首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Characterization of receptors for glutamate and GABA in retinal neurons   总被引:11,自引:0,他引:11  
Glutamate and gamma-aminobutyric acid (GABA) are major excitatory and inhibitory neurotransmitters in the vertebrate retina, "a genuine neural center" (Ramón y Cajal, 1964, Recollections of My Life, C.E. Horne (Translater) MIT Press, Cambridge, MA). Photoreceptors, generating visual signals, and bipolar cells, mediating signal transfer from photoreceptors to ganglion cells, both release glutamate, which induces and/or changes the activity of the post-synaptic neurons (horizontal and bipolar cells for photoreceptors; amacrine and ganglion cells for bipolar cells). Horizontal and amacrine cells, which mediate lateral interaction in the outer and inner retina respectively, use GABA as a principal neurotransmitter. In recent years, glutamate receptors and GABA receptors in the retina have been extensively studied, using multi-disciplinary approaches. In this article some important advances in this field are reviewed, with special reference to retinal information processing. Photoreceptors possess metabotropic glutamate receptors and several subtypes of GABA receptors. Most horizontal cells express AMPA receptors, which may be predominantly assembled from flop slice variants. In addition, these cells also express GABAA and GABAC receptors. Signal transfer from photoreceptors to bipolar cells is rather complicated. Whereas AMPA/KA receptors mediate transmission for OFF type bipolar cells, several subtypes of glutamate receptors, both ionotropic and metabotropic, are involved in the generation of light responses of ON type bipolar cells. GABAA and GABAC receptors with distinct kinetics are differentially expressed on dendrites and axon terminals of both ON and OFF bipolar cells, mediating inhibition from horizontal cells and amacrine cells. Amacrine cells possess ionotropic glutamate receptors, whereas ganglion cells express both ionotropic and metabotropic glutamate receptors. GABAA receptors exist in amacrine and ganglion cells. Physiological data further suggest that GABAC receptors may be involved in the activity of these neurons. Moreover, responses of these retinal third order neurons are modulated by GABAB receptors, and in ganglion cells there exist several subtypes of GABAB receptors. A variety of glutamate receptor and GABA receptor subtypes found in the retina perform distinct functions, thus providing a wide range of neural integration and versatility of synaptic transmission. Perspectives in this research field are presented.  相似文献   

3.
Synaptically released glutamate activates ionotropic and metabotropic receptors at central synapses. Metabotropic glutamate receptors (mGluRs) are thought to modulate membrane conductances through transduction cascades involving G proteins. Here we show, in CA3 pyramidal cells from rat hippocampus, that synaptic activation of type 1 mGluRs by mossy fiber stimulation evokes an excitatory postsynaptic response independent of G-protein function, while inhibiting an afterhyperpolarization current through a G-protein-coupled mechanism. Experiments using peptide activators and specific inhibitors identified a Src-family protein tyrosine kinase as a component of the G-protein-independent transduction pathway. These results represent the first functional evidence for a dual signaling mechanism associated with a heptahelical receptor such as mGluR1, in which intracellular transduction involves activation of either G proteins or tyrosine kinases.  相似文献   

4.
Application of group I metabotropic glutamate receptor (mGluR) agonists elicits seizure discharges in vivo and prolonged ictal-like activity in in vitro brain slices. In this study we examined 1) if group I mGluRs are activated by synaptically released glutamate during epileptiform discharges induced by convulsants in hippocampal slices and, if so, 2) whether the synaptically activated mGluRs contribute to the pattern of the epileptiform discharges. The GABA(A) receptor antagonist bicuculline (50 microM) was applied to induce short synchronized bursts of approximately 250 ms in mouse hippocampal slices. Addition of 4-aminopyridine (4-AP; 100 microM) prolonged these bursts to 0.7-2 s. The mGluR1 antagonist (S)-(+)-alpha-amino-4-carboxy-2-methylbenzeneacetic acid (LY 367385; 25-100 microM) and the mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP; 10-50 microM), applied separately, significantly reduced the duration of the synchronized discharges. The effects of these antagonists were additive when applied together, suggesting that mGluR1 and mGluR5 exert independent actions on the epileptiform bursts. In phospholipase C beta1 (PLCbeta1) knockout mice, bicuculline and 4-AP elicited prolonged synchronized discharges of comparable duration as those observed in slices from wild-type littermates. Furthermore, mGluR1 and mGluR5 antagonists reduced the duration of the epileptiform discharges to the same extent as they did in the wild-type preparations. The results suggest that mGluR1 and mGluR5 are activated synaptically during prolonged epileptiform discharges induced by bicuculline and 4-AP. Synaptic activation of these receptors extended the duration of synchronized discharges. In addition, the data indicate that the synaptic effects of the group I mGluRs on the duration of epileptiform discharges were mediated by a PLCbeta1-independent mechanism.  相似文献   

