首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Cyclic GMP (cGMP) has been proposed to be involved in mediating negative inotropic responses to muscarinic agonists in the presence of cyclic AMP (cAMP)-generating agents in the heart. In order to investigate this hypothesis, the effects of the novel cGMP lowering agent, LY83583, on carbachol-induced increases in cGMP levels and decreases in tension were measured in rabbit isolated left atria and right ventricular papillary muscles, in the presence and absence of the adenylate cyclase activator, forskolin. In vehicle-treated preparations, negative inotropic responses to 3 microM carbachol in the presence of 3 microM forskolin were accompanied by significant increases in cGMP levels. Carbachol had no significant effect on forskolin-induced increases in cAMP levels. LY83583 (10 microM) reduced basal tension and basal cGMP levels, and completely abolished carbachol-induced increases in cGMP both in left atria and in papillary muscles. The LY83583 significantly reduced the magnitude of the negative inotropic responses of papillary muscles to carbachol in the presence of forskolin, but had no effect on these responses in left atria. Although a causal relationship has not been established, these data suggest that cGMP may be involved in negative inotropic responses to muscarinic stimulation in the presence of cAMP-generating agonists in ventricular muscle, but not in atria.  相似文献   

2.
The effects of somatostatin on the contractile response of guinea pig cardiac preparations were investigated and compared with those of carbachol and adenosine. Somatostatin produced a concentration-dependent negative inotropic effect in the left atria, which was accompanied by a decrease in action potential duration. The maximum decrease in contractility which was obtained at 3 x 10(-6) M was around 40% of the predrug control values and far less than those produced by carbachol and adenosine. Somatostatin failed to produce inotropic effect on the papillary muscle and did not influence the spontaneously beating rate of the right atria. In the papillary muscles, however, somatostatin inhibited the positive inotropic effect of isoproterenol in a concentration-dependent manner as did carbachol and adenosine. In addition, somatostatin caused a significant inhibition of the isoproterenol-induced increase in cyclic AMP levels without affecting the basal level of cyclic AMP. In the papillary muscle, the inhibitory effect of somatostatin on the positive inotropic response to isoproterenol was significantly attenuated by pretreatment with islet-activating protein, and was significantly antagonized by the somatostatin antagonist cyclo[7-aminoheptanoyl-Phe-D-Trp-Lys-Thr(Bzl)]. These results suggest that somatostatin receptors in guinea pig ventricular muscles are coupled with adenylate cyclase via islet-activating protein-sensitive GTP-binding protein, whereas the negative inotropic effect of somatostatin in the left atria might be mediated by a subtype of somatostatin receptors which is different from that in the ventricle.  相似文献   

3.
Phenylephrine produced concentration-related positive inotropic responses in isolated left atria and papillary muscles of guinea-pigs and rats. In rat tissues, these responses were unaffected by propranolol but antagonized by prazosin and therefore mediated via alpha 1-adrenoceptors. The alpha 1-adrenoceptor agonist methoxamine also exerted positive inotropic effects in these rat tissues. The maximum alpha-adrenoceptor-mediated effect of methoxamine (relative to the isoprenaline maximum) was greater than that of phenylephrine in left atria (in the presence of propranolol), whereas in papillary muscles phenylephrine exerted the greater maximum. In guinea-pig papillary muscles, the response to phenylephrine was unaffected by prazosin but was antagonized by propranolol and therefore caused by stimulation of beta-adrenoceptors. Methoxamine had no effect in guinea-pig papillary muscles. Guinea-pig left atria produced biphasic concentration-response curves for phenylephrine, the lower portion being antagonized by phentolamine and was therefore alpha-adrenoceptor-mediated, while the upper portion was antagonized by propranolol and therefore beta-adrenoceptor-mediated. Methoxamine exerted a small inotropic response, the maximum of which was similar to that of the first component of the phenylephrine response. Phenylephrine was a partial agonist for the cardiac beta-adrenoceptor. The density of rat ventricular alpha-adrenoceptors was 4 times greater than beta-adrenoceptor density, as measured by [3H]-prazosin and [3H]-dihydroalprenolol binding. This explains why the responses of rat papillary muscles were alpha-adrenoceptor-mediated. In contrast, the density of beta-adrenoceptor binding sites in guinea-pig ventricles was 6 times greater than the alpha-adrenoceptor density. This explains why the phenylephrine responses were beta-adrenoceptor-mediated in guinea-pig papillary muscles. In the left atria of guinea-pigs, which displayed both alpha- and beta-adrenoceptor-mediated responses, the densities of alpha- and beta-adrenoceptor binding sites were similar. Thus, phenylephrine exerts positive inotropic effects through alpha- or beta-adrenoceptors depending upon their relative densities.  相似文献   

