for cardiac imaging because of its high signal-to-noise ratio (SNR) and excellent blood-myocardium contrast. In this study, various implementations of multiecho SSFP or EPI-SSFP for imaging in the heart are presented. EPI-SSFP has higher scan-time efficiency than single-echo SSFP, as two or more phase-encode lines are acquired per repetition time (TR) at the cost of a modest increase in TR. To minimize TR, a noninterleaved phase-encode order in conjunction with a phased-array ghost elimination (PAGE) technique was employed, removing the need for echo time shifting (ETS). The multishot implementation of EPI-SSFP was used to decrease the breath-hold duration for cine acquisitions or to increase the temporal or spatial resolution for a fixed breath-hold duration. The greatest gain in efficiency was obtained with the use of a three-echo acquisition. Image quality for cardiac cine applications using multishot EPI-SSFP was comparable to that of single-echo SSFP in terms of blood-myocardium contrast and contrast-to-noise ratio (CNR). The PAGE method considerably reduced flow artifacts due to both the inherent ghost suppression and the concomitant reduction in phase-encode blip size. The increased TR of multishot EPI-SSFP led to a reduced specific absorption rate (SAR) for a fixed RF flip angle, and allowed the use of a larger flip angle without increasing the SAR above the FDA-approved limits.  相似文献   

16.
Diffusion‐weighted steady‐state free precession (DW‐SSFP) accumulates signal from multiple echoes over several TRs yielding a strong sensitivity to diffusion with short gradient durations and imaging times. Although the DW‐SSFP signal is well characterized for isotropic, Gaussian diffusion, it is unclear how the DW‐SSFP signal propagates in inhomogeneous media such as brain tissue. This article presents a more general analytical expression for the DW‐SSFP signal which accommodates Gaussian and non‐Gaussian spin displacement probability density functions. This new framework for calculating the DW‐SSFP signal is used to investigate signal behavior for a single fiber, crossing fibers, and reflective barriers. DW‐SSFP measurements in the corpus callosum of a fixed brain are shown to be in good agreement with theoretical predictions. Further measurements in fixed brain tissue also demonstrate that 3D DW‐SSFP out‐performs 3D diffusion weighted spin echo in both SNR and CNR efficiency providing a compelling example of its potential to be used for high resolution diffusion tensor imaging. Magn Reson Med 60:405–413, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

17.
Wideband steady‐state free precession (WB‐SSFP) is a modification of balanced steady‐state free precession utilizing alternating repetition times to reduce susceptibility‐induced balanced steady‐state free precession limitations, allowing its use for high‐resolution myelographic‐contrast spinal imaging. Intertissue contrast and spatial resolution of complete‐spine‐coverage 3D WB‐SSFP were compared with those of 2D T2‐weighted fast spin echo, currently the standard for spine T2‐imaging. Six normal subjects were imaged at 1.5 and 3 T. The signal‐to‐noise ratio efficiency (SNR per unit‐time and unit‐volume) of several tissues was measured, along with four intertissue contrast‐to‐noise ratios; nerve‐ganglia:fat, intradural‐nerves:cerebrospinal fluid, nerve‐ganglia:muscle, and muscle:fat. Patients with degenerative and traumatic spine disorders were imaged at both MRI fields to demonstrate WB‐SSFP clinical advantages and disadvantages. At 3 T, WB‐SSFP provided spinal contrast‐to‐noise ratios 3.7–5.2 times that of fast spin echo. At 1.5 T, WB‐SSFP contrast‐to‐noise ratio was 3–3.5 times that of fast spin echo, excluding a 1.7 ratio for intradural‐nerves:cerebrospinal fluid. WB‐SSFP signal‐to‐noise ratio efficiency was also higher. Three‐dimensional WB‐SSFP disadvantages relative to 2D fast spin echo are reduced edema hyperintensity, reduced muscle signal, and higher motion sensitivity. WB‐SSFP's high resolution and contrast‐to‐noise ratio improved visualization of intradural nerve bundles, foraminal nerve roots, and extradural nerve bundles, improving detection of nerve compression in radiculopathy and spinal‐stenosis. WB‐SSFP's high resolution permitted reformatting into orthogonal planes, providing distinct advantages in gauging fine spine pathology. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
This work presents the first implementation of myocardial tagging with refocused steady-state free precession (SSFP) and magnetization preparation. The combination of myocardial tagging (a noninvasive method for quantitative measurement of regional and global cardiac function) with the high tissue signal-to-noise ratio (SNR) obtained with SSFP is shown to yield improvements in terms of the myocardium-tag contrast-to-noise ratio (CNR) and tag persistence when compared to the current standard fast gradient-echo (FGRE) tagging protocol. Myocardium-tag CNR and tag persistence were studied using numerical simulations as well as phantom and human experiments. Both quantities were found to decrease with increasing imaging flip angle (alpha) due to an increased tag decay rate and a decrease in myocardial steady-state signal. However, higher alpha yielded better blood-myocardium contrast, indicating that optimal alpha is dependent on the application: higher alpha for better blood-myocardium boundary visualization, and lower alpha for better tag persistence. SSFP tagging provided the same myocardium-tag CNR as FGRE tagging when acquired at four times the bandwidth and better tag- and blood-myocardium CNRs than FGRE tagging when acquired at equal or twice the receiver bandwidth (RBW). The increased acquisition efficiency of SSFP allowed decreases in breath-hold duration, or increases in temporal resolution, as compared to FGRE.  相似文献   