5.
The functions of glutamate and GABA in the CNS are mediated by ionotropic and metabotropic, G protein-coupled, receptors. Both receptor families are widely expressed in basal ganglia structures in primates and nonprimates. The recent development of highly specific antibodies and/or cDNA probes allowed the better characterization of the cellular localization of various GABA and glutamate receptor subtypes in the primate basal ganglia. Furthermore, the use of high resolution immunogold techniques at the electron microscopic level led to major breakthroughs in our understanding of the subsynaptic and subcellular localization of these receptors in primates. In this review, we will provide a detailed account of the current knowledge of the localization of these receptors in the basal ganglia of humans and monkeys.  相似文献   

6.
Cerebral ischemia causes an excess release of glutamate, which can injure neurons. The striatum is one of the important regions vulnerable to hypoxia and ischemia. Using push–pull perfusion technique, we investigated the regulatory role of γ-aminobutyric acid (GABA) and its receptors in modifying the amount of glutamate in rat striatum with ischemia. Perfusion with exogenous GABA (1 mM) inhibited cerebral ischemia-induced glutamate release by as much as 47%. We further characterized relative roles of subtype receptors of GABA on glutamate release by using pharmacological tools. While baclofen (500 μM), a GABAB receptor agonist, suppressed ischemia-induced glutamate release by 52%, GABAB receptor antagonist saclofen (500 μM) failed to produce a significant increase of glutamate release. The GABAA receptor agonist muscimol (500 μM) also reduced by 38% the release of glutamate induced by cerebral ischemia but the GABAA receptor antagonist bicuculline (500 μM) had very little effect. The present study demonstrates that the excessive release of glutamate or the overly activated glutamate receptor, triggered by cerebral ischemia, can be down-regulated by exogenous GABA or by increased activity of GABA receptors, especially the presynaptic GABAB receptors, which might be one of the important mechanisms to protect against striatum neuronal damage from over stimulation by excessive glutamate during ischemia.  相似文献   

7.
We studied the possibility of induction of anti-GABA autoantibodies during chronic epileptization of the brain and the effect of systemic intraperitoneal administration of anti-GABA antibodies to C57Bl/6 mice on acute generalized and chronic epileptiform activity. It was found for the first time that chronic epileptization is accompanied by induction of anti-GABA autoantibody synthesis. Antibodies against GABA produced a proepileptic effect. __________ Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 142, No. 11, pp. 505–508, November, 2006  相似文献   

8.
9.
The distribution of functional neurotransmitter receptors is an important determinant of neuronal information processing. To map the location of functional glutamate and GABA receptors on individual hippocampal neurons, we photolyzed "caged" glutamate and GABA while measuring the electrical currents resulting from activation of these receptors. Responses to uncaged neurotransmitters were spatially nonuniform and varied according to the type of receptor and type of neuron. Every region of CA1 pyramidal cells responded to glutamate and GABA, but glutamate and GABA receptors increased in density along the length of their distal dendrites. Similar gradients of glutamate receptors were found in stratum radiatum interneurons, while GABA responses were detectable only in the perisomatic region of these interneurons. These regional variations in receptor distribution indicate the selective targeting of receptors on central neurons and may reflect a mechanism for local regulation of synaptic efficacy.  相似文献   