4.
The pharmacological effects of xamoterol, a beta adrenoceptor antagonist with partial agonistic activity, were examined in guinea pig cardiac preparations and compared with those of isoproterenol to assess possible mechanisms of its cardiac stimulant actions. Xamoterol produced a positive inotropic effect in the papillary muscles and a positive chronotropic effect in the spontaneously beating right atria in a concentration-dependent manner. The maximum inotropic and chronotropic effects of xamoterol were about 33 and 35% of those of isoproterenol, respectively. Although xamoterol failed to produce a consistent increase in contractile force in the left atria, the positive inotropic effect of the agent was observed clearly in preparations obtained from reserpine-pretreated animals. The positive inotropic and chronotropic effects of xamoterol were antagonized by atenolol, but not by ICI 118,551. On the other hand, xamoterol antagonized competitively the positive inotropic and chronotropic responses to isoproterenol. In papillary muscles the increases in contractile force induced by xamoterol and isoproterenol were depressed markedly in the presence of carbachol or adenosine. In all of left atria, right atria and papillary muscles obtained from reserpine-pretreated animals, xamoterol caused a significant elevation in cyclic AMP levels, while inhibiting the isoproterenol-induced increase in cyclic AMP levels. Computer-assisted analysis of concentration-response curves for the inhibition by xamoterol of the binding of [125I]iodocyanopindolol in the membranes from guinea pig ventricles showed the existence of the 5'-guanylylimidodiphosphate sensitive, highly affinity site of beta adrenoceptors for xamoterol, suggesting that xamoterol may induce the formation of a ternary complex with the beta adrenoceptor and a stimulatory guanine nucleotide regulatory protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Adenosine has previously been shown to stimulate K(+)-efflux and to block L-type calcium channels in atrial myocytes. The aim of the present study was to evaluate the contribution of K(+)-channels in the development of the negative inotropic and chronotropic responses to adenosine agonists in guinea-pig left and right atria, respectively. Tetraethylammonium (TEA) potentiated the negative inotropic and chronotropic responses to R-(-)-N6-(2-phenyl-isopropyl)-adenosine (R-PIA), seen as leftward shifts of the concentration-response curves. Glibenclamide had no effect on the negative inotropic response to R-PIA but increased the rate of onset of the negative chronotropic response in right atria. 4-Aminopyridine (4-AP, 10 mM), potentiated the left atrial inotropic responses to R-PIA, seen as a leftward shift of the concentration-response curve, but slowed the speed of onset of the response to a single concentration (10(-6) M) of R-PIA. This reduction in speed of onset of the response can explain the differences in effects of 4-AP on concentration-response curves reported here and previously. In the right atria, 4-AP (10 mM) inhibited the negative chronotropic responses to R-PIA, seen as a rightward shift of the concentration-response curve and reduction of the maximum response. 4-AP also slowed the onset of the right atrial rate response to R-PIA. These results support the theory that K(+)-efflux plays only a minor role in the negative inotropic responses of guinea-pig left atria to R-PIA. This apparently controls the speed of onset of the response. The negative chronotropic response of guinea-pig right atria to R-PIA appears to be much more dependent upon K(+)-efflux than for the negative inotropic response of the left atria.  相似文献   