19.
A wide variety of fat suppression and water–fat separation methods are used to suppress fat signal and improve visualization of abnormalities. This article reviews the most commonly used techniques for fat suppression and fat–water imaging including 1) chemically selective fat suppression pulses “FAT‐SAT”; 2) spatial‐spectral pulses (water excitation); 3) short inversion time (TI) inversion recovery (STIR) imaging; 4) chemical shift based water–fat separation methods; and finally 5) fat suppression and balanced steady‐state free precession (SSFP) sequences. The basic physical background of these techniques including their specific advantages and disadvantages is given and related to clinical applications. This enables the reader to understand the reasons why some fat suppression methods work better than others in specific clinical settings. J. Magn. Reson. Imaging 2010;31:4–18. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Signal-to-noise ratio behavior of steady-state free precession.   总被引:2,自引:0,他引:2  
Steady-state free precession (SSFP) is a rapid gradient-echo imaging technique that has recently gained popularity and is used in a variety of applications, including cardiac and real-time imaging, because of its high signal and favorable contrast between blood and myocardium. The purpose of this work was to examine the signal-to-noise ratio (SNR) behavior of images acquired with SSFP, and the dependence of SNR on imaging parameters such as TR, bandwidth, and image resolution, and the use of multi-echo sequences. In this work it is shown that the SNR of SSFP sequences is dependent only on pulse sequence efficiency, voxel dimensions, and relaxation parameters (T1 and T2). Notably, SNR is insensitive to bandwidth unless increases in bandwidth significantly decrease efficiency. Finally, we examined the relationship between pulse sequence performance (TR and efficiency) and gradient performance (maximum gradient strength and slew rate) for several imaging scenarios, including multi-echo sequences, to determine the optimum matching of maximum gradient strength and slew rate for gradient hardware designs. For standard modern gradient hardware (40 mT/m and 150 mT/m/ms), we found that the maximum gradient strength is more than adequate for the imaging resolution that is commonly encountered with rapid scouting (3 mm x 4 mm x 10 mm voxel). It is well matched for typical CINE and real-time cardiac imaging applications (1.5 mm x 2 mm x 6 mm voxel), and is inadequate for optimal matching with slew rate for high-resolution applications such as musculoskeletal imaging (0.5 x 0.8 x 3 mm voxel). For the lower-resolution methods, efficiency could be improved with higher slew rates; this provokes interest in designing methods for limiting dB/dt peripherally while achieving high switching rates in the imaging field of view. The use of multi-echo SSFP acquisitions leads to substantial improvements in sequence performance (i.e., increased efficiency and shorter TR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号