10.
Jang IS  Ito Y  Akaike N 《Neuroscience》2005,135(3):737-748
Disynaptic GABAergic inputs from Schaffer collateral (SC) afferents on to the soma of glutamatergic CA1 pyramidal neurons are involved in feed-forward inhibition in the hippocampal neural circuits. Here we report the functional roles of presynaptic GABA(A) receptors on SC afferents projecting to CA1 pyramidal neurons. Muscimol (0.5 microM), a selective GABA(A) receptor agonist, increased SC-evoked EPSC amplitude and decreased paired-pulse ratio in the slice preparation, in addition, it facilitated spontaneous glutamate release on to mechanically dissociated CA1 pyramidal neurons in an external Ca2+-dependent manner. In field recordings, muscimol at low concentrations (< or = 0.5 microM) increased not only the excitability of SC afferents but glutamate release, however, it at high concentrations (> or = 1 microM) changed bidirectionally. These results suggest that the moderate activation of presynaptic GABA(A) receptors depolarizes SC afferents and enhances SC-mediated glutamatergic transmission. When endogenous GABA was disynaptically released by brief trains of stimulation of SC afferents, the axonal excitability in addition to glutamate release was increased. The effects of endogenous GABA on the excitability of SC afferents were blocked by either SR95531 or AMPA receptor blockers, which would be expected to block disynaptic feed-forward neural circuits. The present results provide a novel form of presynaptic modulation (feed-forward facilitation) of glutamatergic transmission by presynaptic GABA(A) receptors within the intrinsic hippocampal neural circuits.  相似文献   

11.
Using a microperfusion technique for rapid application of agonists to single identified voltage-clamped neurons of the marine mollusc Aplysia, chloride conductances elicited by gamma-aminobutyric acid (GABA) and L-glutamate were found to differ in rates of activation and desensitization, voltage dependence and dose-response relations. In spite of these marked differences, the two responses showed strong interaction: previous application of GABA could completely block the responses to glutamate while previous application of glutamate decreased the response to GABA. This interaction was not due to transmembrane chloride redistribution, and is probably not cross receptor blockade. Cross-desensitization of GABA and glutamate responses suggest that distinct receptors activate a common ion channel.  相似文献   

12.
The ability of the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) to suppress picrotoxin-induced epileptiform burst activity was examined. Intracellular recordings were obtained from hippocampal CA1 and CA3 pyramidal neurons maintained in vitro. Bath application of CNQX (5 microM) significantly reduced or abolished evoked paroxysmal depolarizing shifts (PDSs) in all CA1 and CA3 neurons tested. In cells where a CNQX-insensitive component in the PDS was manifest, this remaining activity was abolished by the N-methyl-D-aspartate (NMDA) receptor antagonist D-2-amino-5-phosphonovaleric acid (20 microM), suggesting the existence of a NMDA-mediated synaptic potential. Our results indicate that non-NMDA receptor antagonists are capable of markedly reducing picrotoxin-induced epileptiform activity and that these receptors play an important role in generation of PDSs.  相似文献   