6.
The effects of the sulfidopeptide leukotrienes (LTs) on the contractile response of electrically paced guinea-pig right ventricular papillary muscles in vitro were studied. LTs caused a concentration-dependent (1 nM-20 microM) negative inotropic effect; the order of relative potency was LTC4 greater than or equal to LTD4 greater than LTE4. A maximal 30% decrease in contractility occurred with 1 microM LTC4. The LT-induced decrease in contractile force was not mediated by cyclooxygenase products of the arachidonic acid cascade, as it was not influenced by indomethacin (14 microM). On the other hand, the slow-reacting substance-antagonist compound FPL 55712 (480 nM) caused a marked shift to the right of the LTC4 concentration-response curve. Because the negative inotropic effect of LTD4 was attenuated by increasing [Ca++]o, we next assessed the negative inotropic effect of LTs under conditions in which myocardial contractility depends solely on the slow inward Ca++ current. As a model, we used the isoproterenol- or histamine-induced restoration of contractile response in papillary muscles rendered inexcitable by 22 mMK+. LTC4 (16-480 nM) and LTD4 (20-600nM) inhibited isoproterenol- and histamine-induced restoration of contractility in a dose-dependent manner; a maximal 90% inhibition occurred with 0.48 microM LTC4. This effect of LTs was reversed by an elevation in [Ca++]o from 1.8 to 5.4 mM and prevented by FPL 55712 (480 nM). In muscles maintained at 5.4 mM [K+]o, LTC4 (160 and 480 nM) and LTD4 (1 microM) shifted the force-frequency curve (0.1-2 Hz) downwards in a parallel fashion; a similar alteration was obtained by lowering [Ca++]o to 1 mM.  相似文献   

7.
It is well known that chronotropic and inotropic responses to beta-adrenergic stimulation are impaired in cirrhosis, but the exact reason is not clear. Considering the inhibitory effect of endogenous opioid peptides and nitric oxide (NO) on beta-adrenergic pathway, we examined their roles in hyporesponsiveness of isolated atria and papillary muscles to isoproterenol stimulation in cirrhotic rats. Cirrhosis was induced by chronic bile duct ligation. Four weeks after ligation or sham operation, the responses of the isolated atria and papillary muscles to isoproterenol stimulation were evaluated in the absence and presence of naltrexone HCl (10(-6) m), N(omega)-nitro-L-arginine methyl ester (L-NAME, 10(-4) m), and naltrexone plus L-NAME in the organ bath. Considering the role of inducible NOS (iNOS) in hemodynamic abnormalities of cirrhotic rats, the chronotropic and inotropic responses of cirrhotic rats to isoproterenol stimulation were also assessed in the presence of aminoguanidine (a selective inhibitor of iNOS, 3 x 10(-4) m). Sham operation had no significant effect on basal atrial beating rate, contractile force, and maximal time derivatives for the development and the dissipation of papillary muscle tension. The basal atrial beating rate of cirrhotic rats did not show any significant difference compared with the sham-operated ones; however, the basal contractile parameters were significantly decreased in cirrhosis. Although the maximum effects of isoproterenol on chronotropic and inotropic responses were significantly reduced in cirrhotic rats, there was no difference in half-maximal effective concentrations of isoproterenol in these concentration-response curves. The basal abnormalities and the attenuated chronotropic and inotropic responses to isoproterenol were completely corrected by the administration of naltrexone, L-NAME and aminoguanidine. Concurrent administration of naltrexone and L-NAME also restored to normal the basal abnormalities and the blunted responses to isoproterenol in cirrhotic rats, and did not show any antagonistic effect. Based on these findings, both the endogenous opioid peptides and NO may be involved in the attenuated chronotropic and inotropic responses to beta-adrenergic stimulation in cirrhosis. It seems that the iNOS activity results in NO-induced hyporesponsiveness to beta-adrenergic stimulation in cirrhosis.  相似文献   