13.
Pentobarbital, a general anesthetic, has received extensive study for its ability to potentiate inhibition at GABA(A) subtype of receptors for GABA. Using whole cell current-clamp techniques and bath applications, we determined the effects of pentobarbital and GABA receptor antagonists on the membrane properties and tonic or burst firing of medial geniculate neurons in thalamic slices. Pentobarbital (0.01-200 microM) induced depressant effects in 50 of 66 neurons (76%). Pentobarbital hyperpolarized neurons by a mean of 3 mV and decreased the number of action potentials in tonic firing, evoked by current pulse injection from near the resting potential. Pentobarbital also decreased burst firing or low threshold Ca(2+)-spikes, evoked by current pulse injection into neurons at potentials hyperpolarized from rest. The blockade of tonic and burst firing, as well as low threshold Ca(2+)-spikes, was surmountable by increasing the amplitude of input current. The GABA(A) receptor antagonists, bicuculline (100 microM) and picrotoxinin (50-100 microM), did not block the depressant effects of pentobarbital (10 microM). The GABA(B) receptor antagonist, saclofen (200 microM), and GABA(C) receptor antagonist, (1,2,3,6-tetrahydropyridine-4-yl)methylphosphinate (10-50 microM), did not significantly alter the depressant effects. Pentobarbital produced excitatory effects (0.1-50 microM) on 11 neurons (17%) but had no effects on 5 neurons (7%). The excitation consisted of approximately 3 mV depolarization, increased tonic and burst firing and the rate of rise and amplitude of low threshold Ca(2+) spikes. These effects were associated with a increase in input resistance. In contrast, the depressant effects of pentobarbital correlated to a decreased input resistance measured with hyperpolarizing current pulse injection (IC(50) = 7.8 microM). Pentobarbital reduced Na(+)-dependent rectification on depolarization and lowered the slope resistance over a wide voltage range. Tetrodotoxin eliminated both Na(+)-dependent rectification and the pentobarbital-induced decrease in membrane resistance at depolarized voltages in two-thirds of the neurons. The pentobarbital-induced decrease in membrane resistance at voltages hyperpolarized from rest was not evident during co-application with Cs(+), known to block the hyperpolarization-activated rectifiers. In summary, the pentobarbital acted at low concentrations to depress thalamocortical neurons. The depression resulted from decreased rectification on depolarization, which no longer boosted potentials over threshold, and an increased conductance that shunted spike generation. The depressant effects of pentobarbital did not involve known types of GABA receptor interactions.  相似文献   

14.
GABA is the major inhibitory transmitter at invertebrate synapses in both the central and peripheral nervous systems. The receptors for GABA are well characterised electrophysiologically in a wide variety of invertebrate organisms but their biochemical and pharmacological profiles are less well defined. In general invertebrate GABA receptors are less sensitive to bicuculline than are vertebrate GABAA receptors. There is much evidence that invertebrate GABAA receptors have benzodiazepine modulatory sites but their pharmacological profile is distinct from that of vertebrate GABAA receptors. The insect neuronal GABAA receptor has been identified as the site of action of the cyclodiene insecticides and the avermectins may also act on these receptors. Molecular cloning experiments now in progress will reveal the detailed relationships between the invertebrate receptors and their mammalian counterparts.  相似文献   