8.
A new procedure for sympathetic denervation of the hearts of rats and guinea pigs is described. Bilateral removal of the inferior and medial cervical ganglia results in almost complete loss of catecholamines from atria and ventricles, disappearance of catecholamine-associated histofluorescence from the region of the sinoatrial node and marked depression of the chronotropic concentration-response curve for tyramine in right atria of both species. Seven days after bilateral sympathectomy, the chronotropic concentration-response curve for isoproterenol is shifted to the left by a factor of 3.3 in the rat and 1.7 in guinea-pig right atria. The chronotropic concentration-response curve for histamine was not shifted by sympathectomy in the guinea-pig right atrium. Inasmuch as the rat atrium does not respond to histamine, similar experiments could not be done in the rat. The inotropic concentration-response curve for isoproterenol in electrically driven left atria was not affected by 7 days of sympathectomy in either species. These results indicate that chronic surgical sympathectomy of the heart can be successfully accomplished in the rat and guinea pig. Such sympathectomy induces a postjunctional supersensitivity in guinea-pig right atria which is qualitatively and quantitatively similar to that described previously for chronic treatment with reserpine. Bilateral surgical sympathectomy provides a valuable tool for future investigations of the cellular basis of supersensitivity in the myocardium.  相似文献   

9.
Chronotropic and inotropic actions of phencyclidine were studied in spontaneously beating right atrial muscle and electrically paced left atrial muscle preparations isolated from guinea-pig or rat hearts. In right atrial muscle preparations, phencyclidine (10-100 microM) decreased the frequency of spontaneous beating. Guinea-pig and rat heart preparations had similar sensitivities to this action of phencyclidine. The negative chronotropic effect was not altered by atropine. A high concentration of naloxone failed to affect the chronotropic effect of phencyclidine in guinea-pig muscle, but significantly reduced the effect in rat heart muscle preparations. Phencyclidine (1-100 microM) caused positive inotropic effects in both guinea-pig and rat heart left atrial muscle electrically stimulated at 1.5 Hz; rat heart preparations had a higher sensitivity to the positive inotropic action of phencyclidine. The positive inotropic effect was reduced by verapamil, nifedipine and relatively high concentrations of diltiazem, but was not affected by propranolol, phentolamine, tripelennamine, atropine or ryanodine, indicating that the effect is not mediated by adrenergic, histaminergic or cholinergic systems or does not involve ryanodine-sensitive calcium pools. Inactivation of the fast sodium channels by partial membrane depolarization, and subsequent restoration of the contraction by raising the extracellular Ca++ concentration, did not abolish the positive inotropic action of phencyclidine. These results suggest that the negative chronotropic effect of phencyclidine is not mediated by a stimulation of the muscarinic receptor. The positive inotropic effects of phencyclidine seem to result from an increase in Ca++ influx through the slow channels of the cardiac cell membrane.  相似文献   

10.
The influence of ketamine on the inotropic and chronotropic responsiveness of heart muscle was examined in spontaneously beating right atrial preparations and in electrically driven left atrial preparations of guinea pigs. Ketamine (2.63 X 10(-5) to 4.2 X 10(-4) M) decreased heart rate of right atria and decreased contractile tension and its maximum rate of increase in both right and left atrial preparations (right atria greater than left atria). Ketamine did not prevent the heart rate increase produced by norepinephrine (NE; 1 X 10(-8) to 1 X 10(-4) M) in right atria; however, the maximum heart rate was consistently lower in ketamine-treated than in control muscles even after exposure to NE. Although contractile tension was decreased by ketamine, the maximum inotropic response to NE was consistently greater in ketamine-treated atria than in control atria. An inhibitor of the slow Ca++ current in heart muscle, D600, depressed the contractile effects of NE but did not prevent the positive inotropic interaction of ketamine and NE. Ketamine similarly enhanced the inotropic responses to norepinephrine (1 X 10(-6) M), epinephrine (1 X 10(-6) M), isoproterenol (1 X 10(-7) M) and dibutyryl cyclic adenosine 3':5'-monophosphate (AMP; 4 X 10(-3) M) in left atria electrically paced at a constant frequency of contraction of 1 Hz; however, ketamine inhibited the positive inotropic response to increased frequency of stimulation (0.1-3.0 Hz) and to ouabain (3 X 10(-7) M). These findings demonstrate that ketamine can exert a selective positive inotropic influence in heart muscle independent of heart rate or direct or reflexogenic autonomic nervous system changes, and suggest that this activity could in some way be associated with an alteration of the intracellular disposition of cyclic AMP.  相似文献   