15.
16.
1. We have examined the effects of L-glutamate and gamma-aminobutyric acid (GABA) on the presynaptic membrane of spiny lobster by the use of intra-axonal recording near the nerve terminals. 2. Application of glutamate to the synaptic region produced hyperpolarization in the presynaptic membrane but depolarization in the postsynaptic membrane. The presynaptic glutamate potential (PGP) is generated by an activation of K+ channels, as evidenced by its dependence on external K+ concentration. 3. The PGP was not affected by a spider toxin (JSTX), which blocks the postsynaptic glutamate receptor. By contrast, pertussis toxin (IAP) effectively blocked the PGP without affecting the resting conductance channels or action potentials in the presynaptic membrane. 4. Guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), a hydrolysis-resistant analogue of GTP, blocked the PGP, suggesting the involvement of a G protein in the generation of K+ current. 5. Application of GABA induced depolarization or hyperpolarization in the presynaptic axon depending on the resting membrane potential. By reducing external Cl-, GABA-induced hyperpolarizations were converted to depolarizations, indicating that they are mainly mediated by Cl-. 6. In contrast to GABA, baclofen consistently induced hyperpolarization in low Cl- solution as well as in normal solution. Baclofen-induced hyperpolarization was blocked by IAP, indicating the mediation of G protein. 7. These results suggest that the presynaptic membrane of lobster neuromuscular synapse has entirely different types of amino-acid receptors from those in the postsynaptic membrane. Both the excitatory and the inhibitory axonal membrane have glutamate ("glutamateB") and GABAB receptors, which activate K+ channels via G protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Rapid removal of synaptically released glutamate from the extracellular space ensures a high signal-to-noise ratio in excitatory neurotransmission. In the cerebellum, glial glutamate transporters, GLAST and GLT-1, are co-localized in the processes of Bergmann glia wrapping excitatory synapses on Purkinje cells (PCs). Although GLAST is expressed six-fold more abundantly than GLT-1, the decay kinetics of climbing fiber-mediated excitatory postsynaptic currents (CF-EPSCs) in PCs in GLAST(−/−) mice are not different from those in wild-type (WT) mice. This raises a possibility that GLT-1 plays a significant role in clearing glutamate at CF-PC synapses despite its smaller amount of expression. Here, we studied the functions of GLT-1 and GLAST in the clearance of glutamate using GLAST(−/−) mice and GLT-1(−/−) mice. In the presence of cyclothiazide (CTZ) that attenuates the desensitization of AMPA receptors, the decay time constant of CF-EPSCs (τw) in GLT-1(−/−) mice was slower than that in WT mice. However, the degree of this prolongation of τw was less prominent compared to that in GLAST(−/−) mice. The values of τw in GLT-1(−/−) mice and GLAST(−/−) mice were comparable to those estimated in WT mice in the presence of a potent blocker of glial glutamate transporters (2S,3S)-3-[3-(4-methoxybenzoylamino)benzyloxy]aspartate (PMB-TBOA) at 10 and 100 nM, which reduced the amplitudes of glutamate transporter currents elicited by CF stimulation in Bergmann glia to ∼81 and ∼28%, respectively. We conclude that GLT-1 plays a minor role compared to GLAST in clearing synaptically released glutamate at CF-PC synapses.  相似文献   

18.
19.
Inhibition of type A GABA receptors by L-type calcium channel blockers   总被引:2,自引:0,他引:2  
Modulation of type A GABA receptors (GABAA) by L-type Ca++ channel blockers was investigated. The dihydropyridines nifedipine and nitrendipine, and the phenylalkylamine verapamil inhibited recombinant rat alpha1beta2gamma2 receptors recorded from human embryonic kidney (HEK) 293 cells; nifedipine at low concentrations also elicited modest stimulatory effects on GABA-gated current. The IC50 for GABA current inhibition was lowest for nitrendipine (17.3 +/- 1.3 microM), so subsequent studies were focused on further exploring its mechanism and possible site of action. When co-applied with GABA, nitrendipine had minimal effects on initial current amplitude, but significantly enhanced current decay rate. Nitrendipine-mediated inhibition was subunit-selective, as its IC50 was 10-fold lower in alpha1beta2 receptors. Nitrendipine's effect in recombinant human alpha1beta2gamma2 receptors was similar (IC50=23.0 +/- 1.3 microM) to that observed in rat receptors of the same configuration, indicating the site of action is conserved in the two species. The inhibitory effects were dependent on channel gating, were independent of transmembrane voltage, and were also observed in GABAA receptors recorded from hypothalamic brain slices. The pharmacologic mechanism of inhibition by nitrendipine was non-competitive, indicating it does not act at the GABA binding site. Nitrendipine block was retained in the presence of the benzodiazepine antagonist flumazenil, indicating it does not interact at the benzodiazepine site. The actions of nitrendipine were not affected by a mutation (beta2T246F) that confers resistance to the channel blocker picrotoxin, and they were not altered in the presence of the picrotoxin site antagonist alpha-isopropyl-alpha-methyl-gamma-butyrolactone, demonstrating nitrendipine does not act at the picrotoxin site of the GABAA receptor. Possible interaction of nitrendipine with the Zn++ site was also eliminated, as mutation of beta2 H267 to A, which confers resistance to Zn++, had no effect on nitrendipine-mediated inhibition. Our data suggest some of the central effects of dihydropyridines may be due to actions at GABAA receptors. Moreover, the effects may be mediated through interaction with a novel modulatory site on the GABAA receptor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号