11.
Platelet-activating factor (PAF) is an autacoid whose cardiovascular actions include a potent negative inotropic effect. The mechanism of this decrease in myocardial contractility is still at issue, as both a decrease and an increase in trans-sarcolemmal Ca++ influx have been reported. Because changes in intracellular sodium activity (aiNa) are known to influence myocardial contractility, we investigated whether PAF affects aiNa. Thus, we have measured contractile responses to PAF (1 nM-1 microM) in isolated guinea pig right ventricular papillary muscles paced at constant rate, and recorded transmembrane action potential and aiNa with conventional and sodium-selective microelectrodes, respectively. Our findings suggest that PAF does not affect slow inward Ca++ current, because PAF neither affected nor prevented histamine-induced restoration of contractile responses in K+-depolarized papillary muscles. On the other hand, we found the negative inotropic effect of PAF to be associated with a shortening of the action potential duration and with a decrease in aiNa. The specific PAF antagonist compound CV-3988 inhibited all three electro-mechanical responses. Our findings imply that the decrease in contractile force caused by PAF may depend on the reduction in aiNa; as aiNa falls, intracellular Ca++ may be lost via the Na+/Ca++ exchange and contractility decreases. The shortening of the action potential duration by PAF may reflect a decrease in Na+ influx and the consequent reduction in aiNa.  相似文献   

12.
The effects of the cardiotonic agent, amrinone (0.05-4 mM), on electrical and mechanical activities of ferret and guinea-pig papillary muscles were studied using current and voltage clamp (single sucrose gap) techniques. In current clamp studies, amrinone increased, in a dose-dependent manner, contractile force elicited by action potential in both species. Depolarization-induced automaticity was facilitated in ferret muscles at all maximum diastolic potentials between -70 and -15 mV. Facilitation of automaticity in guinea-pig muscles occurred only at potentials more negative than -35 mV and was suppressed at more positive potentials. Cimetidine (10 microM) partially reversed the effects of amrinone on automaticity in both species. In voltage clamp studies, amrinone increased the slow inward current. Steady-state outward current was increased in guinea-pig but not in ferret muscles. A dual effect of amrinone on tension was observed. Amrinone was found to increase phasic tension of ferret papillary muscles only for depolarizations lasting less than 250 to 300 msec. For longer depolarizations, amrinone decreased the phasic tension (in a dose-dependent manner), whereas the tonic tension was not modified. The decrease as well as the increase in tension was associated with an increase of the slow inward current. The results suggest that amrinone may be arrhythmogenic and may have an intracellular action at the sarcoplasmic reticulum level (partial inhibition) in addition to its action on the calcium current.  相似文献   

13.
Previous work has demonstrated that prolonged treatment of chick embryos in vivo with muscarinic agonists leads to a decrease in the number of muscarinic acetylcholine binding sites in the heart and a decrease in the sensitivity of isolated atria to the negative chronotropic response to muscarinic stimulation. We show here that treatment with the agonist carbachol leads to greater decreases in receptor number than does treatment with oxotremorine. Simultaneous treatment with oxotremorine and carbachol resulted in partial blockage in the maximal decrease in receptor number seen after treatment with carbachol alone. After treatment of embryos in vivo with carbachol to decrease the reserve of spare receptors in the atria, oxotremorine could no longer elicit a significant negative chronotropic response under conditions in which carbachol was still effective. These results demonstrate that oxotremorine is a partial agonist at the muscarinic acetylcholine receptor in the embryonic chick heart.  相似文献   

14.
Compound LY175326 is one of a series of novel cardiovascular agents with both inotropic and vasodilator activities. In cat papillary muscles, LY175326 increased contractility in a concentration-dependent manner; these actions were not blocked by prazosin, propranolol or cimetidine. Inotropic responses were observed in unpaced, perfused guinea-pig hearts and these effects were associated with modest increases in heart rate and coronary flow. An i.v. dose of 0.1 mg/kg of LY175326 caused 54 and 95% increases in contractility in either the anesthetized cat or dog, respectively; corresponding heart rates were increased by less than 10%. Oral administration of 0.5 mg/kg to dogs was associated with an inotropic response that was maximal between 60 and 90 min and lasted in excess of 3 hr. These effects were not accompanied by increases in heart rate, gross behavioral changes or emesis. The pharmacology of LY175326 was evaluated in a propranolol-induced heart failure model using anesthetized beagle dogs. A bolus injection of 0.15 mg/kg of LY175326 followed by an infusion of 0.4 mg/kg/hr reversed the hemodynamic symptoms of heart failure by increasing left ventricular dP/dt60, cardiac output and stroke volume and reducing left atrial filling pressure and vascular resistance; heart rate was unchanged and calculated myocardial oxygen consumption was reduced. This balance of inotropic:vasodilator activities may provide a means of improving cardiac function while maintaining the myocardial oxygen supply:demand.  相似文献   

15.
The benzimidazole molecule was modified to synthesize a Ca(2+) sensitizer devoid of additional effects associated with Ca(2+) overload. Newly synthesized compounds, termed 1, 2, 3, 4, and 5, were evaluated in spontaneously beating and electrically driven atria from reserpine-treated guinea pigs. Compound 3 resulted as the most effective positive inotropic agent, and experiments were performed to study its mechanism of action. In spontaneously beating atria, the inotropic effect of 3 was concentration-dependent (3.0 microM-0.3 mM). Compound 3 was more potent and more active than the structurally related Ca(2+) sensitizers sulmazole and caffeine, but unlike them it did not increase the heart rate. In electrically driven atria, the inotropic activity of 3 was well preserved and it was not inhibited by propranolol, prazosin, ranitidine, pyrilamine, carbachol, adenosine deaminase, or ruthenium red. At high concentrations (0.1-1.0 mM) 3 inhibited phosphodiesterase-III, whereas it did not affect Na(+)/K(+)-ATPase, sarcolemmal Ca(2+)-ATPase, Na(+)/Ca(2+) exchange carrier, or sarcoplasmic reticulum Ca(2+) pump activities of guinea pig heart. In skinned fibers obtained from guinea pig papillary muscle and skeletal soleus muscle, compound 3 (0.1 mM, 1 mM) shifted the pCa/tension relation curve to the left, with no effect on maximal tension and no signs of toxicity. Compound 3 did not influence the basal or raised tone of guinea pig isolated aorta rings, whose cells do not contain the contractile protein troponin. The present results indicate that the inotropic effect of compound 3 seems to be primarily sustained by sensitization of the contractile proteins to Ca(2+).  相似文献   

16.
The effects of leukotrienes C4, D4 and E4 (LT C4, D4 and E4) were studied in isolated preparations of guinea-pig and human myocardium in order to assess their contribution to cardiac dysfunction associated with systemic anaphylaxis. LT C4, D4 and E4 all caused long-lasting and dose-related decreases in the contractile force and coronary flow rate of the isolated guinea-pig heart. The rank order of potency was LT D4 greater than C4 greater than E4. The effects of LT C4 and D4 were antagonized by the anti-slow-reacting-substance compound FPL 55712. The negative inotropic effect of LT is unlikely to be secondary to the concomitant reduction in coronary flow because: 1) the same reduction in coronary flow by angiotensin II resulted in a negligible decrease in contractility and 2) the negative inotropic effect of LT also occurred in the electrically paced, noncoronary perfused left atrium and right ventricular papillary muscle of the guinea pig and in pectinate muscles obtained from surgical specimens of human right atrial appendage. LT D4 potentiated the positive chronotropic effect of histamine, supporting the concept that functional interactions occur between the various mediators of immediate hypersensitivity. The cardiac effects of pure synthetic LT are similar to those previously obtained with crude slow-reacting substance of anaphylaxis indicating that the prolonged contractile failure associated with systemic anaphylaxis largely could be due to the negative inotropic effect of LT. Because LT are released in a variety of immunological and inflammatory reactions, their potent myocardial depressant effects may play a role in cardiac dysfunction associated with these reactions.  相似文献   

17.
In rat olfactory bulb, stimulation of muscarinic receptors activates adenylate cyclase. In the present study we have examined a variety of muscarinic receptor stimulants to characterize the agonist profile of this response. Analysis of agonist concentration-response curves revealed the following rank order of potency: oxotremorine-M greater than oxotremorine greater than BM5 greater than acetylcholine greater than carbachol = methacholine greater than (+/-)muscarine greater than arecoline greater than pilocarpine greater than RS 86 greater than McN-A-343 greater than bethanechol. Acetylcholine, oxotremorine-M, carbachol, (+/-)muscarine and metacholine behaved as full agonists, whereas the other stimulants displayed lower efficacies. The slope values of the concentration-response curves were close or equal to 1, except those of the carbachol and pilocarpine curves, which showed values significantly lower than 1. Moreover, the slope of the pilocarpine curve was differentially changed by the M1 antagonist pirenzepine and the M2 antagonist AF-DX 116. The agonist profile of the muscarinic stimulation of adenylate cyclase in the olfactory bulb correlated well with that exhibited by the muscarinic inhibition of the enzyme activity in the striatum, suggesting that the two responses are mediated by a similar receptor subtype. Sodium ion modulated the agonist affinity for both adenylate cyclase-coupled receptor systems.  相似文献   

18.
In the guinea pig atria, carbachol, acetylcholine and bethanechol elicited negative inotropic and positive inotropic effects. In the rat atria, a negative inotropic response occurred, but the positive inotropic response was small. The positive and negative inotropic responses to carbachol and bethanechol (but not acetylcholine) were unaffected by pretreating the animals with reserpine and were antagonised by pirenzepine with pKB values of 6.7. Pretreatment with pertussis toxin abolished the negative inotropic responses, but was without effect on the positive inotropic responses in the guinea pig. Pretreatment of rats with pertussis toxin abolished the negative inotropic response and enhanced the positive inotropic response. The positive inotropic response was attenuated by pretreatment with dietary lithium for 2 weeks, whereas no effect was observed on the negative inotropic response. Negative and positive inotropic responses to muscarinic agonists in these species are mediated directly through an M2 muscarinic receptor. The ability of dietary lithium to selectively inhibit the positive inotropic response may provide evidence for the involvement of inositol phospholipid hydrolysis in this effect.  相似文献   

19.
Inhibition of the Na+-K+ active transport system has been postulated to be one mechanism through which myocardial contractility is increased. Rubidium is one substance which has been shown to increase the contractility of guinea-pig atria and inhibit the activity of the isolated Na+,K+-adenosine triphosphatase of guinea-pig ventricle. A reexamination of these results confirmed the positive inotropic effect of rubidium on guinea-pig atria and demonstrated that this effect on contractility is accompanied by a decrease in both resting potential and action potential duration. However, it was also found that rubidium produced a transient negative inotropic effect in guinea-pig ventricle. The latter response was closely paralleled by a transient shortening of action potential duration. A concentration of rubidium maximally effective in decreasing contractility (2.0 mM) had no effect on the slow response action potential or contraction. RbCl (0.1 mM) had no effect on cyclic adenosine 3':5'-monophosphate levels of the ventricle or atrium. RbCl did inhibit active transport in the ventricle, as evidenced by a significant reduction in the electrogenic contribution on the active transport system to the maximal diastolic membrane potential during high-frequency drive. These results demonstrate that RbCl has different effects on the contractility of atrial and ventricular muscle. They also suggest that inhibition of the sodium pump is not necessarily accompanied by an increased force of myocardial contraction.  相似文献   

20.
Supersensitivity to the chronotropic and inotropic effects of calcium was demonstrated in spontaneously beating paired atria from reserpine-pretreated (0.1 mg/kg/day, 7 days) rabbits. Supersensitivity to the inotropic effects of calcium in electrically driven left atria was also demonstrated. Atria were driven at 80, 100 and 120 beats/min. At each frequency the reserpine-pretreated atria were more sensitive than controls. Atria were tested under diastolic tensions of 1,2 and 4 g. As the tension was increased the sensitivity to calcium increased. The sensitivity of reserpine-pretreated atria was greater at each tension than that of control atria. Atria tested at 37 degrees C were less sensitive than those tested at 30 degrees C; however, the reserpine-pretreated atria were more sensitive than control atria at both temperatures. This study demonstrates that reserpine-induced supersensitivity to the inotropic effects of calcium can be obtained and that the ability to demonstrate this phenomenon does not appear to be altered by the frequency, diastolic tension or temperature at which each experiment is performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号